Semi-Infinite Relaxations for a Dynamic Knapsack Problem

Size: px
Start display at page:

Download "Semi-Infinite Relaxations for a Dynamic Knapsack Problem"

Transcription

1 Semi-Infinite Relaxations for a Dynamic Knapsack Problem Alejandro Toriello joint with Daniel Blado, Weihong Hu Stewart School of Industrial and Systems Engineering Georgia Institute of Technology MIT April 15, 2016

2 Problem Statement Knapsack with capacity b > 0 and item set N = {1,..., n}. Each item i has 1. deterministic value c i, 2. independent random size A i 0 with known distribution. When attempting to insert i: If i fits collect c i, update capacity. Else process ends. Policy may depend on remaining items and remaining capacity. Goal is to maximize expected value. Problem is at least NP-hard, some versions PSPACE-hard (Vondrák, 05).

3 Outline Pertinent Past Work Approximation and Bound Computational Experiments Asymptotic Analysis Extensions and Conclusions

4 Brief Literature Review Derman/Lieberman/Ross (78): Sizes are exponential r.v. s. Greedy policy w.r.t. ci /E[A i ] is optimal. Dean/Goemans/Vondrák (04,08): Two LP bounds with polynomially many variables. Linear knapsack, polymatroid, both within constant gap. Greedy approximate policies. Gupta/Krishnaswamy/Molinaro/Ravi (11), Ma (14): Integer sizes, LP bounds of pseudo-polynomial size. Randomized policies based on LP optimal solutions. Extensions to models with correlated random item values, preemption, multi-armed bandits. Other work, e.g. Bhalgat/Goel/Kanna (11), Li/Yuan (13), Bansal/Nagarajan (14), Balseiro/Brown (16).

5 Linear Knapsack Bound Dean/Goemans/Vondrák (08) Use x i, probability policy attempts to insert i: max x c i x i i N s.t. i N x i E[A i ] b; 0 x i 1, i N.

6 Linear Knapsack Bound Dean/Goemans/Vondrák (08) Use x i, probability policy attempts to insert i: max c i x i P(A i b) x i N s.t. i N x i E[A i ] b; 0 x i 1, i N.

7 Linear Knapsack Bound Dean/Goemans/Vondrák (08) Use x i, probability policy attempts to insert i: max x c i x i P(A i b) i N s.t. i N x i E[min{b, A i }] b; 0 x i 1, i N. Mean truncated size E[min{b, A i }]: A i above b is irrelevant (insertion will fail).

8 Linear Knapsack Bound Dean/Goemans/Vondrák (08) Use x i, probability policy attempts to insert i: max x c i x i P(A i b) i N s.t. i N x i E[min{b, A i }] 2b; 0 x i 1, i N. Mean truncated size E[min{b, A i }]: A i above b is irrelevant (insertion will fail). Bound intuition: In worst case, policy exactly fills knapsack, then attempts to insert very large item. Worst-case gap is 32/7. Polymatroid bound is extension of same idea, with gap of 4.

9 Dynamic Programming Formulation State: remaining items, remaining capacity (M, s) for M N, s [0, b]. Actions: attempt to insert i M. Bellman recursion is v M(s) = max i M P(A i s)(c i + E[v M\i (s A i) A i s]), v (s) = 0. In doubly infinite LP form: min v N (b) v s.t. v M i (s) P(A i s)(c i + E[v M (s A i ) A i s]), i N, M N \ i, s [0, b] v M : [0, b] R +, M N.

10 Value Function Approximation Any feasible solution to LP yields upper bound. Use affine approximation v M (s) qs + r 0 + r i, i M where q is marginal value of capacity, r i is item i s inherent value, r 0 is value of process continuing ( staying alive ).

11 Value Function Approximation Lemma The best bound given by v M (s) qs + i M 0 r i is the semi-infinite LP min qb + r 0 + r i q,r 0 i N s.t. qe[min{s, A i }] + r 0 P(A i > s) + r i c i P(A i s), i N, s [0, b].

12 Value Function Approximation Lemma The best bound given by v M (s) qs + i M 0 r i is the semi-infinite LP min qb + r 0 + r i q,r 0 i N s.t. qe[min{s, A i }] + r 0 P(A i > s) + r i c i P(A i s), Proof sketch. i N, s [0, b]. v M i (s) P(A i s)e[v M (s A i ) A i s] qs P(A i s)e[q(s A i ) A i s] (focusing on q) = qsp(a i > s) + qp(a i s)e[a i A i s] = qe[min{s, A i }]

13 Multiple-Choice Linear Knapsack Bound Theorem The LP s finite-support dual is solvable and has zero duality gap: c i x i,s P(A i s) max x 0 i N s [0,b] s.t. x i,s E[min{s, A i }] b, (exp. frac. size under b) i N s [0,b] x i,s P(A i > s) 1 (one exp. failure; cf. Ma 14) i N s [0,b] s [0,b] x i,s 1 x has finite support. (insert i once) x i,s : probability policy attempts to insert i when s capacity remains.

14 Multiple-Choice Linear Knapsack Bound Pricing problem { qb + min q,r 0 i N 0 } r i : qe[min{s, A i}] + r 0P(A i > s) + r i c ip(a i s), i N, s [0, b] Pricing/separation: Given q, r, for each i solve { min qe[min{s, Ai }] (c i + r 0 )P(A i s) }. s [0,b] Mean truncated size is concave in s. If CDF is piecewise convex, check only endpoints of convex intervals. Applies to discrete, uniform distributions Polynomially many variables. Other distributions (e.g. exponential, conditional normal) have closed-form solution. Check at most countably many points in general.

15 Multiple-Choice Linear Knapsack Bound Pricing problem: Exponential distribution example { min qe[min{s, Ai }] (c i + r 0 )P(A i s) } s [0,b] Suppose A i exp(λ): P(A i s) = 1 e λs E[min{s, A i }] = P(A i s)/λ. Thus qe[min{s, A i }] (c i + r 0 )P(A i s) = (q/λ c i r 0 )P(A i s) minimized at s {0, b}.

16 Multiple-Choice Linear Knapsack Bound So if sizes are exponentially distributed, the bound is max c i x i,b P(A i b) x i N s.t. i N x i,b E[min{b, A i }] b 0 x i,b 1, i N. This is DGV linear knapsack with capacity cut in half. Applies to other size distributions, e.g. conditional normal, uniform, geometric. Theorem The MCLK bound dominates the DGV knapsack bound on any instance. Conjecture: MCLK also dominates DGV polymatroid.

17 Computational Experiments Generated instances from deterministic knapsack instances. 8 small, n [5, 24]: people.sc.fsu.edu/ jburkardt 10 large, n = 100: pisinger/codes.html (uncorrelated) For a deterministic size a i, generated: Exponential (1/a i ) Uniform [0, 2a i ] and [a i /2, 3a i /2] Conditional normal (a i, a i /3) Bound comparison: average of deterministic knapsack over 400 simulations ( perfect information relaxation ). Not reporting: DGV polymatroid bound not competitive. Benchmark: Adaptive greedy policy w.r.t. version studied in DGV). c i P(A i s) E[min{s,A i }] (basic

18 Computational Experiments Geometric mean of gap Small Large PIR MCLK PIR MCLK Exponential 48% 5% 22% 0.5% Uniform 1 41% 12% 12% 1% Uniform 2 26% 12% 4% 0.6% Normal 30% 12% 5% 0.5% Greedy benchmark is optimal (Derman/Lieberman/Ross 78). MCLK gives consistently better bound across instance types. Tighter for most small, all large instances. All gaps improve as number of items increases. Especially stark advantage for exponential instances.

19 Asymptotic Analysis Motivation All gaps improve as number of items increases. Check MCLK versus simple greedy policy, which chooses items in order c 1 E[A 1 ] c n E[A n ]. This policy is optimal in at least one case, exponential distributions (Derman/Lieberman/Ross 78). Expect an averaging effect as n grows.

20 Asymptotic Analysis Take infinite collection of items sorted in greedy order: c 1 /E[A 1 ] c i /E[A i ] Main technical condition: ( E[Ai A i > s] s ) < sup i,s Implies uniformly bounded moments. Satisfied by several distributions, e.g. bounded support, exponential, normal,..., but not e.g. power law. Theorem Under these conditions, See also Balseiro/Brown (16). Greedy(b) lim b MCLK(b) 1.

21 Asymptotic Analysis Proof sketch. Take b k := i k E[A i]. Two main ingredients: 1. MCLK(b k ) c 0 + i k c ip(a i b k ) Requires constructing dual feasible MCLK solution for each k. Constant c 0 comes from technical condition. 2. Greedy(b k ) i k c ip(a i b k ) 1 as k. More standard arguments from probability, mostly Markov s inequality. Working on proof extension to weaken condition, e.g. using different growth regimes.

22 Extensions Correlated value: Much of analysis applies, but must use conditional value E[C i A i s] (GKMR 11, Ma 14). If items have integer support: Use non-parametric pseudo-polynomial approximation v M (s) s r i + w σ. i M σ=0 Yields Ma bound (14). Can use to show Ma bound dominates GKMR bound (strengthen Ma s result). Policies: MCLK and pseudo-polynomial bounds can be used for policy design. E.g. from value function approximation, rounding, ad hoc methods.

23 Ongoing Work MCLK and other bounds still leave gap in small-to-medium instances. Improve approximation with quadratic variables: v M (s) qs + r 0 + r i r ij. i M i,j M Submodular in M, reflecting decreasing marginal value of items. LP must now separate over sets M. Separation problem is IP with totally unimodular constraint matrix, preserving polynomial solvability.

24 Preliminary Computations - Quad LP Small 20-Item MCLK Quad Ma MCLK Quad Ma D1 27.7% 26.5% 16.5% 10.6% 10.0% 10.2% D2 15.7% 15.3% 10.4% 6.3% 6.2% 6.2% D3 13.8% 13.7% 8.4% 5.6% 5.5% 5.2% D4 20.4% 16.7% 8.7% 7.2% 5.7% 5.0% Quad LP significantly faster than Ma bound (poly vs. pseudo-poly). Competitive, particularly in medium instances. Room left for improvement with all bounds.

25 Conclusions MCLK bound has theoretical guarantees and good empirical performance on various item size distributions. Value function approximation is systematic way to generate bounds for dynamic problems. Big picture questions: 1. Exact algorithms: cutting planes, branching? 2. Extend to general stochastic and dynamic IP (Vondrák 05). atoriello3

RELAXATIONS FOR THE DYNAMIC KNAPSACK PROBLEM WITH STOCHASTIC ITEM SIZES

RELAXATIONS FOR THE DYNAMIC KNAPSACK PROBLEM WITH STOCHASTIC ITEM SIZES RELAXATIONS FOR THE DYNAMIC KNAPSACK PROBLEM WITH STOCHASTIC ITEM SIZES A Thesis Presented to The Academic Faculty by Daniel Blado In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes

Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes Relaxation Analysis for the Dynamic Knapsack Problem with Stochastic Item Sizes Daniel Blado Alejandro Toriello H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes

Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes Daniel Blado Weihong Hu Alejandro Toriello H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute

More information

Polyhedral Approaches to Online Bipartite Matching

Polyhedral Approaches to Online Bipartite Matching Polyhedral Approaches to Online Bipartite Matching Alejandro Toriello joint with Alfredo Torrico, Shabbir Ahmed Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Industrial

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding

EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding EECS 495: Combinatorial Optimization Lecture Manolis, Nima Mechanism Design with Rounding Motivation Make a social choice that (approximately) maximizes the social welfare subject to the economic constraints

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010

Section Notes 9. IP: Cutting Planes. Applied Math 121. Week of April 12, 2010 Section Notes 9 IP: Cutting Planes Applied Math 121 Week of April 12, 2010 Goals for the week understand what a strong formulations is. be familiar with the cutting planes algorithm and the types of cuts

More information

Adaptive Policies for Online Ad Selection Under Chunked Reward Pricing Model

Adaptive Policies for Online Ad Selection Under Chunked Reward Pricing Model Adaptive Policies for Online Ad Selection Under Chunked Reward Pricing Model Dinesh Garg IBM India Research Lab, Bangalore garg.dinesh@in.ibm.com (Joint Work with Michael Grabchak, Narayan Bhamidipati,

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity Brian C. Dean Michel X. Goemans Jan Vondrák June 6, 2008 Abstract We consider a stochastic variant of the NP-hard 0/1 knapsack problem

More information

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 17 March 30th 1 Overview In the previous lecture, we saw examples of combinatorial problems: the Maximal Matching problem and the Minimum

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity Brian C. Dean Michel X. Goemans Jan Vondrák May 23, 2005 Abstract We consider a stochastic variant of the NP-hard 0/1 knapsack problem

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna Abstract In the submodular cover problem, we are given a non-negative monotone submodular function f over

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II)

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Limits of Approximation Algorithms 28 Jan, 2010 (TIFR) Lec. 2: Approximation Algorithms for NP-hard Problems (Part II) Lecturer: Prahladh Harsha Scribe: S. Ajesh Babu We will continue the survey of approximation

More information

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014

THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM LEVI DELISSA. B.S., Kansas State University, 2014 THE EXISTENCE AND USEFULNESS OF EQUALITY CUTS IN THE MULTI-DEMAND MULTIDIMENSIONAL KNAPSACK PROBLEM by LEVI DELISSA B.S., Kansas State University, 2014 A THESIS submitted in partial fulfillment of the

More information

Lecture 9 Tuesday, 4/20/10. Linear Programming

Lecture 9 Tuesday, 4/20/10. Linear Programming UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Spring, 2010 Lecture 9 Tuesday, 4/20/10 Linear Programming 1 Overview Motivation & Basics Standard & Slack Forms Formulating

More information

Integer Programming Methods LNMB

Integer Programming Methods LNMB Integer Programming Methods LNMB 2017 2018 Dion Gijswijt homepage.tudelft.nl/64a8q/intpm/ Dion Gijswijt Intro IntPM 2017-2018 1 / 24 Organisation Webpage: homepage.tudelft.nl/64a8q/intpm/ Book: Integer

More information

Query and Computational Complexity of Combinatorial Auctions

Query and Computational Complexity of Combinatorial Auctions Query and Computational Complexity of Combinatorial Auctions Jan Vondrák IBM Almaden Research Center San Jose, CA Algorithmic Frontiers, EPFL, June 2012 Jan Vondrák (IBM Almaden) Combinatorial auctions

More information

Lectures 6, 7 and part of 8

Lectures 6, 7 and part of 8 Lectures 6, 7 and part of 8 Uriel Feige April 26, May 3, May 10, 2015 1 Linear programming duality 1.1 The diet problem revisited Recall the diet problem from Lecture 1. There are n foods, m nutrients,

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P

Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Discrete Optimization 2010 Lecture 8 Lagrangian Relaxation / P, N P and co-n P Marc Uetz University of Twente m.uetz@utwente.nl Lecture 8: sheet 1 / 32 Marc Uetz Discrete Optimization Outline 1 Lagrangian

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

The quest for finding Hamiltonian cycles

The quest for finding Hamiltonian cycles The quest for finding Hamiltonian cycles Giang Nguyen School of Mathematical Sciences University of Adelaide Travelling Salesman Problem Given a list of cities and distances between cities, what is the

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity MATHEMATICS OF OPERATIONS RESEARCH Vol. 33, No. 4, November 2008, pp. 945 964 issn 0364-765X eissn 1526-5471 08 3304 0945 informs doi 10.1287/moor.1080.0330 2008 INFORMS Approximating the Stochastic Knapsack

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs 1 Cambridge, July 2013 1 Joint work with Franklin Djeumou Fomeni and Adam N. Letchford Outline 1. Introduction 2. Literature Review

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation

The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation The Fixed Charge Transportation Problem: A Strong Formulation Based On Lagrangian Decomposition and Column Generation Yixin Zhao, Torbjörn Larsson and Department of Mathematics, Linköping University, Sweden

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

LP based heuristics for the multiple knapsack problem. with assignment restrictions

LP based heuristics for the multiple knapsack problem. with assignment restrictions LP based heuristics for the multiple knapsack problem with assignment restrictions Geir Dahl and Njål Foldnes Centre of Mathematics for Applications and Department of Informatics, University of Oslo, P.O.Box

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

Optimization under Uncertainty: An Introduction through Approximation. Kamesh Munagala

Optimization under Uncertainty: An Introduction through Approximation. Kamesh Munagala Optimization under Uncertainty: An Introduction through Approximation Kamesh Munagala Contents I Stochastic Optimization 5 1 Weakly Coupled LP Relaxations 6 1.1 A Gentle Introduction: The Maximum Value

More information

Reconnect 04 Introduction to Integer Programming

Reconnect 04 Introduction to Integer Programming Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Reconnect 04 Introduction to Integer Programming Cynthia Phillips, Sandia National Laboratories Integer programming

More information

CS 583: Approximation Algorithms: Introduction

CS 583: Approximation Algorithms: Introduction CS 583: Approximation Algorithms: Introduction Chandra Chekuri January 15, 2018 1 Introduction Course Objectives 1. To appreciate that not all intractable problems are the same. NP optimization problems,

More information

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003

CS6999 Probabilistic Methods in Integer Programming Randomized Rounding Andrew D. Smith April 2003 CS6999 Probabilistic Methods in Integer Programming Randomized Rounding April 2003 Overview 2 Background Randomized Rounding Handling Feasibility Derandomization Advanced Techniques Integer Programming

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

On deterministic reformulations of distributionally robust joint chance constrained optimization problems

On deterministic reformulations of distributionally robust joint chance constrained optimization problems On deterministic reformulations of distributionally robust joint chance constrained optimization problems Weijun Xie and Shabbir Ahmed School of Industrial & Systems Engineering Georgia Institute of Technology,

More information

Topics in Theoretical Computer Science April 08, Lecture 8

Topics in Theoretical Computer Science April 08, Lecture 8 Topics in Theoretical Computer Science April 08, 204 Lecture 8 Lecturer: Ola Svensson Scribes: David Leydier and Samuel Grütter Introduction In this lecture we will introduce Linear Programming. It was

More information

Welfare Maximization with Friends-of-Friends Network Externalities

Welfare Maximization with Friends-of-Friends Network Externalities Welfare Maximization with Friends-of-Friends Network Externalities Extended version of a talk at STACS 2015, Munich Wolfgang Dvořák 1 joint work with: Sayan Bhattacharya 2, Monika Henzinger 1, Martin Starnberger

More information

Santa Claus Schedules Jobs on Unrelated Machines

Santa Claus Schedules Jobs on Unrelated Machines Santa Claus Schedules Jobs on Unrelated Machines Ola Svensson (osven@kth.se) Royal Institute of Technology - KTH Stockholm, Sweden March 22, 2011 arxiv:1011.1168v2 [cs.ds] 21 Mar 2011 Abstract One of the

More information

Model Counting for Logical Theories

Model Counting for Logical Theories Model Counting for Logical Theories Wednesday Dmitry Chistikov Rayna Dimitrova Department of Computer Science University of Oxford, UK Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern

More information

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight.

In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the original knapsack problem, the value of the contents of the knapsack is maximized subject to a single capacity constraint, for example weight. In the multi-dimensional knapsack problem, additional

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

6. DYNAMIC PROGRAMMING I

6. DYNAMIC PROGRAMMING I 6. DYNAMIC PROGRAMMING I weighted interval scheduling segmented least squares knapsack problem RNA secondary structure Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Mathematical Preliminaries

Mathematical Preliminaries Chapter 33 Mathematical Preliminaries In this appendix, we provide essential definitions and key results which are used at various points in the book. We also provide a list of sources where more details

More information

Week 8. 1 LP is easy: the Ellipsoid Method

Week 8. 1 LP is easy: the Ellipsoid Method Week 8 1 LP is easy: the Ellipsoid Method In 1979 Khachyan proved that LP is solvable in polynomial time by a method of shrinking ellipsoids. The running time is polynomial in the number of variables n,

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany

Introduction Long transparent proofs The real PCP theorem. Real Number PCPs. Klaus Meer. Brandenburg University of Technology, Cottbus, Germany Santaló s Summer School, Part 3, July, 2012 joint work with Martijn Baartse (work supported by DFG, GZ:ME 1424/7-1) Outline 1 Introduction 2 Long transparent proofs for NP R 3 The real PCP theorem First

More information

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania

Stochastic Dynamic Programming. Jesus Fernandez-Villaverde University of Pennsylvania Stochastic Dynamic Programming Jesus Fernande-Villaverde University of Pennsylvania 1 Introducing Uncertainty in Dynamic Programming Stochastic dynamic programming presents a very exible framework to handle

More information

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers

On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers On the Approximate Solution of POMDP and the Near-Optimality of Finite-State Controllers Huizhen (Janey) Yu (janey@mit.edu) Dimitri Bertsekas (dimitrib@mit.edu) Lab for Information and Decision Systems,

More information

CS261: Problem Set #3

CS261: Problem Set #3 CS261: Problem Set #3 Due by 11:59 PM on Tuesday, February 23, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

A Duality between Clause Width and Clause Density for SAT

A Duality between Clause Width and Clause Density for SAT A Duality between Clause Width and Clause Density for SAT Chris Calabro, Russell Impagliazzo, Ramamohan Paturi University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093 ccalabro,russell,paturi

More information

Submodular Functions and Their Applications

Submodular Functions and Their Applications Submodular Functions and Their Applications Jan Vondrák IBM Almaden Research Center San Jose, CA SIAM Discrete Math conference, Minneapolis, MN June 204 Jan Vondrák (IBM Almaden) Submodular Functions and

More information

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function

Input: System of inequalities or equalities over the reals R. Output: Value for variables that minimizes cost function Linear programming Input: System of inequalities or equalities over the reals R A linear cost function Output: Value for variables that minimizes cost function Example: Minimize 6x+4y Subject to 3x + 2y

More information

On packing and covering polyhedra in infinite dimensions

On packing and covering polyhedra in infinite dimensions On packing and covering polyhedra in infinite dimensions The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Integer Programming Duality

Integer Programming Duality Integer Programming Duality M. Guzelsoy T. K. Ralphs July, 2010 1 Introduction This article describes what is known about duality for integer programs. It is perhaps surprising that many of the results

More information

The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount

The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount The Simplex and Policy Iteration Methods are Strongly Polynomial for the Markov Decision Problem with Fixed Discount Yinyu Ye Department of Management Science and Engineering and Institute of Computational

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Optimization of Submodular Functions Tutorial - lecture I

Optimization of Submodular Functions Tutorial - lecture I Optimization of Submodular Functions Tutorial - lecture I Jan Vondrák 1 1 IBM Almaden Research Center San Jose, CA Jan Vondrák (IBM Almaden) Submodular Optimization Tutorial 1 / 1 Lecture I: outline 1

More information

Lecture 11 October 7, 2013

Lecture 11 October 7, 2013 CS 4: Advanced Algorithms Fall 03 Prof. Jelani Nelson Lecture October 7, 03 Scribe: David Ding Overview In the last lecture we talked about set cover: Sets S,..., S m {,..., n}. S has cost c S. Goal: Cover

More information

Network Localization via Schatten Quasi-Norm Minimization

Network Localization via Schatten Quasi-Norm Minimization Network Localization via Schatten Quasi-Norm Minimization Anthony Man-Cho So Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong (Joint Work with Senshan Ji Kam-Fung

More information

Lecture 13 March 7, 2017

Lecture 13 March 7, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 13 March 7, 2017 Scribe: Hongyao Ma Today PTAS/FPTAS/FPRAS examples PTAS: knapsack FPTAS: knapsack FPRAS: DNF counting Approximation

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

Notes on Measure Theory and Markov Processes

Notes on Measure Theory and Markov Processes Notes on Measure Theory and Markov Processes Diego Daruich March 28, 2014 1 Preliminaries 1.1 Motivation The objective of these notes will be to develop tools from measure theory and probability to allow

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY

A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY APPLICATIONES MATHEMATICAE 23,2 (1995), pp. 151 167 G. SCHEITHAUER and J. TERNO (Dresden) A BRANCH&BOUND ALGORITHM FOR SOLVING ONE-DIMENSIONAL CUTTING STOCK PROBLEMS EXACTLY Abstract. Many numerical computations

More information

Advanced Algorithms 南京大学 尹一通

Advanced Algorithms 南京大学 尹一通 Advanced Algorithms 南京大学 尹一通 LP-based Algorithms LP rounding: Relax the integer program to LP; round the optimal LP solution to a nearby feasible integral solution. The primal-dual schema: Find a pair

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

CS 6783 (Applied Algorithms) Lecture 3

CS 6783 (Applied Algorithms) Lecture 3 CS 6783 (Applied Algorithms) Lecture 3 Antonina Kolokolova January 14, 2013 1 Representative problems: brief overview of the course In this lecture we will look at several problems which, although look

More information

Introduction. An Introduction to Algorithms and Data Structures

Introduction. An Introduction to Algorithms and Data Structures Introduction An Introduction to Algorithms and Data Structures Overview Aims This course is an introduction to the design, analysis and wide variety of algorithms (a topic often called Algorithmics ).

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

Operations Research Lecture 6: Integer Programming

Operations Research Lecture 6: Integer Programming Operations Research Lecture 6: Integer Programming Notes taken by Kaiquan Xu@Business School, Nanjing University May 12th 2016 1 Integer programming (IP) formulations The integer programming (IP) is the

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Shabbir Ahmed and Jiajin Yu Georgia Institute of Technology A Motivating Problem [n]: Set of candidate investment

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

DOWNLOAD PDF LINEAR OPTIMIZATION AND APPROXIMATION

DOWNLOAD PDF LINEAR OPTIMIZATION AND APPROXIMATION Chapter 1 : COBYLA - Constrained Optimization BY Linear Approximation â pyopt A linear optimization problem is the task of minimizing a linear real-valued function of finitely many variables subject to

More information

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality.

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality. CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Primal-Dual Algorithms Date: 10-17-07 14.1 Last Time We finished our discussion of randomized rounding and

More information

15.083J/6.859J Integer Optimization. Lecture 10: Solving Relaxations

15.083J/6.859J Integer Optimization. Lecture 10: Solving Relaxations 15.083J/6.859J Integer Optimization Lecture 10: Solving Relaxations 1 Outline The key geometric result behind the ellipsoid method Slide 1 The ellipsoid method for the feasibility problem The ellipsoid

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method CSC2411 - Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method Notes taken by Stefan Mathe April 28, 2007 Summary: Throughout the course, we have seen the importance

More information

arxiv: v1 [math.oc] 3 Jan 2019

arxiv: v1 [math.oc] 3 Jan 2019 The Product Knapsack Problem: Approximation and Complexity arxiv:1901.00695v1 [math.oc] 3 Jan 2019 Ulrich Pferschy a, Joachim Schauer a, Clemens Thielen b a Department of Statistics and Operations Research,

More information

Redistribution Mechanisms for Assignment of Heterogeneous Objects

Redistribution Mechanisms for Assignment of Heterogeneous Objects Redistribution Mechanisms for Assignment of Heterogeneous Objects Sujit Gujar Dept of Computer Science and Automation Indian Institute of Science Bangalore, India sujit@csa.iisc.ernet.in Y Narahari Dept

More information

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem

The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem EJOR 84 (1995) 562 571 The Modified Integer Round-Up Property of the One-Dimensional Cutting Stock Problem Guntram Scheithauer and Johannes Terno Institute of Numerical Mathematics, Dresden University

More information

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems

Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Branch-and-cut Approaches for Chance-constrained Formulations of Reliable Network Design Problems Yongjia Song James R. Luedtke August 9, 2012 Abstract We study solution approaches for the design of reliably

More information

Distributionally Robust Convex Optimization

Distributionally Robust Convex Optimization Submitted to Operations Research manuscript OPRE-2013-02-060 Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However,

More information