Cosmology Dark Energy Models ASTR 2120 Sarazin

Size: px
Start display at page:

Download "Cosmology Dark Energy Models ASTR 2120 Sarazin"

Transcription

1 Cosmology Dark Energy Models ASTR 2120 Sarazin

2 Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing)

3 Final Exam Thursday, May 2, 9:00 am - noon ASTR 265 (classroom) You may not consult the text, your notes, or any other materials or any person You can bring three 3x5 index cards with equations only on both sides! Bring pencils, paper, calculator

4 Final Exam ~2/3 Quantitative Problems (like homework problems) ~1/3 Qualitative Questions Multiple Choice (scantron), Short Answer, Fill In the Blank No essay questions Scantron = need pencils and eraser

5 Final Exam (Cont.) Material: Final exam will cover the entire semester Chapters (5), 7, Stars, Sun Cosmology Extra emphasis on material not on first two tests Clusters of Galaxies (problems), AGNs, Cosmology Chapters 21, 23, 24 Homeworks 9-11 Know pc, AU, M solar, L solar, R solar, H 0, T CMB

6 Final Exam (Cont.) Review Session: Wednesday, May 1(Reading Day) 10 am - noon ASTR 265 (classroom) Mainly material since test 2?

7 Cosmology Dark Energy Models ASTR 2120 Sarazin

8 Cosmological Constant Model History: Einstein (~1917) realizes there are no static cosmological models in General Relativity Obvious: gravity is only force in models, always attractive, nothing to balance gravity Einstein says: Universe is obviously static something is wrong Einstein adds a fudge Cosmological Constant = L = gravity (actually, anti-gravity) without matter Empty Universe would expand, add matter and gravity (exactly the right amount) gravity = - Cosmological Constant Static universe (but unstable)

9 Cosmological Constant Model History (cont): Hubble expansion (1920 s) Universe is expanding, not static Had Einstein been brave enough, would have predicted Hubble expansion The biggest mistake of my life - Einstein

10 Cosmological Constant Model Subsequent History: Quantum Mechanics vacuum fluctuations vacuum energy Uncertainty Principle: ΔE Δt E(vacuum) 0 + ΔE = 0 + 2m e c 2 for example for short time, Δt /(2m e c 2 ) Make e e + pair, then disappear

11 Cosmological Constant Model e + e - e + e+ e + e - e - e - e - e + Vacuum = bubbling sea of particles and antiparticles effective pressure of virtual particles repulsive force in vacuum Could L be real?

12 Cosmological Constant Model Subsequent History: Distances from SN Ia expansion of Universe is accelerating Standard Models are wrong Dark Energy

13 Cosmological Constant Model Λ has units of 1/(distance) 2 Note : Λ (text) = Λ(here) c 2 Λ 3 (curvature of vacuum) Equivalent to : mass density : ρ Λ = Λc2 8πG Ω Λ ρ Λ = 1 Λc 2 2 ρ crit 3 H 0 vacuum energy density : u Λ = ρ Λ c 2 pressure : P Λ = ρ Λ c 2 = u Λ NEGATIVE!!

14 Cosmological Constant Model Negative Pressure?! Vacuum energy density = u L = r L c 2 Consider vacuum created when Universe expands: P L V DV New energy created DE = u L DV, energy conserved, must come from somewhere Work done by vacuum (fluctuation gas ): W = P L DV = - DE = - u L DV P L = - u L negative pressure Old Dark Energy creates new Dark Energy

15 Cosmological Constant Model Like Newtonian potential energy : Φ Λ = 1 6 Λc2 r 2 F acceleration : a = Φ Λ = Λc2 r r radial repulsive force d(r /r o ) dt Ω = H M o (r /r o ) + Kc2 2 H 0 + Λc2 3H 0 2 ' ) ( r r o *, + 2 d(r /r o ) dt Ω = H M o (r /r o ) + Kc2 2 H 0 + Ω ' r Λ) ( r o *, + 2 Equation of Cosmic Dynamics Friedmann Equation

16 Cosmological Constant Model d(r /r o ) dt Curvature : K = H 2 0 c 2 = H o Ω M (r /r o ) + Kc2 H Ω Λ ( Ω M + Ω Λ 1) Dark Energy and Matter have same effect on curvature Deceleration parameter : $ & % r r o ' ) ( 2 q o = 1 2 Ω M Ω Λ Dark Energy = accelerated expansion Dark Energy and Matter have opposite effect on dynamics

17 Cosmological Constant Model d(r /r o ) dt = H o Ω M (r /r o ) + Kc2 H Ω Λ Ω M Mass term r 1/2 dominates early Ω Λ Dark Energy term r dominates late $ & % r r o ' ) ( 2 r / r o t o acceleration deceleration t

18 Cosmological Constant Model Late times: r / r 0 >>1 (r / r o ) = Aexp( H o Ω Λ t) exponential expansion!!

19 What is Dark Energy? Problem with Dark Energy: If you actually try to calculate the effect of vacuum fluctuations on gravity they are either: ~ x too large!!! or 0 or ~ x too small!!! depending on assumptions No current theory gives the correct value!!

20 Cosmology - Tests ASTR 2120 Sarazin WMAP Satellite

21 Cosmological Tests What is K? W M? Is there a Cosmological Constant? Local Tests: Measurement in local (low redshift) Universe 1. Hubble Constant (discussed earlier) 2. Age limit from oldest stars (homework) or radioactivity 3. Current average density Measure <r> W M = r / r crit

22 Local Cosmological Tests Clusters of Galaxies Big enough to be fair sample of Universe Measure total mass, baryon mass Scale to whole Universe W M = 0.3 Low density Universe

23 Global Cosmological Tests Measure objects at high redshift to determine 1. Change in expansion with redshift (time) 2. Geometry of Universe 1920 s - late 1990 s: Mainly done with galaxies, assuming they are standard candles Effect small, data bad, galaxies evolve

24 Type Ia Supernovae Reminder: believed to be due to white dwarf in binary accreting to over the Chandrasekhar limit " M Ch = 0.78 c % $ ' # G & 3/2 1 m p 2 =1.4M Best defined objects in astrophysics? However, nature of binary companion and details of the explosion are uncertain

25 Type Ia Supernovae All have similar peak luminosities Variation correlates with decay time for light Benefits: 1. Very bright, can be seen across Universe 2. Occur among old stars. Look in elliptical galaxies, no young stars, no core-collapse SN 3. Ellipticals = little gas or dust, little extinction

26 Type Ia Supernovae

27 Type Ia Supernovae

28 Type Ia Supernovae

29 Type Ia Supernovae Supernovae at high redshift fainter than expected for velocity, or equivalently slower for distance Expansion of Universe is accelerating with time! W L > 0.3 just from SN Ia

30 CMB Fluctuations and WMAP CMB photons come directly to us from t = 370,000 years after Big Bang when temperature was 3000 K Fluctuations in density of matter and radiation (later become galaxies, etc.) First seen with COBE satellite

31 CMB Fluctuations and WMAP Fluctuations on all scales, but... Acoustic peak at l = (sound speed) x age Know age (370,000 years) and sound speed (T = 3000 K) know l (actually full spectrum)

32 CMB Fluctuations and WMAP

33 CMB Fluctuations and WMAP Fluctuations on all scales, but... Acoustic peak at l = (sound speed) x age Know age (370,000 years) and sound speed (T = 3000 K) know l (actually full spectrum) Known size objects at known distance and redshift = angular size determines geometry

34 CMB Fluctuations and WMAP

35 CMB Fluctuations and WMAP

36 WMAP Satellite

37 WMAP Fluctuations

38 WMAP Fluctuations

39 WMAP Fluctuations Flat Universe WM + WL = 1

40 Concordance Cosmology WMAP & Planck CMB Fluctuations: Flat Universe SN Ia: W M + W L» 1 Accelerated expansion Clusters: Low density Universe W M» 0.3

41 WMAP 9 Year Cosmology H 0 = 71 km/sec/mpc (from other measurements) W M = 0.29 W L = % Dark Energy, 24% Dark Matter, 5% Baryons Flat Universe W M + W L» 1 Accelerating Universe, will expand forever (?) Age of Universe t 0 = 13.8 billion years

42 Concordance Cosmology

43 Concordance Cosmology

44 Cosmology - Redshift and Radiation ASTR 2120 Sarazin

45 Redshift in Cosmology z º (l obs - l em )/l em 0 z < 1 + z = l obs / l em Straightforward to measure Astronomer prefer to Distance from us Model dependent 0 < d < d H (size of observable Universe), all of early Universe compressed near d = d H ) Age or time into past (compressed near t 0 ) Model dependent

46 Redshift in Cosmology Interpretation of Redshift z? Low redshifts, z << 1, nearby Universe: Straightforward: redshift is Doppler shift z º (l obs - l em )/l em» v r /c» H 0 d (v r << c) High redshifts, z 1, distant Universe and past time: Hubble formula breaks down Relativistic Doppler shift? Effect of change in expansion rate of Universe, H(t)? Gravitational redshift? Effects of curvature of photon paths?

47 Redshift in Cosmology Sounds difficult to calculate, confusing, and very model dependent a big pain?? Then, a miracle occurs... Oh no, my head is going to explode!!

48 Redshift in Cosmology Divide photon path into lots of very small pieces, treat each as series of emissions and observations For each piece, time dt << t H, length dl << d H Just like low redshifts, dz << 1, nearby Universe: Straightforward: redshift is first order Doppler shift Relativistic Doppler shift? Effect of change in expansion rate of Universe, H(t)? Gravitational redshift? Effects of curvature of photon paths?

49 Redshift in Cosmology dl = cdt distance traveled by photon dv = H(t)dl = H (t)cdt Hubble expansion law H(t)= 1 r dv = c 1 r dr dt dr dt r = radius of Universe dt = c dr r << c z = λ obs λ em λ em redshift dz = dλ λ <<1 where dλ = λ obs λ em, and λ obs λ em dz = dλ λ = dv c = 1 c c dr r = dr r

50 Redshift in Cosmology dλ λ = dr integrate both sides r dλ dr = λ r lnλ = ln r + constant lnλ = ln r + lnλ em lnr em % ln λ ( % ' * = ln r ( ' * & ) & ) λ em r em λ obs λ em = r obs r em

51 Redshift in Cosmology λ obs λ em = r obs r em z = λ obs λ em λ em = λ obs λ em 1 1+ z = r obs r em Big Bang : r em 0 z Wavelengths just expand with Universe!! Really, it could not have turned out to be simpler or nicer!

52 Redshift in Cosmology

53 Redshift in Cosmology λ obs λ em = r obs r em z = λ obs λ em λ em = λ obs λ em 1 1+ z = r obs r em Big Bang : r em 0 z Wavelengths just expand with Universe!! Really, it could not have turned out to be simpler or nicer!

54 Redshift in Cosmology Example: Recently, there was a claim that the Hubble Ultra Deep Field contains a galaxy with a redshift of z = 10 When this galaxy emitted the light we now see, the Universe was (1+z) = 11 times smaller than it is today!!

55 Cosmic Microwave Background (CMB) T = K Awfully cold - who cares? a) Most of known heat and free energy in Universe b) Most of photons in Universe N(photons)/N(protons) ~ 10 9 (Homework problem) Where did this big number come from? Why isn t it bigger? If matter and antimatter were symmetric p + p 2γ N(photons)/N(protons) Bright and shiny (but empty) Universe!!

56 Cosmic Microwave Background VERY hot in the past: (CMB) Theorem: Redshifted and expanded blackbody = blackbody at redshifted temperature (homework) λ T γ = constant (T γ CMB temperature) T γ ( z) = ( 1+ z)t γo

57 Cosmic Microwave Background Example: (CMB) Recently, there was a claim that the Hubble Ultra Deep Field contains a galaxy with a redshift of z = 10 When this galaxy emitted the light we now see, the CMB temperature was (1+z) = 11 times larger than it is today = 30 K

58 CMB at z=10 Galaxy Belliac Labs 30 K Pensiac Wilsoniac

59 Cosmic Microwave Background (CMB) λ T γ = constant (T γ CMB temperature) T γ ( z) = ( 1+ z)t γo (1 + z) = r o / r e as Big Bang is approached, so T at Big Bang

60 Hot Big Bang

Cosmology - Redshift and Radiation ASTR 2120 Sarazin

Cosmology - Redshift and Radiation ASTR 2120 Sarazin Cosmology - Redshift and Radiation ASTR 2120 Sarazin Test #1 Monday, February 26, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field Cosmology ASTR 2120 Sarazin Hubble Ultra-Deep Field Cosmology - Da Facts! 1) Big Universe of Galaxies 2) Sky is Dark at Night 3) Isotropy of Universe Cosmological Principle = Universe Homogeneous 4) Hubble

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

The Milky Way - 2 ASTR 2110 Sarazin. Center of the Milky Way

The Milky Way - 2 ASTR 2110 Sarazin. Center of the Milky Way The Milky Way - 2 ASTR 2110 Sarazin Center of the Milky Way Final Exam Tuesday, December 12, 9:00 am noon Ruffner G006 (classroom) You may not consult the text, your notes, or any other materials or any

More information

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence that the Universe began with a Big Bang? How has the Universe

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies) ASTR 1040 Accel Astro: Stars & Galaxies Today s s `Cosmological Events Look at models for our universe,, and what prompted ideas about big-bang bang beginnings Cosmic Microwave Background Simulation: Large-scale

More information

Chapter 26: Cosmology

Chapter 26: Cosmology Chapter 26: Cosmology Cosmology means the study of the structure and evolution of the entire universe as a whole. First of all, we need to know whether the universe has changed with time, or if it has

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

MIT Exploring Black Holes

MIT Exploring Black Holes THE UNIVERSE and Three Examples Alan Guth, MIT MIT 8.224 Exploring Black Holes EINSTEIN'S CONTRIBUTIONS March, 1916: The Foundation of the General Theory of Relativity Feb, 1917: Cosmological Considerations

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

Lecture 19. Dark Energy

Lecture 19. Dark Energy Dark Energy ΛCDM Recall the lectures on cosmology The universe is flat Total energy density is 1 We know matter and baryon density So far, we called the rest Dark Energy We treated DE in the Friedmann

More information

COSMOLOGY The Universe what is its age and origin?

COSMOLOGY The Universe what is its age and origin? COSMOLOGY The Universe what is its age and origin? REVIEW (SUMMARY) Oppenheimer Volkhoff limit: upper limit to mass of neutron star remnant more than 1.4 M à neutron degeneracy Supernova à extremely dense

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data.

Hubble's Law. H o = 71 km/s / Mpc. The further a galaxy is away, the faster it s moving away from us. V = H 0 D. Modern Data. Cosmology Cosmology is the study of the origin and evolution of the Universe, addressing the grandest issues: How "big" is the Universe? Does it have an "edge"? What is its large-scale structure? How did

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 26 Astronomy Today 8th Edition Chaisson/McMillan Chapter 26 Cosmology Units of Chapter 26 26.1 The Universe on the Largest Scales 26.2 The Expanding Universe 26.3 The Fate of the

More information

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe

Cosmology. An Analogy 11/28/2010. Cosmology Study of the origin, evolution and future of the Universe Cosmology Cosmology Study of the origin, evolution and future of the Universe Obler s Paradox If the Universe is infinite why is the sky dark at night? Newtonian Universe The Universe is infinite and unchanging

More information

Short introduction to the accelerating Universe

Short introduction to the accelerating Universe SEMINAR Short introduction to the accelerating Universe Gašper Kukec Mezek Our expanding Universe Albert Einstein general relativity (1917): Our expanding Universe Curvature = Energy Our expanding Universe

More information

The Expanding Universe

The Expanding Universe Announcements (this page posted as part of lecture notes on Angel) Homework 7 due late at night Monday April 23 (6:30AM Apr 24) Homework 8 now available on Angel Due late at night Friday April 27 (6:30AM

More information

Dark Universe II. The shape of the Universe. The fate of the Universe. Old view: Density of the Universe determines its destiny

Dark Universe II. The shape of the Universe. The fate of the Universe. Old view: Density of the Universe determines its destiny Dark Universe II Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Modifications by H. Geller November 2007 11/27/2007 Prof. Lynn Cominsky 2 Dark Energy and the Shape of the Universe

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 7 Oct. 30, 2015 Today Relativistic Cosmology Dark Side of the Universe I: Dark Matter Assignments This week: read Hawley and

More information

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Lecture #25: Plan Cosmology The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Announcements Course evaluations: CourseEvalUM.umd.edu Review sheet #3 was emailed to you

More information

Chapter 29. The Hubble Expansion

Chapter 29. The Hubble Expansion Chapter 29 The Hubble Expansion The observational characteristics of the Universe coupled with theoretical interpretation to be discussed further in subsequent chapters, allow us to formulate a standard

More information

The Cosmological Principle

The Cosmological Principle Cosmological Models John O Byrne School of Physics University of Sydney Using diagrams and pp slides from Seeds Foundations of Astronomy and the Supernova Cosmology Project http://www-supernova.lbl.gov

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Dark Universe II. Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University

Dark Universe II. Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Dark Universe II Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Dark Universe Part II Is the universe "open" or "closed? How does dark energy change our view of the history

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Modern Physics notes Spring 2005 Paul Fendley Lecture 38 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 38 Dark matter and energy Cosmic Microwave Background Weinberg, chapters II and III cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 3 Our universe (and its fate) In this lecture we discuss the observed values for the different forms of energy and matter in our universe.

More information

4/29/14. Vital diagram. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe)

4/29/14. Vital diagram. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe) ASTR 1040: Stars & Galaxies Our Schedule Homework #13 due today Review Set #4 available -- final review on Wed Apr 30 (tomorrow) 5pm-7pm by Ryan Focus on 22.3 Big Bang and Inflation Complete detailed read

More information

Homework 6 Name: Due Date: June 9, 2008

Homework 6 Name: Due Date: June 9, 2008 Homework 6 Name: Due Date: June 9, 2008 1. Where in the universe does the general expansion occur? A) everywhere in the universe, including our local space upon Earth, the solar system, our galaxy and

More information

12/6/18. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe)

12/6/18. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe) ASTR 1040: Stars & Galaxies Our Schedule Homework #13 due today Review Set #4 available -- final review on next Wed Dec 12, 5pm-7pm by Ryan Please do course evaluation (FCQ) online for course + recitation

More information

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy II. Cosmology: How the universe developed Outstanding features of the universe today: 1. It is big, and full of galaxies. 2. It has structure: the galaxies are clumped in filaments and sheets The structure

More information

Defining Cosmological Parameters. Cosmological Parameters. Many Universes (Fig on pp.367)

Defining Cosmological Parameters. Cosmological Parameters. Many Universes (Fig on pp.367) Cosmological Parameters Composition of the universe What fraction is in the form of matter? m Always positive. What fraction is in the form of curvature? k Can be positive (hyperbolic) or negative (spherical).

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Cosmology Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Assumptions in Cosmology Copernican principle: We do not

More information

Astroparticle physics the History of the Universe

Astroparticle physics the History of the Universe Astroparticle physics the History of the Universe Manfred Jeitler and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva Wintersemester 2016 / 2017 1 The History of

More information

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES

THE ORIGIN OF THE UNIVERSE AND BLACK HOLES THE ORIGIN OF THE UNIVERSE AND BLACK HOLES WHAT IS COSMOGONY? Cosmogony (or cosmogeny) is any model explaining the origin of the universe. Cosmogony = Coming into existence WHAT IS COSMOLOGY Cosmology

More information

Dark Energy and the Accelerating Universe

Dark Energy and the Accelerating Universe Dark Energy and the Accelerating Universe Dragan Huterer Department of Physics University of Michigan The universe today presents us with a grand puzzle: What is 95% of it made of? Shockingly, we still

More information

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium

Expanding Universe. 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe. Final Exam will be held in Ruby Diamond Auditorium Expanding Universe November 20, 2002 1) Hubble s Law 2) Expanding Universe 3) Fate of the Universe Final Exam will be held in Ruby Diamond Auditorium NOTE THIS!!! not UPL Dec. 11, 2002 10am-noon Review

More information

Introduction and Fundamental Observations

Introduction and Fundamental Observations Notes for Cosmology course, fall 2005 Introduction and Fundamental Observations Prelude Cosmology is the study of the universe taken as a whole ruthless simplification necessary (e.g. homogeneity)! Cosmology

More information

Why is the Universe Expanding?

Why is the Universe Expanding? Why is the Universe Expanding? In general relativity, mass warps space. Warped space makes matter move, which changes the structure of space. Thus the universe should be dynamic! Gravity tries to collapse

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

Modeling the Universe Chapter 11 Hawley/Holcomb. Adapted from Dr. Dennis Papadopoulos UMCP

Modeling the Universe Chapter 11 Hawley/Holcomb. Adapted from Dr. Dennis Papadopoulos UMCP Modeling the Universe Chapter 11 Hawley/Holcomb Adapted from Dr. Dennis Papadopoulos UMCP Spectral Lines - Doppler λ λ em 1+ z = obs z = λ obs λ λ em em Doppler Examples Doppler Examples Expansion Redshifts

More information

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture35:TheBigBang. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture35:TheBigBang Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 35 09 May 2005 Read: Ch. 28,29 Astronomy 114 1/18 Announcements PS#8 due Monday!

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions)

The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions) The State of the Universe [2010] There is only data and the interpretation of data (green text = assumptions) Current thinking in cosmology says that the universe is filled with dark matter and dark energy.

More information

Testing the Big Bang Idea

Testing the Big Bang Idea Reading: Chapter 29, Section 29.2-29.6 Third Exam: Tuesday, May 1 12:00-2:00 COURSE EVALUATIONS - please complete these online (recitation and lecture) Last time: Cosmology I - The Age of the & the Big

More information

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics

The Universe: What We Know and What we Don t. Fundamental Physics Cosmology Elementary Particle Physics The Universe: What We Know and What we Don t Fundamental Physics Cosmology Elementary Particle Physics 1 Cosmology Study of the universe at the largest scale How big is the universe? Where What Are did

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

BASICS OF COSMOLOGY Astro 2299

BASICS OF COSMOLOGY Astro 2299 BASICS OF COSMOLOGY Astro 2299 We live in a ΛCDM universe that began as a hot big bang (BB) and has flat geometry. It will expand forever. Its properties (laws of physics, fundamental constants) allow

More information

Today. Course Evaluations Open. Modern Cosmology. The Hot Big Bang. Age & Fate. Density and Geometry. Microwave Background

Today. Course Evaluations Open. Modern Cosmology. The Hot Big Bang. Age & Fate. Density and Geometry. Microwave Background Today Modern Cosmology The Hot Big Bang Age & Fate Density and Geometry Microwave Background Course Evaluations Open Cosmology The study of the universe as a physical system Historically, people have always

More information

Astronomy 102: Stars and Galaxies Review Exam 3

Astronomy 102: Stars and Galaxies Review Exam 3 October 31, 2004 Name: Astronomy 102: Stars and Galaxies Review Exam 3 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or

More information

The best evidence so far in support of the Big Bang theory is:

The best evidence so far in support of the Big Bang theory is: Notes about the final exam: Saturday May 17th, 7:45 AM-9:45 AM Chamberlain 2103 If you have a CONFLICT email me or Ella before the end of this week. No excuses accepted after exam. Comprehensive, covering

More information

PAPER 73 PHYSICAL COSMOLOGY

PAPER 73 PHYSICAL COSMOLOGY MATHEMATICAL TRIPOS Part III Wednesday 4 June 2008 1.30 to 4.30 PAPER 73 PHYSICAL COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT

INFLATIONARY COSMOLOGY. and the ACCELERATING UNIVERSE. Alan Guth, MIT INFLATIONARY COSMOLOGY and the ACCELERATING UNIVERSE Alan Guth, MIT An Open World of Physics Talks and Discussion by Friends of Fred Goldhaber Harriman Hall, SUNY Stony Brook, October 7, 2001 OUTLINE The

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 37

Modern Physics notes Spring 2005 Paul Fendley Lecture 37 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 37 The red shift The Hubble constant Critical density Weinberg, chapters I and II cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

The State of the Universe

The State of the Universe The State of the Universe Harry Ringermacher, PhD General Electric Research Center Adj. Prof. of Physics, U. of S. Mississippi State of the Universe Universe is still going strong! - At least 100,000,000,000

More information

Astronomy: The Big Picture. Outline. What does Hubble s Law mean?

Astronomy: The Big Picture. Outline. What does Hubble s Law mean? Last Homework is due Friday 11:50 am Honor credit need to have those papers this week! Estimated grades are posted. Does not include HW 8 or Extra Credit THE FINAL IS DECEMBER 15 th : 7-10pm! Astronomy:

More information

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe 16.1 Unseen Influences Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from its gravitational

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding

26. Cosmology. Significance of a dark night sky. The Universe Is Expanding 26. Cosmology Significance of a dark night sky The Universe is expanding The Big Bang initiated the expanding Universe Microwave radiation evidence of the Big Bang The Universe was initially hot & opaque

More information

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation

Relative Sizes of Stars. Today Exam#3 Review. Hertzsprung-Russell Diagram. Blackbody Radiation Today Exam#3 Review Exam #3 is Thursday April 4th in this room, BPS 40; Extra credit is due 8:00 am Tuesday April 9 Final Exam is 3:00pm Monday April 8 in BPS 40 The exam is 40 multiple choice questions.

More information

The Early Universe: A Journey into the Past

The Early Universe: A Journey into the Past Gravity: Einstein s General Theory of Relativity The Early Universe A Journey into the Past Texas A&M University March 16, 2006 Outline Gravity: Einstein s General Theory of Relativity Galileo and falling

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226

Astronomy Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 Astronomy 101.003 Hour Exam 2 March 10, 2011 QUESTION 1: The half-life of Ra 226 (radium) is 1600 years. If you started with a sample of 100 Ra 226 atoms, approximately how many Ra 226 atoms would be left

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant The Friedmann Equation R = GM R R R = GM R R R(t) d dt 1 R = d dt GM R M 1 R = GM R + K Kinetic + potential energy per unit mass = constant The Friedmann Equation 1 R = GM R + K M = ρ 4 3 π R3 1 R = 4πGρR

More information

8. The Expanding Universe, Revisited

8. The Expanding Universe, Revisited 8. The Expanding Universe, Revisited A1143: History of the Universe, Autumn 2012 Now that we have learned something about Einstein s theory of gravity, we are ready to revisit what we have learned about

More information

What Supernovas Tell Us about Cosmology. Jon Thaler

What Supernovas Tell Us about Cosmology. Jon Thaler What Supernovas Tell Us about Cosmology Jon Thaler CU Astronomy Society Nov. 10, 2011 We know: What We Want to Learn The universe exploded about 14 billion years ago. The big bang. It is still expanding

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe

Lecture #24: Plan. Cosmology. Expansion of the Universe Olber s Paradox Birth of our Universe Lecture #24: Plan Cosmology Expansion of the Universe Olber s Paradox Birth of our Universe Reminder: Redshifts and the Expansion of the Universe Early 20 th century astronomers noted: Spectra from most

More information

Lecture 05. Cosmology. Part I

Lecture 05. Cosmology. Part I Cosmology Part I What is Cosmology Cosmology is the study of the universe as a whole It asks the biggest questions in nature What is the content of the universe: Today? Long ago? In the far future? How

More information

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23 II. The Universe Around Us ASTR378 Cosmology : II. The Universe Around Us 23 Some Units Used in Astronomy 1 parsec distance at which parallax angle is 1 ; 1 pc = 3.086 10 16 m ( 3.26 light years; 1 kpc

More information

Supernovae and cosmology

Supernovae and cosmology Supernovae and cosmology Gavin Lawes Wayne State University David Cinabro Wayne State University Johanna-Laina Fischer Outline Structure of the universe Dynamics of the universe Type 1a supernova Michigan

More information

Supernovae explosions and the Accelerating Universe. Bodo Ziegler

Supernovae explosions and the Accelerating Universe. Bodo Ziegler Nobel Prize for Physics 2011 Supernovae explosions and the Accelerating Universe Institute for Astronomy University of Vienna Since 09/2010: ouniprof University of Vienna 12/2008-08/10: Staff member European

More information

4.3 The accelerating universe and the distant future

4.3 The accelerating universe and the distant future Discovering Astronomy : Galaxies and Cosmology 46 Figure 55: Alternate histories of the universe, depending on the mean density compared to the critical value. The left hand panel shows the idea graphically.

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0937 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) SEMESTER 2, 2014 TIME ALLOWED: 2 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS:

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Class 22 Prof J. Kenney June 26, 2018 The Cosmic Microwave Background Class 22 Prof J. Kenney November 28, 2016 Cosmic star formation history inf 10 4 3 2 1 0 z Peak of

More information

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis.

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis. Today Modern Cosmology Big Bang Nucleosynthesis Dark Matter Dark Energy Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open Elements of Modern Cosmology 1.Expanding Universe

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology Ay1 Lecture 17 The Expanding Universe Introduction to Cosmology 17.1 The Expanding Universe General Relativity (1915) A fundamental change in viewing the physical space and time, and matter/energy Postulates

More information

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!)

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!) The Standard Big Bang What it is: Theory that the universe as we know it began 13-14 billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!) Initial state was a hot, dense, uniform soup of particles

More information

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations life the university & everything Phys 2130 Day 41: Questions? The Universe Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations Today Today: - how big is the universe?

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

Clusters: Context and Background

Clusters: Context and Background Clusters: Context and Background We re about to embark on a subject rather different from what we ve treated before, so it is useful to step back and think again about what we want to accomplish in this

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information