Regret of Narendra Shapiro Bandit Algorithms

Size: px
Start display at page:

Download "Regret of Narendra Shapiro Bandit Algorithms"

Transcription

1 Regret of Narendra Shapiro Bandit Algorithms S. Gadat Toulouse School of Economics Joint work with F. Panloup and S. Saadane. Toulouse, 5 avril 2015

2 I - Introduction I - 1 Motivations I - 2 Stochastic multi-armed bandit model II Narendra Schapiro algorithm II - 1 An historical algorithm (1969) II - 2 Improvement through penalization IV Conclusion

3 I - 1 Motivations - Stochastic Bandit Games Problem : You want to earn as much as possible in casino You are in a casino and want to play with slot machines Each one can give you a potential gain, but these gains are not equivalent You sequentially play with one of the arms of the bandit machine How to design a good policy to sequentially optimize the gain?

4 I - 1 Motivations - Dynamic Ressource Allocation Problem : Optimization of a sequence of clinical trials Imagine you are a doctor : A sequence of patients visit you sequentially (one after another) for a given disease You choose one treatment/drug among (say) 5 availables The treatment are not equivalent You do not know where is the best drug, but you observe the effect of the prescribed treatment on each patient You expect to find the best drug despite some uncertainty on the effect of each treatment How can we design a good sequence of clinical trials?

5 I - 1 Motivations - Dynamic Ressource Allocation Problem : Fast fashion retailer Source : Farias & Madan, Operation Research, Vol. 9, No 2, 2011 Imagine you are a firm solding clothes : A population of customers visit you sequentially (one after another) each week/day You observe weekly/daily sales and measure item s popularity You want to restock popular items and weed out unpopular ones on-line You expect to maximize your benefit while finding the best items How can we design a good sequence of fast-fashion operations?

6 I - 1 Motivations - Dynamic Ressource Allocation Other motivating examples Pricing a product with uncertain demand to maximize revenue Trading (sequentially allocate a ratio of fund to the more efficient trader) Recommender systems : advertisement website optimization news, blog posts Computer experiments A code can be simulated in order to optimize a criterion This simulation depends on a set of parameters Simulation is costly and only few choices of parameters are possible

7 I - 2 Stochastic multi-armed bandit model Environment : At your disposal : d arms with unknown parameters θ 1,..., θ d. For any time t, and for any choice I t {1..., d}, you receive a reward : A I t t For any choice of an arm i, rewards are i.i.d. (A i t ) t 0 ν θi. Reward distribution : In general, the reward distributions ν θ belong to a parametric family (Exponential, Poisson,... ) In this talk, simplest case of Bernoulli rewards ν p = B(p) : you obtain a gain of 1 with probability p 0 otherwise (with probability 1 p). Unknown probability of success : (p 1,..., p d ). Without l.o.g., we assume that p 1 > max pj. 2 j d Admissible policy : The agent s action follow a dynamical strategy, which is defined on-line : ( I t = π A I ) t 1 t 1..., AI 1 1. Final goal : Maximize (in expectation) the cumulative rewards : [ n ] E. t=1 A I t t

8 I - 2 Regret of Stochastic multi-armed bandit algorithms Regret of an algorithm It yields the minimization of the expected regret R n n ER n = E max A j t E n 1 j d t=1 t=1 A I t t n = E max (A j t 1 j d AI t t ) t=1 The expectation of the maximum makes the regret difficult to handle, but... Proposition (Pseudo-regret) If we define R [ n ] n := max 1 j d E t=1 (Aj t AI t t ), one has This upper bound is useful since ER n R n log d n +. 2 Proposition (Lower bound - (Auer, Cesa-Bianchi,Freund,Schapire 2002)) Uniformly among all policies π and among all Bernoulli distribution rewards : nd min max ER n π sup p j < p j d Conclusion : Upper bounds of R n of the order nd are competitive (optimal).

9 I - 3 Roadmap In this talk, we will : Briefly describe a standard old-fashioned method X t+1 = X t + γ t+1 h(x t) + γ t+1 M t+1 Introduce a new one whose regret will be deeply studied from a non asymptotic point of view : n N Rn C n Provide an asymptotic limit of this penalized bandit up to a correct scaling w β n(x n δ 1 ) µ n + Describe ergodic properties of the rescaled process (Piecewise Deterministic Markov Process)

10 I - Introduction I - 1 Motivations I - 2 Stochastic multi-armed bandit model II Narendra Schapiro algorithm II - 1 An historical algorithm (1969) II - 2 Improvement through penalization IV Conclusion

11 II - 1 An historical algorithm (1969) The so-called Narendra-Shapiro bandit algorithm (NS bandit for short) defines a probability vector of S d d X t = (Xt 1,..., Xd t ) X j t = 1. Idea : Use X t to sample one arm at step t and upgrade this probability according to the obtained reward at time t. In the two-armed situation with p 2 < p 1, denote X t = (x t, 1 x t) γ t+1 (1 x n) if player 1 is selected and wins x t+1 = x t + γ t+1 x t if player 2 is selected and wins 0 otherwise j=1 Multi-armed situation, I t : arm sampled at time t, A I t t j {1... d} X j t = Xj t 1 + γt [1 {It =j} X j t 1 : obtained reward. Upgrade ] To sum up : If you win : reinforce the probability to sample I t w.r.t. the remaining weights (X j t ) j I t and decrease the probability to sample other arms accordingly. If you loose (A I t t Common step size : = 0) : do nothing. A I t t γ t = ( 1 + t/c) α), α (0, 1) with large enough C.

12 II - 1 An historical algorithm (1969) Few words about NS bandit : Recursive stochastic algorithms Anytime policy Involves nontrivial mathematical difficulties It can be written as mean drift + martingale increment X t+1 = X t + γ t+1 h(x t) + γ t+1 M t+1. In the 2-armed settings (p 2 < p 1 and X t = (x t, 1 x t)) : h(x) = (p 1 p 2 )x(1 x). O.D.E. approximation ẋ = h(x), local trap at {1} and stable equilibrium at {0}. But : the conditional variance term vanishes at 0 and 1, making impossible the use of Duflo s argument about the escape ( of ) local traps. α Indeed, for any sequence γ t = C t+c, α (0, 1), the algorithm is faillible P (lim x t = 0) > 0 = ER n Cn >> n

13 II - 2 Improvement through penalization What s wrong with NS bandit? Gittins, JRSS(B) 79 : Good regret properties only occur with an exploration/exploitation trade-off... NS bandit is a pure exploitation method : no exploration term to exit local traps. Main idea : Introduce a penalty term [Pages & Lamberton, EJP 09] In the 2-armed settings (p 2 < p 1 and X t = (x t, 1 x t)) : +γ t+1 (1 X t) if arm 1 is selected and wins γ t+1 X t if arm 2 is selected and wins X t+1 = X t + ρ t+1 γ t+1 X t if arm 1 is selected and loses +ρ t+1 γ t+1 (1 X t) if arm 2 is selected and loses When one arm fails, decrease the probability to sample it. LP 09 : penalized 2-armed bandit is infaillible (a.s. convergence to the good target) iff ρ t = ρ 1 t β, γ t = γ 1 t α with 0 < β α, α + β 1.

14 II - 3 Over-penalized NS bandit This additional penalty term is still inefficient from the minimax regret point of view. As a last resort : increase the penalty effect to reinforce the escape from local traps : +γ t+1 (1 X t) ρ t+1 γ t+1 X t if arm 1 is selected and wins γ t+1 X t+ρ t+1 γ t+1 (1 X t) if arm 2 is selected and wins X t+1 = X t + ρ t+1 γ t+1 X t if arm 1 is selected and loses +ρ t+1 γ t+1 (1 X t) if arm 2 is selected and loses Whatever happens with the selected arm, it is penalized (escape from local traps).

15 I - Introduction I - 1 Motivations I - 2 Stochastic multi-armed bandit model II Narendra Schapiro algorithm II - 1 An historical algorithm (1969) II - 2 Improvement through penalization IV Conclusion

16 IV Conclusion Remarques importantes : Importance du cadre statistiques (classification / analyse discriminante). L hypothèse de Marge provoque une accéleration du risque. L important est de comprendre la structure de voisinage et la taille des petites boules probabilistes autour de chaque observation. Les kppv sont à utiliser avec précaution (variables descriptives, aléa). Données ECG : erreur de classif. passe de 25% à moins de 2% en utilisant les invariants. Extensions Mathématiques : Pas d utilisation de la régularité de η. (Cf Samworth 12). Pondération? Résultat non optimal en Gaussien (perte minimax en d n au lieu de n2/(2+d) ). Vitesse non optimale (mais presque) en A.D. avec une présence d un log(n). Meilleure inégalité de concentration? Approche alternative à la Poissonisation par des variables N.A. (c est presque le cas pour η n,k lorsque n + ). Variables d entrée sont perturbées par un opérateur partiellement connu/inconnu d un point de vue stat. math, aspects semi-paramétriques ou non paramétriques. Borne inférieure en approche fonctionnelle... Coupler avec une sparse PCA (réduction de dimension et du biais dans les ppv)... Merci de votre attention!

Regret of Narendra Shapiro Bandit Algorithms

Regret of Narendra Shapiro Bandit Algorithms Regret of Narendra Shapiro Bandit Algorithms S. Gadat Toulouse School of Economics Joint work with F. Panloup and S. Saadane. Oxford, April, 29 2015 I - Introduction I - 1 Motivations I - 2 Stochastic

More information

Regret of Narendra Shapiro Bandit Algorithms

Regret of Narendra Shapiro Bandit Algorithms Regret of Narendra Shapiro Bandit Algorithms S. Gadat Toulouse School of Economics Joint work with F. Panloup and S. Saadane. Inria Saclay, January, 19 2016 I - Introduction I - 1 Motivations - Examples

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Aurélien Garivier Institut de Mathématiques de Toulouse Information Theory, Learning and Big Data Simons Institute, Berkeley, March

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

The Multi-Arm Bandit Framework

The Multi-Arm Bandit Framework The Multi-Arm Bandit Framework A. LAZARIC (SequeL Team @INRIA-Lille) ENS Cachan - Master 2 MVA SequeL INRIA Lille MVA-RL Course In This Lecture A. LAZARIC Reinforcement Learning Algorithms Oct 29th, 2013-2/94

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Bandit Problems MEHRYAR MOHRI MOHRI@ COURANT INSTITUTE & GOOGLE RESEARCH. Multi-Armed Bandit Problem Problem: which arm of a K-slot machine should a gambler pull to maximize his

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

The information complexity of sequential resource allocation

The information complexity of sequential resource allocation The information complexity of sequential resource allocation Emilie Kaufmann, joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishan SMILE Seminar, ENS, June 8th, 205 Sequential allocation

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models

Revisiting the Exploration-Exploitation Tradeoff in Bandit Models Revisiting the Exploration-Exploitation Tradeoff in Bandit Models joint work with Aurélien Garivier (IMT, Toulouse) and Tor Lattimore (University of Alberta) Workshop on Optimization and Decision-Making

More information

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan McGill University

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

Bandit View on Continuous Stochastic Optimization

Bandit View on Continuous Stochastic Optimization Bandit View on Continuous Stochastic Optimization Sébastien Bubeck 1 joint work with Rémi Munos 1 & Gilles Stoltz 2 & Csaba Szepesvari 3 1 INRIA Lille, SequeL team 2 CNRS/ENS/HEC 3 University of Alberta

More information

The information complexity of best-arm identification

The information complexity of best-arm identification The information complexity of best-arm identification Emilie Kaufmann, joint work with Olivier Cappé and Aurélien Garivier MAB workshop, Lancaster, January th, 206 Context: the multi-armed bandit model

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Department of Systems and Computer Engineering Carleton University Ottawa, Canada KS 5B6 Email: mawheda@sce.carleton.ca

More information

Two optimization problems in a stochastic bandit model

Two optimization problems in a stochastic bandit model Two optimization problems in a stochastic bandit model Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan Journées MAS 204, Toulouse Outline From stochastic optimization

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms

Introduction to Bandit Algorithms. Introduction to Bandit Algorithms Stochastic K-Arm Bandit Problem Formulation Consider K arms (actions) each correspond to an unknown distribution {ν k } K k=1 with values bounded in [0, 1]. At each time t, the agent pulls an arm I t {1,...,

More information

Dynamic Pricing for Non-Perishable Products with Demand Learning

Dynamic Pricing for Non-Perishable Products with Demand Learning Dynamic Pricing for Non-Perishable Products with Demand Learning Victor F. Araman Stern School of Business New York University René A. Caldentey DIMACS Workshop on Yield Management and Dynamic Pricing

More information

Learning to play K-armed bandit problems

Learning to play K-armed bandit problems Learning to play K-armed bandit problems Francis Maes 1, Louis Wehenkel 1 and Damien Ernst 1 1 University of Liège Dept. of Electrical Engineering and Computer Science Institut Montefiore, B28, B-4000,

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, joint work with Emilie Kaufmann CNRS, CRIStAL) to be presented at COLT 16, New York

More information

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University

Bandit Algorithms. Zhifeng Wang ... Department of Statistics Florida State University Bandit Algorithms Zhifeng Wang Department of Statistics Florida State University Outline Multi-Armed Bandits (MAB) Exploration-First Epsilon-Greedy Softmax UCB Thompson Sampling Adversarial Bandits Exp3

More information

Bandits : optimality in exponential families

Bandits : optimality in exponential families Bandits : optimality in exponential families Odalric-Ambrym Maillard IHES, January 2016 Odalric-Ambrym Maillard Bandits 1 / 40 Introduction 1 Stochastic multi-armed bandits 2 Boundary crossing probabilities

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Distributed Learning based on Entropy-Driven Game Dynamics

Distributed Learning based on Entropy-Driven Game Dynamics Distributed Learning based on Entropy-Driven Game Dynamics Bruno Gaujal joint work with Pierre Coucheney and Panayotis Mertikopoulos Inria Aug., 2014 Model Shared resource systems (network, processors)

More information

Optimal Convergence in Multi-Agent MDPs

Optimal Convergence in Multi-Agent MDPs Optimal Convergence in Multi-Agent MDPs Peter Vrancx 1, Katja Verbeeck 2, and Ann Nowé 1 1 {pvrancx, ann.nowe}@vub.ac.be, Computational Modeling Lab, Vrije Universiteit Brussel 2 k.verbeeck@micc.unimaas.nl,

More information

Evaluation of multi armed bandit algorithms and empirical algorithm

Evaluation of multi armed bandit algorithms and empirical algorithm Acta Technica 62, No. 2B/2017, 639 656 c 2017 Institute of Thermomechanics CAS, v.v.i. Evaluation of multi armed bandit algorithms and empirical algorithm Zhang Hong 2,3, Cao Xiushan 1, Pu Qiumei 1,4 Abstract.

More information

Informational Confidence Bounds for Self-Normalized Averages and Applications

Informational Confidence Bounds for Self-Normalized Averages and Applications Informational Confidence Bounds for Self-Normalized Averages and Applications Aurélien Garivier Institut de Mathématiques de Toulouse - Université Paul Sabatier Thursday, September 12th 2013 Context Tree

More information

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

High-dimensional Problems in Finance and Economics. Thomas M. Mertens High-dimensional Problems in Finance and Economics Thomas M. Mertens NYU Stern Risk Economics Lab April 17, 2012 1 / 78 Motivation Many problems in finance and economics are high dimensional. Dynamic Optimization:

More information

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models

Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models c Qing Zhao, UC Davis. Talk at Xidian Univ., September, 2011. 1 Multi-Armed Bandit: Learning in Dynamic Systems with Unknown Models Qing Zhao Department of Electrical and Computer Engineering University

More information

Optimism in the Face of Uncertainty Should be Refutable

Optimism in the Face of Uncertainty Should be Refutable Optimism in the Face of Uncertainty Should be Refutable Ronald ORTNER Montanuniversität Leoben Department Mathematik und Informationstechnolgie Franz-Josef-Strasse 18, 8700 Leoben, Austria, Phone number:

More information

Point Process Control

Point Process Control Point Process Control The following note is based on Chapters I, II and VII in Brémaud s book Point Processes and Queues (1981). 1 Basic Definitions Consider some probability space (Ω, F, P). A real-valued

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Allocating Resources, in the Future

Allocating Resources, in the Future Allocating Resources, in the Future Sid Banerjee School of ORIE May 3, 2018 Simons Workshop on Mathematical and Computational Challenges in Real-Time Decision Making online resource allocation: basic model......

More information

Mean field equilibria of multiarmed bandit games

Mean field equilibria of multiarmed bandit games Mean field equilibria of multiarmed bandit games Ramesh Johari Stanford University Joint work with Ramki Gummadi (Stanford University) and Jia Yuan Yu (IBM Research) A look back: SN 2000 2 Overview What

More information

Stochastic Analysis of Bidding in Sequential Auctions and Related Problems.

Stochastic Analysis of Bidding in Sequential Auctions and Related Problems. s Case Stochastic Analysis of Bidding in Sequential Auctions and Related Problems S keya Rutgers Business School s Case 1 New auction models demand model Integrated auction- inventory model 2 Optimizing

More information

The No-Regret Framework for Online Learning

The No-Regret Framework for Online Learning The No-Regret Framework for Online Learning A Tutorial Introduction Nahum Shimkin Technion Israel Institute of Technology Haifa, Israel Stochastic Processes in Engineering IIT Mumbai, March 2013 N. Shimkin,

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement

An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement An Optimal Bidimensional Multi Armed Bandit Auction for Multi unit Procurement Satyanath Bhat Joint work with: Shweta Jain, Sujit Gujar, Y. Narahari Department of Computer Science and Automation, Indian

More information

The knowledge gradient method for multi-armed bandit problems

The knowledge gradient method for multi-armed bandit problems The knowledge gradient method for multi-armed bandit problems Moving beyond inde policies Ilya O. Ryzhov Warren Powell Peter Frazier Department of Operations Research and Financial Engineering Princeton

More information

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem

Lecture 19: UCB Algorithm and Adversarial Bandit Problem. Announcements Review on stochastic multi-armed bandit problem Lecture 9: UCB Algorithm and Adversarial Bandit Problem EECS598: Prediction and Learning: It s Only a Game Fall 03 Lecture 9: UCB Algorithm and Adversarial Bandit Problem Prof. Jacob Abernethy Scribe:

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Statistiques en grande dimension

Statistiques en grande dimension Statistiques en grande dimension Christophe Giraud 1,2 et Tristan Mary-Huart 3,4 (1) Université Paris-Sud (2) Ecole Polytechnique (3) AgroParistech (4) INRA - Le Moulon M2 MathSV & Maths Aléa C. Giraud

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

The multi armed-bandit problem

The multi armed-bandit problem The multi armed-bandit problem (with covariates if we have time) Vianney Perchet & Philippe Rigollet LPMA Université Paris Diderot ORFE Princeton University Algorithms and Dynamics for Games and Optimization

More information

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon.

Administration. CSCI567 Machine Learning (Fall 2018) Outline. Outline. HW5 is available, due on 11/18. Practice final will also be available soon. Administration CSCI567 Machine Learning Fall 2018 Prof. Haipeng Luo U of Southern California Nov 7, 2018 HW5 is available, due on 11/18. Practice final will also be available soon. Remaining weeks: 11/14,

More information

Semi-Infinite Relaxations for a Dynamic Knapsack Problem

Semi-Infinite Relaxations for a Dynamic Knapsack Problem Semi-Infinite Relaxations for a Dynamic Knapsack Problem Alejandro Toriello joint with Daniel Blado, Weihong Hu Stewart School of Industrial and Systems Engineering Georgia Institute of Technology MIT

More information

Online Learning Schemes for Power Allocation in Energy Harvesting Communications

Online Learning Schemes for Power Allocation in Energy Harvesting Communications Online Learning Schemes for Power Allocation in Energy Harvesting Communications Pranav Sakulkar and Bhaskar Krishnamachari Ming Hsieh Department of Electrical Engineering Viterbi School of Engineering

More information

Multi-armed Bandits in the Presence of Side Observations in Social Networks

Multi-armed Bandits in the Presence of Side Observations in Social Networks 52nd IEEE Conference on Decision and Control December 0-3, 203. Florence, Italy Multi-armed Bandits in the Presence of Side Observations in Social Networks Swapna Buccapatnam, Atilla Eryilmaz, and Ness

More information

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008

Csaba Szepesvári 1. University of Alberta. Machine Learning Summer School, Ile de Re, France, 2008 LEARNING THEORY OF OPTIMAL DECISION MAKING PART I: ON-LINE LEARNING IN STOCHASTIC ENVIRONMENTS Csaba Szepesvári 1 1 Department of Computing Science University of Alberta Machine Learning Summer School,

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Vivek F. Farias Ritesh Madan 22 June 2008 Revised: 16 June 2009 Abstract This paper considers the multi-armed bandit problem with multiple simultaneous arm pulls

More information

Applications of on-line prediction. in telecommunication problems

Applications of on-line prediction. in telecommunication problems Applications of on-line prediction in telecommunication problems Gábor Lugosi Pompeu Fabra University, Barcelona based on joint work with András György and Tamás Linder 1 Outline On-line prediction; Some

More information

THE first formalization of the multi-armed bandit problem

THE first formalization of the multi-armed bandit problem EDIC RESEARCH PROPOSAL 1 Multi-armed Bandits in a Network Farnood Salehi I&C, EPFL Abstract The multi-armed bandit problem is a sequential decision problem in which we have several options (arms). We can

More information

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit

Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit European Worshop on Reinforcement Learning 14 (2018 October 2018, Lille, France. Thompson Sampling for the non-stationary Corrupt Multi-Armed Bandit Réda Alami Orange Labs 2 Avenue Pierre Marzin 22300,

More information

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems

Lecture 2: Learning from Evaluative Feedback. or Bandit Problems Lecture 2: Learning from Evaluative Feedback or Bandit Problems 1 Edward L. Thorndike (1874-1949) Puzzle Box 2 Learning by Trial-and-Error Law of Effect: Of several responses to the same situation, those

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Claudio Gentile INRIA and Google NY clagentile@gmailcom NYC March 6th, 2018 1 Content of this lecture Regret analysis of sequential prediction problems lying between

More information

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári

Bandit Algorithms. Tor Lattimore & Csaba Szepesvári Bandit Algorithms Tor Lattimore & Csaba Szepesvári Bandits Time 1 2 3 4 5 6 7 8 9 10 11 12 Left arm $1 $0 $1 $1 $0 Right arm $1 $0 Five rounds to go. Which arm would you play next? Overview What are bandits,

More information

Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials

Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials Construction and statistical analysis of adaptive group sequential designs for randomized clinical trials Antoine Chambaz (MAP5, Université Paris Descartes) joint work with Mark van der Laan Atelier INSERM

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Lecture 5: Bandit optimisation Alexandre Proutiere, Sadegh Talebi, Jungseul Ok KTH, The Royal Institute of Technology Objectives of this lecture Introduce bandit optimisation: the

More information

Practicable Robust Markov Decision Processes

Practicable Robust Markov Decision Processes Practicable Robust Markov Decision Processes Huan Xu Department of Mechanical Engineering National University of Singapore Joint work with Shiau-Hong Lim (IBM), Shie Mannor (Techion), Ofir Mebel (Apple)

More information

Analysis of Thompson Sampling for the multi-armed bandit problem

Analysis of Thompson Sampling for the multi-armed bandit problem Analysis of Thompson Sampling for the multi-armed bandit problem Shipra Agrawal Microsoft Research India shipra@microsoft.com avin Goyal Microsoft Research India navingo@microsoft.com Abstract We show

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Bayesian Contextual Multi-armed Bandits

Bayesian Contextual Multi-armed Bandits Bayesian Contextual Multi-armed Bandits Xiaoting Zhao Joint Work with Peter I. Frazier School of Operations Research and Information Engineering Cornell University October 22, 2012 1 / 33 Outline 1 Motivating

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

On Robust Arm-Acquiring Bandit Problems

On Robust Arm-Acquiring Bandit Problems On Robust Arm-Acquiring Bandit Problems Shiqing Yu Faculty Mentor: Xiang Yu July 20, 2014 Abstract In the classical multi-armed bandit problem, at each stage, the player has to choose one from N given

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem The Multi-Armed Bandit Problem Electrical and Computer Engineering December 7, 2013 Outline 1 2 Mathematical 3 Algorithm Upper Confidence Bound Algorithm A/B Testing Exploration vs. Exploitation Scientist

More information

arxiv: v1 [cs.gt] 1 Sep 2015

arxiv: v1 [cs.gt] 1 Sep 2015 HC selection for MCTS in Simultaneous Move Games Analysis of Hannan Consistent Selection for Monte Carlo Tree Search in Simultaneous Move Games arxiv:1509.00149v1 [cs.gt] 1 Sep 2015 Vojtěch Kovařík vojta.kovarik@gmail.com

More information

Lecture 4: Lower Bounds (ending); Thompson Sampling

Lecture 4: Lower Bounds (ending); Thompson Sampling CMSC 858G: Bandits, Experts and Games 09/12/16 Lecture 4: Lower Bounds (ending); Thompson Sampling Instructor: Alex Slivkins Scribed by: Guowei Sun,Cheng Jie 1 Lower bounds on regret (ending) Recap from

More information

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning

Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning JMLR: Workshop and Conference Proceedings vol:1 8, 2012 10th European Workshop on Reinforcement Learning Learning Exploration/Exploitation Strategies for Single Trajectory Reinforcement Learning Michael

More information

arxiv: v1 [cs.lg] 15 Oct 2014

arxiv: v1 [cs.lg] 15 Oct 2014 THOMPSON SAMPLING WITH THE ONLINE BOOTSTRAP By Dean Eckles and Maurits Kaptein Facebook, Inc., and Radboud University, Nijmegen arxiv:141.49v1 [cs.lg] 15 Oct 214 Thompson sampling provides a solution to

More information

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525

Markov Models and Reinforcement Learning. Stephen G. Ware CSCI 4525 / 5525 Markov Models and Reinforcement Learning Stephen G. Ware CSCI 4525 / 5525 Camera Vacuum World (CVW) 2 discrete rooms with cameras that detect dirt. A mobile robot with a vacuum. The goal is to ensure both

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett

Stat 260/CS Learning in Sequential Decision Problems. Peter Bartlett Stat 260/CS 294-102. Learning in Sequential Decision Problems. Peter Bartlett 1. Multi-armed bandit algorithms. Concentration inequalities. P(X ǫ) exp( ψ (ǫ))). Cumulant generating function bounds. Hoeffding

More information

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University

EASINESS IN BANDITS. Gergely Neu. Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University EASINESS IN BANDITS Gergely Neu Pompeu Fabra University THE BANDIT PROBLEM Play for T rounds attempting to maximize rewards THE BANDIT PROBLEM Play

More information

Yevgeny Seldin. University of Copenhagen

Yevgeny Seldin. University of Copenhagen Yevgeny Seldin University of Copenhagen Classical (Batch) Machine Learning Collect Data Data Assumption The samples are independent identically distributed (i.i.d.) Machine Learning Prediction rule New

More information

Optimal Few-Stage Designs for Clinical Trials. Janis Hardwick Quentin F. Stout

Optimal Few-Stage Designs for Clinical Trials. Janis Hardwick Quentin F. Stout Presentation at GlaxoSmithKline, 10 May 2002. 1 ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ Optimal Few-Stage Designs for Clinical Trials Janis Hardwick Quentin F. Stout University of Michigan http://www.eecs.umich.edu/

More information

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati

COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning. Hanna Kurniawati COMP3702/7702 Artificial Intelligence Lecture 11: Introduction to Machine Learning and Reinforcement Learning Hanna Kurniawati Today } What is machine learning? } Where is it used? } Types of machine learning

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Formal models of interaction Daniel Hennes 27.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Taxonomy of domains Models of

More information

Game-Theoretic Learning:

Game-Theoretic Learning: Game-Theoretic Learning: Regret Minimization vs. Utility Maximization Amy Greenwald with David Gondek, Amir Jafari, and Casey Marks Brown University University of Pennsylvania November 17, 2004 Background

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities

Lecture 15: Bandit problems. Markov Processes. Recall: Lotteries and utilities Lecture 15: Bandit problems. Markov Processes Bandit problems Action values (and now to compute them) Exploration-exploitation trade-off Simple exploration strategies -greedy Softmax (Boltzmann) exploration

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Index Policies and Performance Bounds for Dynamic Selection Problems

Index Policies and Performance Bounds for Dynamic Selection Problems Index Policies and Performance Bounds for Dynamic Selection Problems David B. Brown Fuqua School of Business Duke University dbbrown@duke.edu James E. Smith Tuck School of Business Dartmouth College jim.smith@dartmouth.edu

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning March May, 2013 Schedule Update Introduction 03/13/2015 (10:15-12:15) Sala conferenze MDPs 03/18/2015 (10:15-12:15) Sala conferenze Solving MDPs 03/20/2015 (10:15-12:15) Aula Alpha

More information

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3

COS 402 Machine Learning and Artificial Intelligence Fall Lecture 22. Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 22 Exploration & Exploitation in Reinforcement Learning: MAB, UCB, Exp3 How to balance exploration and exploitation in reinforcement

More information

Procedia Computer Science 00 (2011) 000 6

Procedia Computer Science 00 (2011) 000 6 Procedia Computer Science (211) 6 Procedia Computer Science Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science and Technology 211-

More information

Math May 13, Final Exam

Math May 13, Final Exam Math 447 - May 13, 2013 - Final Exam Name: Read these instructions carefully: The points assigned are not meant to be a guide to the difficulty of the problems. If the question is multiple choice, there

More information

The ambiguous impact of contracts on competition in the electricity market Yves Smeers

The ambiguous impact of contracts on competition in the electricity market Yves Smeers The ambiguous impact of contracts on competition in the electricity market Yves Smeers joint work with Frederic Murphy Climate Policy and Long Term Decisions-Investment and R&D, Bocconi University, Milan,

More information

Stochastic bandits: Explore-First and UCB

Stochastic bandits: Explore-First and UCB CSE599s, Spring 2014, Online Learning Lecture 15-2/19/2014 Stochastic bandits: Explore-First and UCB Lecturer: Brendan McMahan or Ofer Dekel Scribe: Javad Hosseini In this lecture, we like to answer this

More information

Reducing contextual bandits to supervised learning

Reducing contextual bandits to supervised learning Reducing contextual bandits to supervised learning Daniel Hsu Columbia University Based on joint work with A. Agarwal, S. Kale, J. Langford, L. Li, and R. Schapire 1 Learning to interact: example #1 Practicing

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

arxiv: v4 [cs.lg] 22 Jul 2014

arxiv: v4 [cs.lg] 22 Jul 2014 Learning to Optimize Via Information-Directed Sampling Daniel Russo and Benjamin Van Roy July 23, 2014 arxiv:1403.5556v4 cs.lg] 22 Jul 2014 Abstract We propose information-directed sampling a new algorithm

More information

Learning Algorithms for Minimizing Queue Length Regret

Learning Algorithms for Minimizing Queue Length Regret Learning Algorithms for Minimizing Queue Length Regret Thomas Stahlbuhk Massachusetts Institute of Technology Cambridge, MA Brooke Shrader MIT Lincoln Laboratory Lexington, MA Eytan Modiano Massachusetts

More information

0.1 Motivating example: weighted majority algorithm

0.1 Motivating example: weighted majority algorithm princeton univ. F 16 cos 521: Advanced Algorithm Design Lecture 8: Decision-making under total uncertainty: the multiplicative weight algorithm Lecturer: Sanjeev Arora Scribe: Sanjeev Arora (Today s notes

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Artificial Intelligence Review manuscript No. (will be inserted by the editor) Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Howard M. Schwartz Received:

More information