What I do. (and what I want to do) Berton Earnshaw. March 1, Department of Mathematics, University of Utah Salt Lake City, Utah 84112

Size: px
Start display at page:

Download "What I do. (and what I want to do) Berton Earnshaw. March 1, Department of Mathematics, University of Utah Salt Lake City, Utah 84112"

Transcription

1 What I do (and what I want to do) Berton Earnshaw Department of Mathematics, University of Utah Salt Lake City, Utah March 1, 2008

2 Current projects What I do AMPA receptor trafficking Synaptic plasticity

3 Current projects What I do AMPA receptor trafficking Synaptic plasticity What I want to do Just count things

4 Mathematical neuroscience at Utah Cognition Systems Cortical Areas Small Networks Neurons Dendrites Synapses

5 The synapse E.R. Kandel et al. Principles of Neural Science (2000) M.B. Kennedy Science (2000)

6 Synaptic transmission E.R. Kandel et al. Principles of Neural Science (2000)

7 Synaptic plasticity Collingridge et al., Nat. Rev. Neurosci. (2004)

8 AMPA receptor trafficking at a single spine Sheng & Kim, 2002 Surface AMPARs constitutively recycle with intracellular stores Laterally diffuse within postsynaptic membrane Crosslink to scaffolding proteins in PSD

9 Model of trafficking at a single spine β EXO END Q P h R Ω U DEL DEG PSD α(z-q) σ EXO k Spine Head AMPA receptor scaffolding protein δ C σ DEG Spine head: PSD unbound: PSD bound: Intracellular: dr dt = 1 (Ω[U R] kr h[r P]) A dp dt = h a [R P] α[z Q]P + βq + σexo C a dq = α[z Q]P βq dt dc dt = σexo C σ DEG C + kr + δ,

10 Trafficking during LTP/LTD number of receptors in PSD Total Bound GluR1/2 Free GluR1/2 Bound GluR2/3 Free GluR2/3 Scaffolding number of receptors in PSD t [min] t [min] O Connor et al. PNAS (2005) Dudek & Bear PNAS (1992)

11 Fast or slow recycling? Passafaro et al., 2001 Adesnik et al., 2005

12 AMPA receptor trafficking along a spiny dendrite 1. somatic exocytosis 2. lateral membrane diffusion 3. surface entry into spine 4. local exo/endocytosis Groc & Choquet, 2006 AMPARs trafficked in vesicles along microtubules? AMPARs diffuse from soma to synapse?

13 Model of trafficking along a spiny dendrite U t = D 2 U ρ(x)ω(x)[u(x,t) R(x,t)] x2 ρ(x) = spine density at x receptor scaffolding protein PSD EXO END J soma DEL DEG x = 0 spine x = L

14 Steady-state receptor concentrations number or concentration [µm -2 ] concentration in dendrite number in PSD number bound in PSD distance from soma [mm] Piccini & Malinow, 2002 GluR1/2 GluR2/3 1,000 identical spines distributed uniformly Two sources of AMPARs at soma local intracellular delivery

15 Recovery rate depends on distance from soma recovery [% baseline] µm 300 µm time [hr] Recovery exhibits many time-scales!

16 Now that we re done with that......let s count something!

17 A single strand of RNA Primary structure: sequence of bases (A,G,U,C) Secondary structure: pairing of bases Watson-Crick pairs: A-U, G-C (less often U-G) Tertiary structure: resulting 3D molecule Different tertiary structures different enzymatic properties

18 A single strand of RNA: An example Primary structure: AACCAUGUGGUACUUGAUGGCGAC

19 A single strand of RNA: An example Primary structure: Secondary structure: AACCAUGUGGUACUUGAUGGCGAC

20 A single strand of RNA: An example Primary structure: Secondary structure: AACCAUGUGGUACUUGAUGGCGAC Tertiary structure: extremely difficult to predict (probably NP-hard)

21 RNA secondary structure as k-noncrossing arch diagram k-noncrossing arch diagram of order n graph on vertex set {1,...,n} all vertices have degree 1 there do not exist k arches {i 1, j 1 },...,{i k, j k } such that i 1 < < i k < j 1 < < j k

22 RNA secondary structure as k-noncrossing arch diagram k-noncrossing arch diagram of order n graph on vertex set {1,...,n} all vertices have degree 1 there do not exist k arches {i 1, j 1 },...,{i k, j k } such that i 1 < < i k < j 1 < < j k

23 RNA secondary structure as k-noncrossing arch diagram k-noncrossing arch diagram of order n graph on vertex set {1,...,n} all vertices have degree 1 there do not exist k arches {i 1, j 1 },...,{i k, j k } such that i 1 < < i k < j 1 < < j k RNA secondary structure of n bases, pseudoknot type k 2 k-noncrossing (but not k 1) arch diagram of order n no 1-arches {i, i + 1} abstract secondary structure (no primary structure)

24 k-noncrossing arch diagrams and walks in Weyl chamber Walk in Z m of length n sequence of vectors x 0,x 1,...,x n Z m s.t. x i+1 x i = 0 or 1

25 k-noncrossing arch diagrams and walks in Weyl chamber Walk in Z m of length n sequence of vectors x 0,x 1,...,x n Z m s.t. x i+1 x i = 0 or 1 Weyl chamber subset of vectors x = (x 1,...,x m ) Z m s.t. x 1 > > x m > 0

26 k-noncrossing arch diagrams and walks in Weyl chamber Walk in Z m of length n sequence of vectors x 0,x 1,...,x n Z m s.t. x i+1 x i = 0 or 1 Weyl chamber subset of vectors x = (x 1,...,x m ) Z m s.t. x 1 > > x m > 0 Theorem (Chen et al. (2007) Trans. Am. Math. Soc. 359) There exists a bijection between k-noncrossing arch diagrams of order n and walks of length n in Z k 1 which start and end at a = (k 1,k 2,...,1) and remain in the Weyl chamber.

27 Idea of proof: The bijection (4,3,2,1),(5,3,2,1),(6,3,2,1),(6,4,2,1),(6,4,2,1),(6,4,2,1), (6,4,3,1),(6,4,3,1),(5,4,3,1),(5,4,3,2),(6,4,3,2),(6,4,3,1),.(6,4,3,1),(6,4,2,1),(6,4,2,1),(6,3,2,1),(5,3,2,1),(4,3,2,1)

28 Counting k-noncrossing RNA secondary structures Set A k (n,l) = # k-nc arch diagrams of order n, l isolated nodes B k (n,l) = # k-nc RNA structures of n bases, l isolated bases

29 Counting k-noncrossing RNA secondary structures Set A k (n,l) = # k-nc arch diagrams of order n, l isolated nodes B k (n,l) = # k-nc RNA structures of n bases, l isolated bases Theorem (Jin, Qin & Reidys, 2008) B k (n,l) = (n l)/2 b=0 ( 1) b ( n b b ) A k (n 2b,l) where A k (n,l) is given by the generating function n n=1 l=0 A k (n,l) xn n! = ex det[i i j (2x) I i+j (2x)] k 1 i,j=1 and I r (2x) = j=0 x2r+j /(j!(r + j)!) is hyperbolic Bessel function of 1st kind of order r.

30 The end Thank you!

Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite

Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite Paul C. Bressloff Berton A. Earnshaw Department of Mathematics, University of Utah Salt Lake City, Utah

More information

Multiple spatial scales of AMPA receptor trafficking

Multiple spatial scales of AMPA receptor trafficking Multiple spatial scales of From synapse to spiny dendrite Paul Bressloff Berton Earnshaw Department of Mathematics University of Utah March 26, 2009 Bressloff, Earnshaw (Utah) Multiple scales of AMPAR

More information

Diffusion-activation model of CaMKII translocation waves in dendrites

Diffusion-activation model of CaMKII translocation waves in dendrites Diffusion-activation model of CaMKII translocation waves in dendrites Paul Bressloff Berton Earnshaw Department of Mathematics University of Utah June 2, 2009 Bressloff, Earnshaw (Utah) Diffusion-activation

More information

Diffusion-activation model of CaMKII translocation waves in dendrites

Diffusion-activation model of CaMKII translocation waves in dendrites Diffusion-activation model of CaMKII translocation waves in dendrites Berton Earnshaw Department of Mathematics Michigan State University Paul Bressloff Mathematical Institute University of Oxford August

More information

Practical applications of TIRF microscopy

Practical applications of TIRF microscopy Practical applications of TIRF microscopy Evgeny Pryazhnikov University of Helsinki, Neuroscience Center Functional and Morphological Plasticity of the Tripartite Synapse Vesicular release ATP Perisynaptic

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses

Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses Laurent Cognet 1, Laurent Groc 2, Brahim Lounis 1 and Daniel Choquet

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

Crossings and Nestings in Tangled Diagrams

Crossings and Nestings in Tangled Diagrams Crossings and Nestings in Tangled Diagrams William Y. C. Chen 1, Jing Qin 2 and Christian M. Reidys 3 Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P. R. China 1 chen@nankai.edu.cn,

More information

R7.3 Receptor Kinetics

R7.3 Receptor Kinetics Chapter 7 9/30/04 R7.3 Receptor Kinetics Professional Reference Shelf Just as enzymes are fundamental to life, so is the living cell s ability to receive and process signals from beyond the cell membrane.

More information

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2

Cellular Neuroanatomy II The Prototypical Neuron: Neurites. Reading: BCP Chapter 2 Cellular Neuroanatomy II The Prototypical Neuron: Neurites Reading: BCP Chapter 2 Major Internal Features of a Neuron The neuron is the functional unit of the nervous system. A typical neuron has a soma

More information

Quantum stochasticity and neuronal computations

Quantum stochasticity and neuronal computations Institute for Clinical Neuroanatomy Dr. Senckenbergische Anatomie J.-W. Goethe Universität, Frankfurt am Main Quantum stochasticity and neuronal computations Peter Jedlička, MD Definition A stochastic

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

The neuron as a secretory cell

The neuron as a secretory cell The neuron as a secretory cell EXOCYTOSIS ENDOCYTOSIS The secretory pathway. Transport and sorting of proteins in the secretory pathway occur as they pass through the Golgi complex before reaching the

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

Combinatorial approaches to RNA folding Part I: Basics

Combinatorial approaches to RNA folding Part I: Basics Combinatorial approaches to RNA folding Part I: Basics Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2015 M. Macauley (Clemson)

More information

Antonella Piccini and Roberto Malinow Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

Antonella Piccini and Roberto Malinow Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 The Journal of Neuroscience, July 1, 2002, 22(13):5387 5392 Critical Postsynaptic Density 95/Disc Large/Zonula Occludens-1 Interactions by Glutamate Receptor 1 (GluR1) and GluR2 Required at Different Subcellular

More information

Chapter 2: Neurons and Glia

Chapter 2: Neurons and Glia Chapter 2: Neurons and Glia The Prototypical Neuron The Soma Cytosol: watery fluid inside the cell Organelles: membrane-enclosed structures within the soma Cytoplasm: contents within a cell membrane, e.g.,

More information

Regulation of neuronal PKA signaling through AKAP targeting dynamics

Regulation of neuronal PKA signaling through AKAP targeting dynamics European Journal of Cell Biology 85 (2006) 627 633 REVIEW Regulation of neuronal PKA signaling through AKAP targeting dynamics Mark L. Dell Acqua a,b,, Karen E. Smith a, Jessica A. Gorski a, Eric A. Horne

More information

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror Diffusion CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective) Continuum view of diffusion

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni

Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni Indian Institute of Science Education and Research Simple vs Complex Synapses are immensely complex - a large number

More information

Regulation of Signal Strength by Presynaptic Mechanisms

Regulation of Signal Strength by Presynaptic Mechanisms Regulation of Signal Strength by Presynaptic Mechanisms 9.013 / 7.68: Core Class Sheng Lectures Presynaptic Mechanisms Nathan Wilson Background / Theory Background / Theory The Presynaptic Specialization

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework

Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework Péter Érdi perdi@kzoo.edu Henry R. Luce Professor Center for Complex Systems Studies Kalamazoo College http://people.kzoo.edu/

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Dominic Philip Tolle

Dominic Philip Tolle Investigating the Consequences of AMPA Receptor Diffusion on Long-term Potentiation using Single-Particle Modelling Approaches Dominic Philip Tolle Hughes Hall College A dissertation submitted to the University

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Cells. Steven McLoon Department of Neuroscience University of Minnesota

Cells. Steven McLoon Department of Neuroscience University of Minnesota Cells Steven McLoon Department of Neuroscience University of Minnesota 1 Microscopy Methods of histology: Treat the tissue with a preservative (e.g. formaldehyde). Dissect the region of interest. Embed

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror Diffusion and cellular-level simulation CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective)

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Integration of synaptic inputs in dendritic trees

Integration of synaptic inputs in dendritic trees Integration of synaptic inputs in dendritic trees Theoretical Neuroscience Fabrizio Gabbiani Division of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX 77030 e-mail:gabbiani@bcm.tmc.edu

More information

Action Potentials and Synaptic Transmission Physics 171/271

Action Potentials and Synaptic Transmission Physics 171/271 Action Potentials and Synaptic Transmission Physics 171/271 Flavio Fröhlich (flavio@salk.edu) September 27, 2006 In this section, we consider two important aspects concerning the communication between

More information

Neuroscience 201A Exam Key, October 7, 2014

Neuroscience 201A Exam Key, October 7, 2014 Neuroscience 201A Exam Key, October 7, 2014 Question #1 7.5 pts Consider a spherical neuron with a diameter of 20 µm and a resting potential of -70 mv. If the net negativity on the inside of the cell (all

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Physiology 2 nd year. Neuroscience Optional Lecture

Physiology 2 nd year. Neuroscience Optional Lecture Academic year 2018/2019 Physiology 2 nd year Semester 1 Curricula Nervous system physiology Blood physiology Acid-base equilibrium Bibliography: Boron & Boulpaep Medical Physiology, 3 rd edition Physiology

More information

Introduction to CNS neurobiology: focus on retina

Introduction to CNS neurobiology: focus on retina Introduction to CNS neurobiology: focus on retina September 27, 2017 The retina is part of the CNS Calloway et al., 2009) 1 Retinal circuits: neurons and synapses Rods and Cones Bipolar cells Horizontal

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

How do synapses transform inputs?

How do synapses transform inputs? Neurons to networks How do synapses transform inputs? Excitatory synapse Input spike! Neurotransmitter release binds to/opens Na channels Change in synaptic conductance! Na+ influx E.g. AMA synapse! Depolarization

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Time-Skew Hebb Rule in a Nonisopotential Neuron

Time-Skew Hebb Rule in a Nonisopotential Neuron Time-Skew Hebb Rule in a Nonisopotential Neuron Barak A. Pearlmutter To appear (1995) in Neural Computation, 7(4) 76 712 Abstract In an isopotential neuron with rapid response, it has been shown that the

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

/639 Final Exam Solutions, 2007

/639 Final Exam Solutions, 2007 580.439/639 Final Exam Solutions, 2007 Problem Part a) Larger conductance in the postsynaptic receptor array; action potentials (usually Ca ++ ) propagating in the orward direction in the dendrites; ampliication

More information

Structure-Based Comparison of Biomolecules

Structure-Based Comparison of Biomolecules Structure-Based Comparison of Biomolecules Benedikt Christoph Wolters Seminar Bioinformatics Algorithms RWTH AACHEN 07/17/2015 Outline 1 Introduction and Motivation Protein Structure Hierarchy Protein

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 12, W.W. Lytton, Hodgkin-Huxley Model) 9.1 Passive and active membrane models In the previous lecture we have considered a passive

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #4 Wednesday, October 4, 2006 7. CHEMICAL SYNAPSES AND GAP JUNCTIONS We will look at: Chemical synapses in the nervous system Gap junctions in

More information

The Dynamic Synapse. Neuron Perspective

The Dynamic Synapse. Neuron Perspective The Dynamic Synapse Daniel Choquet 1,2, * and Antoine Triller 3,4,5,6, * 1 Interdisciplinary Institute for Neurosciences, CNRS, UMR 5297, 146 rue Léo Saignat, 33077 Bordeaux, France 2 IINS, University

More information

Cable theory of protein receptor trafficking in a dendritic tree

Cable theory of protein receptor trafficking in a dendritic tree PHYSICAL REVIEW E 79, 4194 29 Cable theor of protein receptor trafficking in a dendritic tree Paul C. Bressloff Department of Mathematics, Universit of Utah, Salt Lake Cit, Utah 84112, USA and Mathematical

More information

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Neurons. The Molecular Basis of their Electrical Excitability

Neurons. The Molecular Basis of their Electrical Excitability Neurons The Molecular Basis of their Electrical Excitability Viva La Complexity! Consider, The human brain contains >10 11 neurons! Each neuron makes 10 3 (average) synaptic contacts on up to 10 3 other

More information

Cells of the nervous system

Cells of the nervous system Cells of the nervous system There are approximately 100 billion neurons in the human brain There are about 100 times as many glial cells in the human brain Similar origin, different functions Other cells

More information

Deconstructing Actual Neurons

Deconstructing Actual Neurons 1 Deconstructing Actual Neurons Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference: The many ionic

More information

Identification of TARP Phosphorylation Sites and Their Significance in the Brain

Identification of TARP Phosphorylation Sites and Their Significance in the Brain Identification of TARP Phosphorylation Sites and Their Significance in the Brain Susumu Tomita @ SHM BE17 Department of Cellular and Molecular Physiology NIDA Neuroproteomics Center, December 13, 2008

More information

Nerves and their impulses. Biology 12 C-11

Nerves and their impulses. Biology 12 C-11 Nerves and their impulses Biology 12 C-11 Nerves and their impulses Nerves are designed to transmit electrical impulses from the dendrites, over the cell body and through the axon. The impulse will then

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Passive Membrane Properties

Passive Membrane Properties Passive Membrane Properties Communicating through a leaky garden hose... Topics I Introduction & Electrochemical Gradients Passive Membrane Properties Action Potentials Voltage-Gated Ion Channels Topics

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Philipp Koehn 4 April 205 Linear Models We used before weighted linear combination of feature values h j and weights λ j score(λ, d i ) = j λ j h j (d i ) Such models can

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

Invariant Manifold Reductions for Markovian Ion Channel Dynamics

Invariant Manifold Reductions for Markovian Ion Channel Dynamics Invariant Manifold Reductions for Markovian Ion Channel Dynamics James P. Keener Department of Mathematics, University of Utah, Salt Lake City, UT 84112 June 4, 2008 Abstract We show that many Markov models

More information

Neuronal Activity and CaMKII Regulate Kinesin- Mediated Transport of Synaptic AMPARs

Neuronal Activity and CaMKII Regulate Kinesin- Mediated Transport of Synaptic AMPARs Article Neuronal Activity and CaMKII Regulate Kinesin- Mediated Transport of Synaptic AMPARs Highlights d AMPAR transport is regulated by synaptic transmission, VGCCs and CaMKII Authors Frédéric J. Hoerndli,

More information

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time.

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time. Neurite initiation. Neuronal maturation initiation f-actin polarization and maturation tubulin stage 1: "spherical" neuron stage 2: neurons extend several neurites stage 3: one neurite accelerates its

More information

Supplementary Information

Supplementary Information Urakubo et al. 1 Requirement of An Allosteric Kinetics of NMDA Receptors for Spike-Timing-Dependent Plasticity Hidetoshi Urakubo, Minoru Honda, Robert C Froemke, and Shinya Kuroda Journal of Neuroscience

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

A mechanism of nervous system functions capable to have evolved: by generating an inducible variant of inter-cellular fusion

A mechanism of nervous system functions capable to have evolved: by generating an inducible variant of inter-cellular fusion A mechanism of nervous system functions capable to have evolved: by generating an inducible variant of inter-cellular fusion Kunjumon I. Vadakkan Neurosearch Center, 76 Henry Street, Toronto, ON M5T1X2

More information

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions

A. Visceral and somatic divisions. B. Sympathetic and parasympathetic divisions. C. Central and peripheral divisions Ch 8: Neurons: Cellular and Network Properties, Part 1 Review of the Nervous System Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve cell

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Propagation& Integration: Passive electrical properties

Propagation& Integration: Passive electrical properties Fundamentals of Neuroscience (NSCS 730, Spring 2010) Instructor: Art Riegel; email: Riegel@musc.edu; Room EL 113; time: 9 11 am Office: 416C BSB (792.5444) Propagation& Integration: Passive electrical

More information

Computational Neuroscience

Computational Neuroscience Computational Neuroscience Zoltán Somogyvári senior research fellow Wigner Research Institute for Physics, Theoretical Department Supporting materials: http://www.kfki.hu/~soma/bscs/ BSCS 2012 Lengyel

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework

Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework Dendritic cable with active spines: a modelling study in the spike-diffuse-spike framework Yulia Timofeeva a, Gabriel Lord a and Stephen Coombes b a Department of Mathematics, Heriot-Watt University, Edinburgh,

More information

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins 13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins Molecular sorting: specific budding, vesicular transport, fusion 1. Why is this important? A. Form and

More information

Signal, donnée, information dans les circuits de nos cerveaux

Signal, donnée, information dans les circuits de nos cerveaux NeuroSTIC Brest 5 octobre 2017 Signal, donnée, information dans les circuits de nos cerveaux Claude Berrou Signal, data, information: in the field of telecommunication, everything is clear It is much less

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

Analysis of Microscopic Parameters of Single-Particle Trajectories in Neurons

Analysis of Microscopic Parameters of Single-Particle Trajectories in Neurons 1368 Biophysical Journal Volume 99 September 2010 1368 1376 Analysis of Microscopic Parameters of Single-Particle Trajectories in Neurons V. M. Burlakov, R. Taylor, J. Koerner, and N. Emptage * Department

More information

Identify the three factors that are required for there to be competition

Identify the three factors that are required for there to be competition Semester Review Identify the cause of molecular movement Identify the three factors that are required for there to be competition Passive transport mechanisms always move molecules in what direction along

More information

Synapse Model. Neurotransmitter is released into cleft between axonal button and dendritic spine

Synapse Model. Neurotransmitter is released into cleft between axonal button and dendritic spine Synapse Model Neurotransmitter is released into cleft between axonal button and dendritic spine Binding and unbinding are modeled by first-order kinetics Concentration must exceed receptor affinity 2 MorphSynapse.nb

More information

Lecture 1: Random walk

Lecture 1: Random walk Lecture : Random walk Paul C Bressloff (Spring 209). D random walk q p r- r r+ Figure 2: A random walk on a D lattice. Consider a particle that hops at discrete times between neighboring sites on a one

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Philipp Koehn 3 October 207 Linear Models We used before weighted linear combination of feature values h j and weights λ j score(λ, d i ) = j λ j h j (d i ) Such models

More information