Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Size: px
Start display at page:

Download "Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers."

Transcription

1 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306

2 Outline :

3 Number Conservation Rules Based on the experimental observation of particle interactions a number of particle properties (quantum numbers) were seen to be conserved. Not all interactions conserve all quantum numbers. The quantum numbers and their rules of conservation are useful to predict which interactions can occur. The rules of conservation were observed experimentally.

4 Number: Q Electric charge, Q, is conserved in all interactions, that is the total charge of the particles before and after the interaction takes place is always conserved. Examples: π + p K 0 + Λ 0 Strong Interaction Q Q is Conserved K 0 π + + π Weak Interaction Q Q is Conserved

5 Number: B Baryon number is B = (n q n q )/3 where n q is the total number of quarks and n q the total number of antiquarks. Quarks are assigned B = 1/3, antquarks B = 1/3. Baryons have 3 quarks and so B = +1, antibaryons have 3 antiquarks and so B = 1, mesons have a quark and antiquark and so B = 0, leptons contain no quarks and have B = 0. Baryon number is conserved in Strong, Electromagnetic and weak interactions as the total number of quarks and anti-quarks is constant. Leptons Quarks Baryons Mesons Number (Anti- (Anti- (Anti- (Anti- Leptons) Quarks) Baryons) Mesons) B 0 (0) 1/3 ( 1/3) +1 ( 1) 0 (0)

6 Number: B Examples π + p K 0 + Λ 0 Strong Interation B B is Conserved Λ 0 p + π Weak Interaction B B is Conserved p e + + π 0 B B is Violated The last interaction is allowed energetically, but violates B. The proton is the lightest baryon so it cannot decay into any other baryon. There is a lot of interest in the search for the proton decay as this can herald new physics.

7 Number: L Lepton number is given by L = n l n l where n l is the number of leptons and n l the number of anti-leptons. Since each lepton is not made of other leptons we see L = +1 for leptons and L = 1 for antileptons and L = 0 for other particles. L is conserved in Strong, Electromagnetic and Weak interactions. Leptons can be grouped into families each with a conserved lepton quantum number. Each generation lepton number needs to be conserved. Le = +1 for e, ν e and L e = 1 for e +, ν e. L µ = +1 for µ +, ν µ and L µ = 1 for µ, ν µ. L τ = +1 for τ +, ν τ and L τ = 1 for τ, ν τ. L e, L µ and L τ are separately conserved.

8 Number: L Examples: Pair production L e conserved γ + N e + + e + N L e Pion decay L µ conserved π + µ + + ν µ L µ Muon decay L e and L µ conserved µ + e + + ν e + ν µ L e L µ

9 : L Radiative decay µ + e + + γ L e L e is violated L µ L µ is violated L L is conserved Although L is conserved the lepton number for each family is violated making the decay. To date this decay has not been observed and a limit on its branching ratio is less than

10 : Number S is given by S = n qs n qs where n qs is the number of strange quarks and n qs the number of strange antiquarks. The strange quark has S = 1 and its antiquark has S = +1. is conserved in strong and electromagnetic interactions, but not in weak interactions. Weak interactions change a quark of one type (flavor) into another. Further experiments produced similar behaviours for heavier particles that required the introduction of more quantum numbers: Charm, Bottom and Top and their corresponding quarks.

11 The spin is an intrinsic property of the particle itself. Similar to the angular momentum, for the spin of a particle: S: it can assume the values s = 0, 1 2, 1, 3 2, 2, 5 2, 3, 7 2,... Sz : it can assume the values m s, m s = s, s + 1,..., 1, 0, +1,..., s 1, s for a total of 2s + 1 possibilities. For each particle the value of the spin is fixed.

12 Examples Adding A quark and an antiquark are bound together in a state of zero orbital angular momentum to form a meson. What are the possible values of the meson s spin? (Anti)quarks spin = 1 2 Addition of spins: = 1 (vector) or = 0 (scalar) Repeating the exercise with three quarks (baryons) Adding to the vector = 3 2 or = 1 2 Adding to the scalar = 1 2 All mesons (2 quarks) carry integer spins (bosons). All baryons (3 quarks) carry half-integer spin (fermions).

13 I Used mostly in Nuclear Physics from charge independence of nuclear force p p = n n = p n sometimes called Isobaric /Isotopic T (or t). is represented by a spin vector I with a component I 3 along some axis. Baryons have half-integer isospin and mesons have integer isospin.

14 I The quarks (antiquarks) u (u) and d (d) have I = 1/2 and: I 3 = +1/2 for u quarks and d and antiquarks. I 3 = 1/2 for d quarks and u antiquarks. All other types of quarks have I = 0 and I 3 = 0. I 3 is additive. A proton (uud) has I 3 = (+1/2) + (+1/2) + ( 1/2) = +1/2. A π (ud) has I 3 = ( 1/2) + ( 1/2) = 1.

15 I There is a relationship between the charge Q, Baryon number B and I 3 : Q = I 3 + B/2. For a proton B = 1, I 3 = +1/2, so Q = (+1/2) + 1/2 = +1. is conserved in strong interactions since it does not distinguish between p and n (i.e. u and d quarks. is not conserved in weak interactions. In Electromagnetic interactions I is not conserved, but I 3 is conserved.

16 Each particle has an antiparticle. In some cases (some neutral mesons) the antiparticle is the same as the particle. An antiparticle has the same mass and spin as its corresponding particle.

17 Antileptons For the leptons each particle has a distinct antilepton. Generation First Second Third +e e + (positron) µ + (antimuon) τ + (antitau) 0 ν e (electron ν µ (muon ν tau (tau antineutrino) antineutrino) antineutrino)

18 Antiquarks The quarks also have a corresponding antiparticle with the same mass, spin and opposite charge. Quarks Antiquarks Type Type u +2/3 u -2/3 d -1/3 d +1/3 s -1/3 s +1/3 c +2/3 c -2/3 b -1/3 b +1/3 t +2/3 t -2/3 The proton consists of uud and has a charge of +2/3 + 2/3 1/3 = +1. The antiproton consists of uud and has a charge of 2/3 2/3 + 1/3 = 1

19 Antibaryons In the case of baryons the antibaryons have the same quantum number, but with opposite sign. Quantity Particle Antiparticle Q q -q B b -b L l -l I I I 3rd Cpt I 3 I 3 -I 3 S s -s E.g. the proton has baryon number 1, the antiproton has baryon number -1.

20 Antimesons Mesons are made from a quark and antiquark. In some cases a meson is its own antiparticle. E.g the π 0 because it contains the same type of quark and antiquark: uu. But, this is not true for all neutral mesons. E.g. the K 0 (us) has antiparticle K 0 (us). The strangeness and I 3 for an antiparticle have the opposite sign of the values for the particle (e.g. S = +1 for the K + but S = 1 for the K ).

21 Examples A hadronic strong interaction obeys the conservation of all quantum numbers: π + p K 0 + Λ 0 Particle π p K 0 Λ 0 Q B S I /2-1/2 0 A hadronic weak interaction violates some quantum numbers: K 0 π + + π Particle K 0 π + π Q B S strangeness not conserved I 3-1/ I 3 not conserved

22 P is a quantum mechanical concept. It reverses the spatial coordinates r r. takes the values ±1. If P = +1 a state is said to have even parity. If P = 1 a state is said to have odd parity. Figure: A reflection in the xy-plane followed by a rotation about the z-axis is the same as a parity operation.

23 P is a multiplicative quantum number. The parity of a composite system Ψ = Φ A Φ B... is equal to the product of the parity of each component: P Ψ = P A P B... A state with angular momentum l has parity P = ( 1) l. For a system of particles: P(overall) = P(relative motion) + P(intrinsic). For fermions P(antiparticle) = ( 1) P(particle). For Bosons P(antiparticle) = P(particle). For particles n, p have P = +1 (this is arbitrarily assigned). For the antiparticles p, n have P = 1. Other particles have parity determined by experiment.

24 P is conserved in Strong and Electromagnetic interactions, but not weak interactions. Mesons and Baryons are classified according to their spin-parity (J P ). The diagram below shows the operation in a plane for a Vector (J P = 1 ). r r, P = 1.

25 P The diagram below shows the operation in a plane for an Axial Vector (J P = 1 + ). r r, P = +1.

26 C conjugation, C, is a quantum mechanical operation that changes a particle into its antiparticle. For example: C(particle) = antiparticle. The mass, energy, momentum and spin do not change under C. As in the case of, C is a multiplicative quantum number.

27 C Most particles are not eigenstates of C as their particle and antiparticle masses differ. Only particles that are their own antiparticles (e.g. π 0, γ, η, φ etc) are eigenstates of C. For N photons: C = ( 1) N. In the electromagnetic decay π 0 γ + γ we must have C = ( 1)( 1) = +1 for the π 0 (using the fact that C = 1 for the photon). C is conserved in Strong and Electromagnetic interactions.

28 T, T, is q quantum mechanical operation that reverses the time component of processes. It has been tested in the process p + n d + γ which transforms to the process d + γ n + p under time reversal. The reactions have been studied and no violation of T-invariance has been observed. Time reversal is conserved in Strong and Electromagnetic interactions.

29 The operations of - (C), (P) and Time-Reversal (T) act on different parts of a particles state. P and T act on extrinsic or external properties such as the spatial or temporal coordinates whereas C acts on intrinsic or internal properties (the quantum numbers). Operation Extrinsic Intrinsic P Invariant r r Invariant T Invariant t t Invariant C q q Invariant q numbers -(q numbers)

30 Noether s theorem: Symmetries Conservation laws. Symmetry is an operation performed on a system that leaves it invariant, i.e. it is indistinguishable from the original one. Symmetry Conservation law Translation in time Energy Translation in space Momentum Rotation Angular momentum Gauge transformations

31 : Rules of Conservation of the quantum numbers and their conservation for the different forces. Quantity Strong EM Weak Q B L I X X 3rd Cpt I 3 X S X P X C X T X

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Particles. Constituents of the atom

Particles. Constituents of the atom Particles Constituents of the atom For Z X = mass number (protons + neutrons), Z = number of protons Isotopes are atoms with the same number of protons number but different number of neutrons. charge Specific

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com OR K π 0 + µ + v ( µ ) M. (a) (i) quark antiquark pair OR qq OR named quark antiquark pair 0 (iii) us (b) (i) Weak any of the following also score mark: weak interaction weak interaction force weak nuclear

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact strongly Like leptons,

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

ψ(t) = U(t) ψ(0). (6.1.1)

ψ(t) = U(t) ψ(0). (6.1.1) Chapter 6 Symmetries 6.1 Quantum dynamics The state, or ket, vector ψ of a physical system completely characterizes the system at a given instant. The corresponding bra vector ψ is the Hermitian conjugate

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2 Lecture 11 Weak interactions, Cabbibo-angle angle SS2011: Introduction to Nuclear and Particle Physics, Part 2 1 Neutrino-lepton reactions Consider the reaction of neutrino-electron scattering: Feynman

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory Neutrino Physics Kam-Biu Luk Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory 4-15 June, 2007 Outline Brief overview of particle physics Properties of

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Invariance Principles and Conservation Laws

Invariance Principles and Conservation Laws Invariance Principles and Conservation Laws Outline Translation and rotation Parity Charge Conjugation Charge Conservation and Gauge Invariance Baryon and lepton conservation CPT Theorem CP violation and

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particles (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. This question explores

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA

NATIONAL OPEN UNIVERSITY OF NIGERIA NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: PHY 409 COURSE TITLE: ELEMENTARY PARTICLE PHYSICS Course Title Course Developer Course Code PHY 409 ELEMENTARY PARTICLE

More information

M. Cobal, PIF 2006/7. Quarks

M. Cobal, PIF 2006/7. Quarks M. Cobal, PIF 2006/7 Quarks Quarks Quarks are s = ½ fermions, subject to all kind of interactions. They have fractional electric charges Quarks and their bound states are the only particles which interact

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

Properties of Elementary Particles

Properties of Elementary Particles and of Elementary s 01/11/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 Consider the world at different scales... Cosmology - only gravity matters XXXXX Input: Mass distributions

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 1 Physics 301: Physics Today Prof. Wesley Smith, wsmith@hep.wisc.edu Undergraduate Physics Colloquium! Discussions of current research

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Some fundamental questions

Some fundamental questions Some fundamental questions What is the standard model of elementary particles and their interactions? What is the origin of mass and electroweak symmetry breaking? What is the role of anti-matter in Nature?

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

2.4 Parity transformation

2.4 Parity transformation 2.4 Parity transformation An extremely simple group is one that has only two elements: {e, P }. Obviously, P 1 = P, so P 2 = e, with e represented by the unit n n matrix in an n- dimensional representation.

More information

Quarks and hadrons. Chapter Quark flavor and color

Quarks and hadrons. Chapter Quark flavor and color Chapter 5 Quarks and hadrons Every atom has its ground state the lowest energy state of its electrons in the presence of the atomic nucleus as well as many excited states which can decay to the ground

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson XI November 19, 2015

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson XI November 19, 2015 Modern Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson XI November 19, 2015 L. A. Anchordoqui (CUNY) Modern Physics 11-19-2015 1 / 23

More information

Problem Set # 1 SOLUTIONS

Problem Set # 1 SOLUTIONS Wissink P640 Subatomic Physics I Fall 2007 Problem Set # 1 S 1. Iso-Confused! In lecture we discussed the family of π-mesons, which have spin J = 0 and isospin I = 1, i.e., they form the isospin triplet

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

PHYS 3446 Lecture #17

PHYS 3446 Lecture #17 PHY 3446 Lecture #7 Monday, Nov. 6, 26 Dr.. Elementary Particle Properties Quantum Numbers trangeness Isospin Gell-Mann-Nishijima Relations Production and Decay of Resonances Monday, Nov. 6, 26 PHY 3446,

More information

Problem Set # 4 SOLUTIONS

Problem Set # 4 SOLUTIONS Wissink P40 Subatomic Physics I Fall 007 Problem Set # 4 SOLUTIONS 1. Gee! Parity is Tough! In lecture, we examined the operator that rotates a system by 180 about the -axis in isospin space. This operator,

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses January 3, 08 PHY357 Lecture 8 Quark composition of hadrons Hadron magnetic moments Hadron masses January 3, 08 Quark rules for building Hadrons! Three types of stable quark configurations established!

More information

Atomic emission & absorption spectra

Atomic emission & absorption spectra Name: Date: Modern Physics Models of the Atom The word atom comes from the Greek word atomos meaning indivisible We now know that this model of the atom is not accurate JJ Thompson Experiment and atomic

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

Hadron Spectroscopy Lecture 1 Introduction and Motivation

Hadron Spectroscopy Lecture 1 Introduction and Motivation Hadron Spectroscopy Lecture 1 Introduction and Motivation National Nuclear Physics Summer School at MIT Matthew Shepherd Indiana University Outline 1. Overview and Motivation 1.1.Uniue features of QCD

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015 Exotic Hadrons O Villalobos Baillie MPAGS PP5 November 2015 Allowed hadronic states At the beginning of this course, we stated that there are only two allowed combinations of quarks that give bound hadronic

More information

Phys 328 Nuclear Physics and Particles Introduction Murat

Phys 328 Nuclear Physics and Particles Introduction Murat Phys 328 Nuclear Physics and Particles Introduction 1 Syllabus COURSE OUTLINE PHYS328 NUCLEAR PHYSICS AND PARTICLES Instructor: Prof. Dr. A. Murat Güler Room: 333, e-mail: mguler@newton.physics.metu.edu.tr

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

The Quantum Chromodynamics Theory Of Quadruply Strange Pentaquarks

The Quantum Chromodynamics Theory Of Quadruply Strange Pentaquarks The Quantum Chromodynamics Theory Of Quadruply Strange Pentaquarks Based on a generalized particle diagram of baryons and antibaryons which, in turn, is based on symmetry principles, this theory predicts

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Atomic Structure. From Molecules to Quarks

Atomic Structure. From Molecules to Quarks Atomic Structure From Molecules to Quarks ELECTRONS Negatively charged particles that circle the nucleus. Bohr s Atom electrons in orbits nucleus Inside the Atom The Nucleus Contains Protons & Neutrons

More information

Formulation of the Standard Model

Formulation of the Standard Model Chapter 13 Formulation of the Standard Model 13.1 Introductory Remarks In Chapter 9, we discussed the properties of only a few low-mass hadrons discovered prior to the mid 1970s. As the energies of accelerators

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

Part 1: Introduction

Part 1: Introduction FYSH300, fall 2011 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Office: FL249. No fixed reception hours. kl 2011 Part 1: Introduction 1 Dates, times Lectures: Mon, Wed at 14h15, FYS3 Exercises: Mon, at 12h15,

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions Lecture 7 Conserved quantities: energy, momentum, angular momentum Conserved quantum numbers: baryon number, strangeness, Particles can be produced by strong interactions eg. pair of K mesons with opposite

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

CPT Symmetry and Symmetry-Breaking in the Scale-Symmetric Theory

CPT Symmetry and Symmetry-Breaking in the Scale-Symmetric Theory Copyright 2015 by Sylwester Kornowski All rights reserved CPT Symmetry and Symmetry-Breaking in the Scale-Symmetric Theory Sylwester Kornowski Abstract: During the inflation, to eliminate turbulences in

More information

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter

Physics 125 Course Notes Identical Particles Solutions to Problems F. Porter Physics 5 Course Notes Identical Particles Solutions to Problems 00 F. Porter Exercises. Let us use the Pauli exclusion principle, and the combination of angular momenta, to find the possible states which

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course?

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Contents: Review of the Standard Model! What we know! What we don

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information