Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework

Size: px
Start display at page:

Download "Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework"

Transcription

1 Connecting Epilepsy and Alzheimer s Disease: A Computational Modeling Framework Péter Érdi perdi@kzoo.edu Henry R. Luce Professor Center for Complex Systems Studies Kalamazoo College perdi/ and Institue for Particle and Nuclear Physics, Wigner Research Centre, Hungarian Academy of Sciences, Budapest

2 Collaborators Takumi Matsuzawa, Kalamazoo College, USA Siyuan Zhang, Kalamazoo College, USA, László Zalányi, Wigner Res. Cent. for Physics, Budapest, Hungary, Tamás Kiss, Wigner Res. Cent for Physics, Budapest, Hungary 2

3 Content 1. Alzheimer s Disease and epilepsy: the big picture 2. Aβ effects on Synaptic Plasticity: Brief Summary of the Experimental Background 3. A Phenomenological Model: the modified calcium control hypothesis 4. Kinetic modeling of normal and Aβ modified synaptic plasticity 3

4 Alzheimer s Disease and epilepsy: the big picture cortico-hippocampal system Aβ synaptic plasticity network dysfunction skeleton network pre- and postsynaptic positive feedback memory deficit (mouse) theta-gamma rhythm generator Concentration-dependent plasticity memory deficit (human) 4

5 Synaptic plasticity: normal and pathological Experimental background Phenomenological model Kinetic model

6 Alzheimer s Disease and epilepsy: the big picture cortico-hippocampal system Aβ synaptic plasticity network dysfunction Hypothetical causal chain to explain the multiple and multilevel effects of Aβ: from altered synaptic plasticity via network dysfunction to cognitive deficit. skeleton network pre- and postsynaptic positive feedback Palop JJ, Mucke L.: Amyloidbeta-induced neuronal dysfunction in Alzheimer s disease: from synapses toward neural networks. Nat Neurosci Jul;13(7): memory deficit (mouse) (A skeleton network of the hippcampal system generates gamma and theta rhythms.) theta-gamma rhythm generator Concentration-dependent plasticity memory deficit (human) Aβ concentration-dependent altered synaptic plasticity implies network dysfunction including epileptiform activity This activity contributes to cognitive deficit by positive feedback cellular mechanisms. 6

7 Aβ effects on Synaptic Plasticity: Brief Summary of the Experimental Background 8 Summary of Aβ effects on synaptic plasticity: (a)aβ induces synaptic facilitation and occlusion of LTD. (b) Aβ induces mglur- and NMDAR-dependent LTD facilitation. (c)aβ induces LTP impairments, which is regulated by LTD pathways. Collected by Palop JJ, Mucke L.: Amyloid-beta-induced neuronal dysfunction in Alzheimer s disease: from synapses toward neural networks. Nat Neurosci Jul;13(7):

8 A Phenomenological Model: the modified calcium control hypothesis Shouval, H. Z., Bear, M. F., and Cooper, L. N. (2002). A unified theory of NMDA receptor-dependent bidirectional synaptic plasticity. dw i (t) dt = η([ca 2+ (t)]) ( Ω([Ca 2+ (t)]) λw i (t) ). (1) W i : the synaptic weight of synapse i, the value of the function Ω depends on calcium concentration, and determines both sign and magnitude of the change of synaptic strength η is the learning rate, and also depends (typically monotonously increasingly) on calcium concentration, λ is a decay constant. To complete the model we need an equation which prescribes calcium dynamics. d [ Ca 2+ (t) ] dt = I NMDA (t) 1 τ Ca [ Ca 2+ (t) ], (2) A simple assumption is that the source of calcium depends on the NMDA current, as Eqn. 3 defines: [ I NMDA = P 0 G NMDA I f θ (t) e t τ f ] + I s θ (t) e t τs H (V ) (3) where I f and Is are the relative magnitude of the slow and fast component of the NMDAR current. I f + Is = 1 is assumed. H(V ) is the general form of the voltage dependence. θ = 0 if t < 0 and θ = 1 if t 0. P 0 is the fraction of NMDARs in the closed state, and set to be

9 The whole lecture is focused about Ω function! How to incorporate Aβ effects into the phenonemenological model? How to justify the form of the Ω by kinetic modeling? How to estimate the parameters of the kinetic model for the Aβ-induced pathological case? How the kinetic model with the altered parameters reflects the pathological synaptic plasticity? 9

10 A Phenomenological Model: the modified calcium control hypothesis ([ ([ Ω Ca 2+ ]) (t) = eβ 2 Ca 2+ ) (t) ] α 2 ([ 1 + e β 2 Ca 2+ ] ) γ (t) α 2 e β 1 ([Ca 2+ ) (t) ] α 1 ([ Ca 2+ ) + γ (4) (t) ] α e β 1 The shape of the Ω function determines when LTP or LTD occurs (Shouval). The Ω (blue) and Ωnew (black and red) functions are plotted against the intracellular calcium concentration. Ωnew with a pathological parameter set decreases the LTD threshold and impairs LTP by weakening the LTP strength. Figure 1: 10

11 A Phenomenological Model: the modified calcium control hypothesis A new Ω function was constructed to incorporate the effect of Aβ: the onset of LTP as a sigmoid function with threshold set at α 3 Ω LTP and Ω LTD consists of two sigmoid functions capturing the onset and the offset of the LTD process. Here the threshold parameters are functions of Aβ concentration. These two processes supposed to be equal in strength providing the possibility to cancel each other, which is one possible way to eliminate LTP. The two processes are balanced but not weighted equally, a synapse can be potetiated three times stronger than its basal level but can only be weakened to zero. To achieve this weighting in the normalized synaptic process model a sigmoid function is composed with the two competing processes with the ability to set the basal synaptic strength level arbitrarily. Ωnew([Ca 2+ (t)], Aβ) = eβ(k 1 Ω LTP k 2 Ω LTD ) ɛ 1 + e β(k 1 Ω LTP k 2 Ω LTD ) ɛ Ω LTP ([Ca 2+ (t)]) = eβ 3 ([Ca2+ (t)] α 3 ) Ω LTD ([Ca 2+ (t)], Aβ) = 1 + e β 3 ([Ca2+ (t)] α 3 ) eβ 1 ([Ca2+ (t)] α 1 (Aβ)) 1 + e β 1 ([Ca2+ (t)] α 1 (Aβ)) e β 2 ([Ca 2+ (t)] α 2 (Aβ)) 1 + e β 2 ([Ca2+ (t)] α 2 (Aβ)) (5) 11

12 A Phenomenological Model: the modified calcium control hypothesis. Ωnew([Ca 2+ (t)], Aβ) = eβ(k 1 Ω LTP k 2 Ω LTD ) ɛ 1 + e β(k 1 Ω LTP k 2 Ω LTD ) ɛ Ω LTP ([Ca 2+ (t)]) = eβ 3 ([Ca2+ (t)] α 3 ) 1 + e β 3 ([Ca2+ (t)] α 3 ) (6) Ω LTD ([Ca 2+ (t)], Aβ) = eβ 1 ([Ca2+ (t)] α 1 (Aβ)) 1 + e β 1 ([Ca2+ (t)] α 1 (Aβ)) e β 2 ([Ca 2+ (t)] α 2 (Aβ)) 1 + e β 2 ([Ca2+ (t)] α 2 (Aβ)) The constructed function Ωnew alters synaptic plasticity. Ω in Eqn. 4 with Ωnew in Eqn. 6. LT P and LT D in Eqn. 6 are interpreted as activity of each process. α 1,2,3 characterize calcium concentration when LTP and LTD processes are active. LTD process is active when the intracellular calcium concentration is between α 1 and α 2. When the calcium concentration is higher than α 3, LTP process is active. k 1,2 is activity coefficient for LTP and LTD respectively. If LTD process were blocked entirely, k 2 would become zero. β and β 1,2,3 determine the steepness of the sigmoid functions. ɛ is related to the initial synaptic strength. 12

13 A Phenomenological Model: the modified calcium control hypothesis. Simulation results Figure 2: Subthreshold LTD induction produces no change in the weight when Ω new with a normal parameter set replaced Ω in Eqn. 1; however, it induced LTD for Ω new with a pathological parameter set. 13

14 A Phenomenological Model: the modified calcium control hypothesis. Simulation results Figure 3: LTD induction protocol properly induced LTD for Ω new with a normal and pathological parameter set. 14

15 A Phenomenological Model: the modified calcium control hypothesis. Simulation results Figure 4: LTD induction protocol properly induced LTD for Ω new with a normal and pathological parameter set. Block of the LTD process (k=0.01) properly prevented the LTD induction. 15

16 A Phenomenological Model: the modified calcium control hypothesis. Simulation results Figure 5: LTP was induced for Ω new with a normal and pathological parameter set. LTP was observed for the normal, and the LTP was impaired for the pathological case. The LTP was once again observed when the LTD process was blocked. 16

17 Kinetic modeling of normal and Aβ modified synaptic plasticity Figure 6: Kinetic model of phosphorylation: D Alcantara P, Schiffmann S and Swillens S (2003): Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways European Journal of Neuroscience

18 Parameter estimation Figure 7: Aβ impairs the LTP and enhances LTD while it affects only LTD-related pathways. There are essentially 9 kinetic parameters to solve for a steady-state solution of the Model III: K d, n H, k 1 /k 2, k 3 /k 4, r 1 /r 2, r 3 /r 4, n 2 /n 1, d 1 /d 2, and p 1 /p 2. Out of these 9 parameters, r 1 /r 2, r 3 /r 4, n 2 /n 1, d 1 /d 2, and p 1 /p 2 are relevant parameters for dephosphorylation. To ease computation, we have only focused on r 3 /r 4, n 2 /n 1, and p 1 /p 2 to implement the effect of Aβ Results: n2/n1= (Normal: 0.006), p1/p2= (Normal: 0.001), r3/r4= (Normal: 100) 18

19 Figure 8: Time-dependent receptor activity responses for different calcium signals 19

20 Figure 9: Time responses of CaMKII, phosphatase, and AMPA-R activities to LTD induction protocol, expressed in percent of the respective steady state activities obtained at [Ca2+]= microM. (Stimulation: [Ca2+]=0.28microM between t=0-50s) 20

21 Figure 10: Time responses of CaMKII, phosphatase, and AMPA-R activities to subthreshold LTD induction protocol, expressedâ in percent of the respective steady state activities obtained at [Ca 2 +] = microM. (Stimulation:[Ca2+] = 0.28microM between t = 0 5s) 21

22 Figure 11: Time responses of CaMKII, phosphatase, and AMPA-R activities to LTP induction protocol, expressedâ in percent of the respective steady state activities obtained at [Ca2+] = microM. (Stimulation: [Ca2+]=1.0microM between t=0-5s) 22

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity

A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence over PP1 activity 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A local sensitivity analysis of Ca 2+ -calmodulin binding and its influence

More information

Computational models of neuronal biochemistry

Computational models of neuronal biochemistry Computational models of neuronal biochemistry Melanie I Stefan Centre for Discovery Brain Sciences, University of Edinburgh http://stefanlab.net/ melanie.stefan@ed.ac.uk @MelanieIStefan 25 August 2017

More information

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity:

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity: Synaptic Plasticity Introduction Dayan and Abbott (2001) Chapter 8 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Activity-dependent synaptic plasticity: underlies learning and memory, and plays

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics Synaptic dynamics John D. Murray A dynamical model for synaptic gating variables is presented. We use this to study the saturation of synaptic gating at high firing rate. Shunting inhibition and the voltage

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

How do synapses transform inputs?

How do synapses transform inputs? Neurons to networks How do synapses transform inputs? Excitatory synapse Input spike! Neurotransmitter release binds to/opens Na channels Change in synaptic conductance! Na+ influx E.g. AMA synapse! Depolarization

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

Dendritic computation

Dendritic computation Dendritic computation Dendrites as computational elements: Passive contributions to computation Active contributions to computation Examples Geometry matters: the isopotential cell Injecting current I

More information

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey Outline NIP: Hebbian Learning Neural Information Processing Amos Storkey 1/36 Overview 2/36 Types of Learning Types of learning, learning strategies Neurophysiology, LTP/LTD Basic Hebb rule, covariance

More information

Signaling to the Nucleus by an L-type Calcium Channel- Calmodulin Complex Through the MAP Kinase Pathway

Signaling to the Nucleus by an L-type Calcium Channel- Calmodulin Complex Through the MAP Kinase Pathway Signaling to the Nucleus by an L-type Calcium Channel- Calmodulin Complex Through the MAP Kinase Pathway Ricardo E. Dolmetsch, Urvi Pajvani, Katherine Fife, James M. Spotts, Michael E. Greenberg Science

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

What I do. (and what I want to do) Berton Earnshaw. March 1, Department of Mathematics, University of Utah Salt Lake City, Utah 84112

What I do. (and what I want to do) Berton Earnshaw. March 1, Department of Mathematics, University of Utah Salt Lake City, Utah 84112 What I do (and what I want to do) Berton Earnshaw Department of Mathematics, University of Utah Salt Lake City, Utah 84112 March 1, 2008 Current projects What I do AMPA receptor trafficking Synaptic plasticity

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

Biomedical Instrumentation

Biomedical Instrumentation ELEC ENG 4BD4: Biomedical Instrumentation Lecture 5 Bioelectricity 1. INTRODUCTION TO BIOELECTRICITY AND EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback. Carter L. Johnson

Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback. Carter L. Johnson Phase Response Properties and Phase-Locking in Neural Systems with Delayed Negative-Feedback Carter L. Johnson Faculty Mentor: Professor Timothy J. Lewis University of California, Davis Abstract Oscillatory

More information

Diffusion-activation model of CaMKII translocation waves in dendrites

Diffusion-activation model of CaMKII translocation waves in dendrites Diffusion-activation model of CaMKII translocation waves in dendrites Paul Bressloff Berton Earnshaw Department of Mathematics University of Utah June 2, 2009 Bressloff, Earnshaw (Utah) Diffusion-activation

More information

Soluble Aβ oligomers-induced synaptopathy: c-jun N-terminal kinase's role

Soluble Aβ oligomers-induced synaptopathy: c-jun N-terminal kinase's role Journal of Molecular Cell Biology Advance Access published April 18, 2013 1 Soluble Aβ oligomers-induced synaptopathy: c-jun N-terminal kinase's role Alessandra Sclip 1, Andrea Arnaboldi 1, Isabella Colombo

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity The Journal of Neuroscience, September 20, 2006 26(38):9673 9682 9673 Behavioral/Systems/Cognitive Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity Jean-Pascal Pfister and Wulfram Gerstner

More information

A Biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors

A Biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors Biophysical model of bidirectional synaptic plasticity: dependence on MP and NMD receptors Gastone C. Castellani 1, Elizabeth M. Quinlan 2, Leon N Cooper 3,4,5 and Harel Z. Shouval 3, 1 Physics Department,

More information

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

More information

Investigations of long-term synaptic plasticity have revealed

Investigations of long-term synaptic plasticity have revealed Dynamical model of long-term synaptic plasticity Henry D. I. Abarbanel*, R. Huerta, and M. I. Rabinovich *Marine Physical Laboratory, Scripps Institution of Oceanography, Department of Physics, and Institute

More information

Design and Implementation of BCM Rule Based on Spike-Timing Dependent Plasticity

Design and Implementation of BCM Rule Based on Spike-Timing Dependent Plasticity Design and Implementation of BCM Rule Based on Spike-Timing Dependent Plasticity Mostafa Rahimi Azghadi, Said Al-Sarawi, Nicolangelo Iannella, and Derek Abbott Centre for Biomedical Engineering, School

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1 Multiplicative scaling of the granule cell input-output relation is not dependent on input rate. Input-output relations with short-term depression (STD) from Fig. 1d after normalizing by the

More information

Regulation of Signal Strength by Presynaptic Mechanisms

Regulation of Signal Strength by Presynaptic Mechanisms Regulation of Signal Strength by Presynaptic Mechanisms 9.013 / 7.68: Core Class Sheng Lectures Presynaptic Mechanisms Nathan Wilson Background / Theory Background / Theory The Presynaptic Specialization

More information

Hebb rule book: 'The Organization of Behavior' Theory about the neural bases of learning

Hebb rule book: 'The Organization of Behavior' Theory about the neural bases of learning PCA by neurons Hebb rule 1949 book: 'The Organization of Behavior' Theory about the neural bases of learning Learning takes place in synapses. Synapses get modified, they get stronger when the pre- and

More information

Plasticity and Learning

Plasticity and Learning Chapter 8 Plasticity and Learning 8.1 Introduction Activity-dependent synaptic plasticity is widely believed to be the basic phenomenon underlying learning and memory, and it is also thought to play a

More information

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity

Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity Jorge F. Mejias 1,2 and Joaquín J. Torres 2 1 Department of Physics and Center for

More information

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References 24th March 2011 Update Hierarchical Model Rao and Ballard (1999) presented a hierarchical model of visual cortex to show how classical and extra-classical Receptive Field (RF) effects could be explained

More information

Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni

Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni Sophisticated Synapses: Modeling Synaptic Modulation by Astrocytes Suhita Nadkarni Indian Institute of Science Education and Research Simple vs Complex Synapses are immensely complex - a large number

More information

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Novel LSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Mostafa Rahimi Azghadi, Omid Kavehei, Said Al-Sarawi, Nicolangelo Iannella, and Derek Abbott Centre for Biomedical Engineering,

More information

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening

Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening APPLICATION NOTE ArrayScan High Content Platform Monitoring neurite morphology and synapse formation in primary neurons for neurotoxicity assessments and drug screening Suk J. Hong and Richik N. Ghosh

More information

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Dimitra Despoina Pagania 1, Adam Adamopoulos 1,2 and Spiridon D. Likothanassis 1 1 Pattern Recognition Laboratory,

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

EXAMINING HETEROGENEOUS WEIGHT PERTURBATIONS IN NEURAL NETWORKS WITH SPIKE-TIMING-DEPENDENT PLASTICITY

EXAMINING HETEROGENEOUS WEIGHT PERTURBATIONS IN NEURAL NETWORKS WITH SPIKE-TIMING-DEPENDENT PLASTICITY EXAMINING HETEROGENEOUS WEIGHT PERTURBATIONS IN NEURAL NETWORKS WITH SPIKE-TIMING-DEPENDENT PLASTICITY by Colin Bredenberg University of Pittsburgh, 2017 Submitted to the Graduate Faculty of the Department

More information

Diffusion-activation model of CaMKII translocation waves in dendrites

Diffusion-activation model of CaMKII translocation waves in dendrites Diffusion-activation model of CaMKII translocation waves in dendrites Berton Earnshaw Department of Mathematics Michigan State University Paul Bressloff Mathematical Institute University of Oxford August

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations

Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations Biol Cybern (27) 97:81 97 DOI 1.17/s422-7-155-3 ORIGINAL PAPER Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations Quan Zou Alain Destexhe Received:

More information

Identification of TARP Phosphorylation Sites and Their Significance in the Brain

Identification of TARP Phosphorylation Sites and Their Significance in the Brain Identification of TARP Phosphorylation Sites and Their Significance in the Brain Susumu Tomita @ SHM BE17 Department of Cellular and Molecular Physiology NIDA Neuroproteomics Center, December 13, 2008

More information

Quantum stochasticity and neuronal computations

Quantum stochasticity and neuronal computations Institute for Clinical Neuroanatomy Dr. Senckenbergische Anatomie J.-W. Goethe Universität, Frankfurt am Main Quantum stochasticity and neuronal computations Peter Jedlička, MD Definition A stochastic

More information

STDP Learning of Image Patches with Convolutional Spiking Neural Networks

STDP Learning of Image Patches with Convolutional Spiking Neural Networks STDP Learning of Image Patches with Convolutional Spiking Neural Networks Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma College of Information and Computer Sciences University of Massachusetts Amherst

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

A Mass Model of Interconnected Thalamic Populations including both Tonic and Burst Firing Mechanisms

A Mass Model of Interconnected Thalamic Populations including both Tonic and Burst Firing Mechanisms International Journal of Bioelectromagnetism Vol. 12, No. 1, pp. 26-31, 2010 www.ijbem.org A Mass Model of Interconnected Thalamic Populations including both Tonic and Burst Firing Mechanisms Pirini M.

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Problem Set # 3

Problem Set # 3 20.320 Problem Set # 3 October 1 st, 2010 Due on October 8 th, 2010 at 11:59am. No extensions, no electronic submissions. General Instructions: 1. You are expected to state all your assumptions and provide

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

arxiv: v1 [cs.ne] 30 Mar 2013

arxiv: v1 [cs.ne] 30 Mar 2013 A Neuromorphic VLSI Design for Spike Timing and Rate Based Synaptic Plasticity Mostafa Rahimi Azghadi a,, Said Al-Sarawi a,, Derek Abbott a, Nicolangelo Iannella a, a School of Electrical and Electronic

More information

An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease

An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease Maria Carla Tesi (University of Bologna) Connections for Women: Discrete Lattice Models in Mathematics,

More information

Data analysis methods in the neuroscience Zoltán Somogyvári

Data analysis methods in the neuroscience Zoltán Somogyvári Data analysis methods in the neuroscience Zoltán Somogyvári Wigner Research Centre for Physics of the Hungarian Academy of Sciences Methods applicable to one time series The Fourier transformation The

More information

Integration of synaptic inputs in dendritic trees

Integration of synaptic inputs in dendritic trees Integration of synaptic inputs in dendritic trees Theoretical Neuroscience Fabrizio Gabbiani Division of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX 77030 e-mail:gabbiani@bcm.tmc.edu

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Computational Neuroscience. Structure Dynamics Implementation Algorithm Computation - Function

Computational Neuroscience. Structure Dynamics Implementation Algorithm Computation - Function Computational Neuroscience Structure Dynamics Implementation Algorithm Computation - Function Learning at psychological level Classical conditioning Hebb's rule When an axon of cell A is near enough to

More information

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Dimitra-Despoina Pagania,*, Adam Adamopoulos,2, and Spiridon D. Likothanassis Pattern Recognition Laboratory,

More information

Introduction to CNS neurobiology: focus on retina

Introduction to CNS neurobiology: focus on retina Introduction to CNS neurobiology: focus on retina September 27, 2017 The retina is part of the CNS Calloway et al., 2009) 1 Retinal circuits: neurons and synapses Rods and Cones Bipolar cells Horizontal

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Simple models of neurons!! Lecture 4!

Simple models of neurons!! Lecture 4! Simple models of neurons!! Lecture 4! 1! Recap: Phase Plane Analysis! 2! FitzHugh-Nagumo Model! Membrane potential K activation variable Notes from Zillmer, INFN 3! FitzHugh Nagumo Model Demo! 4! Phase

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Action Potentials and Synaptic Transmission Physics 171/271

Action Potentials and Synaptic Transmission Physics 171/271 Action Potentials and Synaptic Transmission Physics 171/271 Flavio Fröhlich (flavio@salk.edu) September 27, 2006 In this section, we consider two important aspects concerning the communication between

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 2, W.W. Lytton, Hodgkin-Huxley Model) 9. Passive and active membrane models In the previous lecture we have considered a passive

More information

AN IN SILICO DESCRIPTION OF AN ALZHEIMER NETWORK

AN IN SILICO DESCRIPTION OF AN ALZHEIMER NETWORK AN IN SILICO DESCRIPTION OF AN ALZHEIMER NETWORK Jesper Lansink Rotgerink FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE CHAIR: APPLIED ANALYSIS AND MATHEMATICAL PHYSICS EXAMINATION

More information

Monotonicity and Bistability of Calcium/Calmodulin-Dependent Protein Kinase-Phosphatase Activation

Monotonicity and Bistability of Calcium/Calmodulin-Dependent Protein Kinase-Phosphatase Activation 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 FrB13.2 Monotonicity and Bistability of Calcium/Calmodulin-Dependent Protein Kinase-Phosphatase Activation

More information

Time-Skew Hebb Rule in a Nonisopotential Neuron

Time-Skew Hebb Rule in a Nonisopotential Neuron Time-Skew Hebb Rule in a Nonisopotential Neuron Barak A. Pearlmutter To appear (1995) in Neural Computation, 7(4) 76 712 Abstract In an isopotential neuron with rapid response, it has been shown that the

More information

Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles

Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles Börgers et al. RESEARCH Approximate, not perfect synchrony maximizes the downstream effectiveness of excitatory neuronal ensembles Christoph Börgers *, Jie Li and Nancy Kopell 2 * Correspondence: cborgers@tufts.edu

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wires -- signal propagation -- processing

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Synapse Model. Neurotransmitter is released into cleft between axonal button and dendritic spine

Synapse Model. Neurotransmitter is released into cleft between axonal button and dendritic spine Synapse Model Neurotransmitter is released into cleft between axonal button and dendritic spine Binding and unbinding are modeled by first-order kinetics Concentration must exceed receptor affinity 2 MorphSynapse.nb

More information

Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops

Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops Math. Model. Nat. Phenom. Vol. 5, No. 2, 2010, pp. 67-99 DOI: 10.1051/mmnp/20105203 Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops J. Ma 1 and J. Wu 2 1 Department of

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

80% of all excitatory synapses - at the dendritic spines.

80% of all excitatory synapses - at the dendritic spines. Dendritic Modelling Dendrites (from Greek dendron, tree ) are the branched projections of a neuron that act to conduct the electrical stimulation received from other cells to and from the cell body, or

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests

Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests Spike-Frequency Adaptation: Phenomenological Model and Experimental Tests J. Benda, M. Bethge, M. Hennig, K. Pawelzik & A.V.M. Herz February, 7 Abstract Spike-frequency adaptation is a common feature of

More information

Using Variable Threshold to Increase Capacity in a Feedback Neural Network

Using Variable Threshold to Increase Capacity in a Feedback Neural Network Using Variable Threshold to Increase Capacity in a Feedback Neural Network Praveen Kuruvada Abstract: The article presents new results on the use of variable thresholds to increase the capacity of a feedback

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

Alliance for Cellular Signaling

Alliance for Cellular Signaling Alliance for Cellular Signaling 40 laboratories investigating basic questions in cell signaling How complex is signal processing in cells? What is the structure and dynamics of the network? Can functional

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

Introduction and the Hodgkin-Huxley Model

Introduction and the Hodgkin-Huxley Model 1 Introduction and the Hodgkin-Huxley Model Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference:

More information

A Dynamic Model of Interactions of Ca 2+, Calmodulin, and Catalytic Subunits of Ca 2+ /Calmodulin-Dependent Protein Kinase II

A Dynamic Model of Interactions of Ca 2+, Calmodulin, and Catalytic Subunits of Ca 2+ /Calmodulin-Dependent Protein Kinase II A Dynamic Model of Interactions of Ca 2+, Calmodulin, and Catalytic Subunits of Ca 2+ /Calmodulin-Dependent Protein Kinase II Shirley Pepke 1., Tamara Kinzer-Ursem 2., Stefan Mihalas 2, Mary B. Kennedy

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

A MEAN FIELD THEORY OF LAYER IV OF VISUAL CORTEX AND ITS APPLICATION TO ARTIFICIAL NEURAL NETWORKS*

A MEAN FIELD THEORY OF LAYER IV OF VISUAL CORTEX AND ITS APPLICATION TO ARTIFICIAL NEURAL NETWORKS* 683 A MEAN FIELD THEORY OF LAYER IV OF VISUAL CORTEX AND ITS APPLICATION TO ARTIFICIAL NEURAL NETWORKS* Christopher L. Scofield Center for Neural Science and Physics Department Brown University Providence,

More information

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT POWERPOINT LECTURE SLIDE PRESENTATION by LYNN CIALDELLA, MA, MBA, The University of Texas at Austin Additional text by J Padilla exclusively for physiology at ECC UNIT 2 8 Neurons: PART A Cellular and

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

Mathematical Foundations of Neuroscience - Lecture 9. Simple Models of Neurons and Synapses.

Mathematical Foundations of Neuroscience - Lecture 9. Simple Models of Neurons and Synapses. Mathematical Foundations of Neuroscience - Lecture 9. Simple Models of and. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Outline. Neural dynamics with log-domain integrator circuits. Where it began Biophysics of membrane channels

Outline. Neural dynamics with log-domain integrator circuits. Where it began Biophysics of membrane channels Outline Neural dynamics with log-domain integrator circuits Giacomo Indiveri Neuromorphic Cognitive Systems group Institute of Neuroinformatics niversity of Zurich and ETH Zurich Dynamics of Multi-function

More information

Applied Physics and by courtesy, Neurobiology and EE

Applied Physics and by courtesy, Neurobiology and EE Information theoretic limits on the memory capacity of neuronal and synaptic networks. Surya Ganguli Applied Physics and by courtesy, Neurobiology and EE Stanford The Nature and Scope of Theoretical Neuroscience

More information

Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite

Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite Paul C. Bressloff Berton A. Earnshaw Department of Mathematics, University of Utah Salt Lake City, Utah

More information

Neurogranin Controls the Spatiotemporal Pattern of Postsynaptic Ca 21 /CaM Signaling

Neurogranin Controls the Spatiotemporal Pattern of Postsynaptic Ca 21 /CaM Signaling 3848 Biophysical Journal Volume 93 December 2007 3848 3859 Neurogranin Controls the Spatiotemporal Pattern of Postsynaptic Ca 21 /CaM Signaling Yoshihisa Kubota,* John A. Putkey, y and M. Neal Waxham*

More information