Navigation Mathematics: Angular and Linear Velocity EE 570: Location and Navigation

Size: px
Start display at page:

Download "Navigation Mathematics: Angular and Linear Velocity EE 570: Location and Navigation"

Transcription

1 Lecture Nvigtion Mthemtics: Angulr n Liner Velocity EE 57: Loction n Nvigtion Lecture Notes Upte on Februry, 26 Kevin Weewr n Aly El-Osery, Electricl Engineering Dept., New Mexico Tech In collbortion with Stephen Bruer, Electricl & Computer Engineering, Embry-Rile Aeronuticl University. Lecture Topics Contents Review 2 Intro to Vel 2 3 t C n ω 2 3. Approch : Structure n mechnics Approch 2: Angle-xis Properties of SS Mtrices 6 5 A Angulr Velocity 7 6 Pos, Vel & Accel 7.2 Review Review z b y b r bc z c y c trnsltion between frmes {} n {c}: x b r b r c x c r c = r b + r bc written wrt/frme {}.3 z y r c = r b + r bc = r b + Cb r b bc x

2 2 Introuction to Velocity Introuction to Velocity Given reltionship for trnsltion between moving rotting n trnslting frmes wht is liner velocity between frmes? r c = r b + C b r b bc r c t r c = r t b + Cb r b bc = r b + Ċ b r b bc + Cb r bc b Why is Ċ b in generl? Recoorintiztion of r b bc is time-epenent. Ċ b is irectly relte to ngulr velocity between frmes {} n {b}..4 3 Derivtive of Rottion Mtrix n Angulr Velocity 3. Approch : Structure n mechnics First pproch to tc n ngulr velocity Given rottion mtrix C, one of its properties is [C b ] T C b = C b [C b ] T = I Tking the time-erivtive of the right-inverse property C t b [Cb ] T = t I Ċ b [Cb ] T + Cb [Ċ b ] T = Ω b Ċ b [Cb ] T T [Ω b ]T Ω b + [Ω b] T = Ω b is skew-symmetric!.5 First pproch to tc n ngulr velocity Define this skew-symmetric mtrix Ω b ω z ω y Ω b = [ ω b ] = ω z ω x ω y ω x Note Ω b = Ċ b [C b ]T Ċ b = Ω bc b is mens of fining erivtive of rottion mtrix provie we cn further unerstn Ω b..6 2

3 First pproch to tc n ngulr velocity Now for some insight into physicl mening of Ω b. Consier point p on rigi boy rotting with ngulr velocity ω = [ω x, ω y, ω z ] T = θ k = θ[k x, k y, k z ] T with k unit vector. ω θ k r p p.7 First pproch to tc n ngulr velocity ω θ k r p v p p From mechnics, liner velocity v p of point is v p = ω r p = ω x ω y r x r y = ω yr z ω z r y ω z r x ω x r z = ω z ω y ω z ω x r x r y ω z r z ω x r y ω y r x ω y } ω x {{ } r z?.8 First pproch to tc n ngulr velocity ω θ k r p v p p From mechnics, liner velocity v p of point is ω x r x ω y r z ω z r y ω z ω y r x v p = ω r p = ω y r y = ω z r x ω x r z = ω z ω x r y ω z r z ω x r y ω y r x ω y } ω x {{ } r z Ω=[ ω ] Ω represents ngulr velocity n performs cross prouct.9 3

4 First pproch to tc n ngulr velocity Now let s fixe frme {} n rotting frme {b} ttche to moving boy such tht there is ngulr velocity ω b between them. ω b {} {b} r p r p n tke erivtive wrt time r p = Ċb Ω b C b r b bp + C b r b bp Strt with position p r p = r b +Cb r b bp = Ω bcb r b bp = Ω b r bp = [ ω b ] r bp from which it is observe compre to v p = ω r p tht Ω b represents cross prouct with ngulr velocity ω b Approch 2: Angle-xis Secon pproch to tc n ngulr velocity Another pproch to eveloping erivtive of rottion mtrix n ngulr velocity is bse upon ngle-xis representtion of orienttion n rottion mtrix s exponentil. This pproch is inclue in notes.. Secon pproch to tc n ngulr velocity Since the reltive n fixe xis rottions must be performe in prticulr orer, their erivtives re somewht chllenging The ngle-xis formt, however, is reily ifferentible s we cn encoe the 3 prmeters by K K t ktθt = K 2 t K 3 t where θ = K Hence, Kt t = K t K 2 t K 3 t.2 Secon pproch to tc n ngulr velocity For sufficiently smll time intervl we cn often consier the xis of rottion to be constnt i.e., kt = k Kt t kθt t = k θt This is referre to s the ngulr velocity ωt or the so clle boy reference ngulr velocity Angulr Velocity ωt k θt.3 4

5 Secon pproch to tc n ngulr velocity This efinition of the ngulr velocity cn lso be relte bck to the rottion mtrix. Reclling tht C b t = R k b,θt = eκ b θt Hence, t C b t = t eκ b θt = eκ b θt θ θ t = κ be κ b θt θt = κ θt b Cb t Ċ b t [C b t] T = κ b θt.4 Secon pproch to tc n ngulr velocity Notice tht κ θt b = Skew [kb] θt [ = Skew kb θt ] = Skew [ ω b] = Ω b Therefore, or Ċ b t [C b t] T = Ω b Ċ b = Ω bc b.5 Secon pproch to tc n ngulr velocity Note κ = k 3 k 2 k 3 k 2 = k 2 3 k 3 2 k 3 k 3 = k k 2 k 3 k 2 k 2 Hence, we cn think of the skew-symmetric mtrix s κ = [ k ] or, in the cse of ngulr velocity Ω = [ ω ].6 5

6 4 Properties of Skew-symmetric Mtrices Properties of Skew-symmetric Mtrices ] CΩC T b = C [ ω C T b = C ω CC T b = C ω b = [C ω ] b Therefore from bove, n vi istributive property CΩC T = C[ ω ]C T = [C ω ] C[ ω ] = [C ω ]C.7 Properties of Skew-symmetric Mtrices Ċb = Ω bcb = [ ω b ]Cb = [Cb ω b b ]Cb = Cb [ ω b b ] = Cb Ω b b Ċ b = Ω bc b = C b Ω b b.8 Summry of Angulr Velocity n Nottion Angulr velocity cn be escribe s vector the ngulr velocity of the b-frme wrt the -frme resolve in the c-frme, ω c b ω b = ω b escribe s skew-symmetric mtrix Ω c b = [ ω c b ] the skew-symmetric mtrix is equivlent to the vector cross prouct when premultiplying nother vector relte to the erivtive of the rottion mtrix Ċ b = Ω bc b = C b Ω b b Ċ b = Ω bc b = C b Ω b b.9 6

7 5 Propgtion/Aition of Angulr Velocity Propgtion/Aition of Angulr Velocity Consier the erivtive of the composition of rottions C 2 = C C 2. t C 2 = t C C 2 Ċ 2 = Ċ C 2 + C Ċ 2 Ω 2C2 = Ω CC 2 + CC 2Ω 2 2 Ω 2 = Ω C2 [ ] C T 2 + C 2 Ω 2 [ ] 2 C T 2 [ ω 2 ] = [ ω ] + [C 2 ω 2 2 ] ω 2 = ω + ω 2 ngulr velocities s vectors so long s resolve common coorinte system.2 6 Liner Position, Velocity n Accelertion Liner Position Consier the motion of fixe point origin of frme {2} in rotting frme frme {} s seen from n inertil frme {} frmes {} n {} hve the sme origin frme {} rottes bout unit vector k wrt frme {} origin of frme {2} is fixe wrt frme {} Position: r 2t = r t + r 2t = C t r 2.2 Liner Velocity Liner velocity: r 2t = t C t r 2 = Ċ t r 2 = [ ω ]C t r 2 = ω r 2t.22 Liner Accelertion Liner ccelertion: r 2 = t ω C t r 2 = ω Ct r 2 + ω Ċ t r 2 = ω r 2t + ω ω r 2t Trnsverse ccel Centripetl ccel ω 2 r.23 7

8 Liner Position We cn get bck to where we strte... frmes n their erivtives. z motion trnsltion n rottion between x y r r 2 z 2 r 2 z x 2 y 2 Trnsltion position between frmes {} n {}: r 2 = r + r 2 = r + C r 2.24 y x Liner Velocity Liner velocity: r 2t = t r + C r 2 = r + Ċ r 2 + C r 2 = r + [ ω ]C r 2 + C r 2 = r + ω C r 2 + C r 2.25 Liner Accelertion Liner ccelertion: r 2 = t r + ω C r 2 + C r 2 = r + ω C r 2 + ω Ċ r 2 + ω C r 2 + Ċ r 2 + C r 2 = r + ω r 2t + ω ω r 2t + 2 ω C r 2 + C r 2 ccel of {} s origin from {} in {} The En Trnsverse ccel Centripetl ccel ω 2 r Coriolis ccel 2ω v ccel of {2} s origin from {} in {}

EE 565: Position, Navigation and Timing

EE 565: Position, Navigation and Timing EE 565: Position, Navigation and Timing Navigation Mathematics: Angular and Linear Velocity Kevin Wedeward Aly El-Osery Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA In Collaboration

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2 Physics 319 Clssicl Mechnics G. A. Krfft Old Dominion University Jefferson Lb Lecture Undergrdute Clssicl Mechnics Spring 017 Sclr Vector or Dot Product Tkes two vectors s inputs nd yields number (sclr)

More information

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6 EULER-LAGRANGE EQUATIONS EUGENE LERMAN Contents 1. Clssicl system of N prticles in R 3 1 2. Vritionl formultion 2 3. Constrine systems n Alembert principle. 4 4. Legenre trnsform 6 1. Clssicl system of

More information

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3.

PROBLEM deceleration of the cable attached at B is 2.5 m/s, while that + ] ( )( ) = 2.5 2α. a = rad/s. a 3.25 m/s. = 3. PROLEM 15.105 A 5-m steel bem is lowered by mens of two cbles unwinding t the sme speed from overhed crnes. As the bem pproches the ground, the crne opertors pply brkes to slow the unwinding motion. At

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.

More information

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS LEARNING OBJECTIVES After stuying this chpter, you will be ble to: Unerstn the bsics

More information

Basic Derivative Properties

Basic Derivative Properties Bsic Derivtive Properties Let s strt this section by remining ourselves tht the erivtive is the slope of function Wht is the slope of constnt function? c FACT 2 Let f () =c, where c is constnt Then f 0

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

1 nonlinear.mcd Find solution root to nonlinear algebraic equation f(x)=0. Instructor: Nam Sun Wang

1 nonlinear.mcd Find solution root to nonlinear algebraic equation f(x)=0. Instructor: Nam Sun Wang nonlinermc Fin solution root to nonliner lgebric eqution ()= Instructor: Nm Sun Wng Bckgroun In science n engineering, we oten encounter lgebric equtions where we wnt to in root(s) tht stisies given eqution

More information

Differential Geometry: Conformal Maps

Differential Geometry: Conformal Maps Differentil Geometry: Conforml Mps Liner Trnsformtions Definition: We sy tht liner trnsformtion M:R n R n preserves ngles if M(v) 0 for ll v 0 nd: Mv, Mw v, w Mv Mw v w for ll v nd w in R n. Liner Trnsformtions

More information

Overview of Calculus

Overview of Calculus Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION Physics 8.06 Apr, 2008 SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION c R. L. Jffe 2002 The WKB connection formuls llow one to continue semiclssicl solutions from n

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Physics 207 Lecture 5

Physics 207 Lecture 5 Phsics 07 Lecture 5 Agend Phsics 07, Lecture 5, Sept. 0 Chpter 4 Kinemtics in or 3 dimensions Independence of, nd/or z components Circulr motion Cured pths nd projectile motion Frmes of reference dil nd

More information

Dynamics and control of mechanical systems. Content

Dynamics and control of mechanical systems. Content Dynmics nd control of mechnicl systems Dte Dy 1 (01/08) Dy (03/08) Dy 3 (05/08) Dy 4 (07/08) Dy 5 (09/08) Dy 6 (11/08) Content Review of the bsics of mechnics. Kinemtics of rigid bodies plne motion of

More information

Area Under the Torque vs. RPM Curve: Average Power

Area Under the Torque vs. RPM Curve: Average Power Are Uner the orque vs. RM Curve: Averge ower Wht is torque? Some Bsics Consier wrench on nut, the torque bout the nut is Force, F F θ r rf sinθ orque, If F is t right ngle to moment rm r then rf How oes

More information

Physical Properties as Tensors

Physical Properties as Tensors Phsicl Proerties s Tensors Proerties re either isotroic or nisotroic. Consier roert such s the ielectric suscetibilit, tht reltes the olrition (P) cuse b n electric fiel () in ielectric mteril. In isotroic

More information

The Fundamental Theorem of Calculus Part 2, The Evaluation Part

The Fundamental Theorem of Calculus Part 2, The Evaluation Part AP Clculus AB 6.4 Funmentl Theorem of Clculus The Funmentl Theorem of Clculus hs two prts. These two prts tie together the concept of integrtion n ifferentition n is regre by some to by the most importnt

More information

Matrix & Vector Basic Linear Algebra & Calculus

Matrix & Vector Basic Linear Algebra & Calculus Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row

More information

Homework Assignment 5 Solution Set

Homework Assignment 5 Solution Set Homework Assignment 5 Solution Set PHYCS 44 3 Februry, 4 Problem Griffiths 3.8 The first imge chrge gurntees potentil of zero on the surfce. The secon imge chrge won t chnge the contribution to the potentil

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

AN020. a a a. cos. cos. cos. Orientations and Rotations. Introduction. Orientations

AN020. a a a. cos. cos. cos. Orientations and Rotations. Introduction. Orientations AN020 Orienttions nd Rottions Introduction The fct tht ccelerometers re sensitive to the grvittionl force on the device llows them to be used to determine the ttitude of the sensor with respect to the

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Vector Functions. Exercises Chapter 13 Vector Functions

Vector Functions. Exercises Chapter 13 Vector Functions 33 Chpter 13 Vector Functions 13 Vector Functions shown for t between n 2π Both strt n en t the sme point, but the first helix tkes two full turns to get there, becuse its z coorinte grows more slowly

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivtives 0. Introuction So fr much of the term hs been sent fining erivtives or rtes of chnge. But in some circumstnces we lrey know the rte of chnge n we wish to etermine the originl function. For

More information

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i (

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i ( PHYS851 Quntum Mechnics I, Fll 2009 HOMEWORK ASSIGNMENT 7 1. The continuity eqution: The probbility tht prticle of mss m lies on the intervl [,b] t time t is Pt,b b x ψx,t 2 1 Differentite 1 n use the

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30

E S dition event Vector Mechanics for Engineers: Dynamics h Due, next Wednesday, 07/19/2006! 1-30 Vector Mechnics for Engineers: Dynmics nnouncement Reminders Wednesdy s clss will strt t 1:00PM. Summry of the chpter 11 ws posted on website nd ws sent you by emil. For the students, who needs hrdcopy,

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS 4.5 The Funmentl Theorem of Clculus Contemporry Clculus 4.5 THE FUNDAMENTAL THEOREM OF CALCULUS This section contins the most importnt n most use theorem of clculus, THE Funmentl Theorem of Clculus. Discovere

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Introduction to Complex Variables Class Notes Instructor: Louis Block

Introduction to Complex Variables Class Notes Instructor: Louis Block Introuction to omplex Vribles lss Notes Instructor: Louis Block Definition 1. (n remrk) We consier the complex plne consisting of ll z = (x, y) = x + iy, where x n y re rel. We write x = Rez (the rel prt

More information

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics 0.1 Lines Definition. Here re two forms of the eqution of line: y = mx + b y = m(x x 0 ) + y 0 ( m = slope, b = y-intercept, (x 0, y 0 ) = some given point ) slope-intercept point-slope There re two importnt

More information

Basics of space and vectors. Points and distance. Vectors

Basics of space and vectors. Points and distance. Vectors Bsics of spce nd vectors Points nd distnce One wy to describe our position in three dimensionl spce is using Crtesin coordintes x, y, z) where we hve fixed three orthogonl directions nd we move x units

More information

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x Elementr mthemticl epressions Qurtic equtions b b b The solutions to the generl qurtic eqution re (1) b c () b b 4c (3) Tlor n Mclurin series (power-series epnsion) The Tlor series n n f f f n 1!! n! f

More information

SOLVED PROBLEMS SET 3

SOLVED PROBLEMS SET 3 SOLVED PROBLEMS SET PROBLEM During tsk performed by robotic mnipultor, its end-effector is required to be oriented with respect to the bse frme s described below The pproch vector is oriented by two ngles

More information

1 Linear Least Squares

1 Linear Least Squares Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving

More information

Exploring parametric representation with the TI-84 Plus CE graphing calculator

Exploring parametric representation with the TI-84 Plus CE graphing calculator Exploring prmetric representtion with the TI-84 Plus CE grphing clcultor Richrd Prr Executive Director Rice University School Mthemtics Project rprr@rice.edu Alice Fisher Director of Director of Technology

More information

Uses of transformations. 3D transformations. Review of vectors. Vectors in 3D. Points vs. vectors. Homogeneous coordinates S S [ H [ S \ H \ S ] H ]

Uses of transformations. 3D transformations. Review of vectors. Vectors in 3D. Points vs. vectors. Homogeneous coordinates S S [ H [ S \ H \ S ] H ] Uses of trnsformtions 3D trnsformtions Modeling: position nd resize prts of complex model; Viewing: define nd position the virtul cmer Animtion: define how objects move/chnge with time y y Sclr (dot) product

More information

DERIVATIVES NOTES HARRIS MATH CAMP Introduction

DERIVATIVES NOTES HARRIS MATH CAMP Introduction f DERIVATIVES NOTES HARRIS MATH CAMP 208. Introduction Reding: Section 2. The derivtive of function t point is the slope of the tngent line to the function t tht point. Wht does this men, nd how do we

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it The Spring Consider spring, which we pply force F A to either stretch it or copress it F A - unstretched -F A 0 F A k k is the spring constnt, units of N/, different for different terils, nuber of coils

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

Physics 207 Lecture 7

Physics 207 Lecture 7 Phsics 07 Lecture 7 Agend: Phsics 07, Lecture 7, Sept. 6 hpter 6: Motion in (nd 3) dimensions, Dnmics II Recll instntneous velocit nd ccelertion hpter 6 (Dnmics II) Motion in two (or three dimensions)

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

Math 231E, Lecture 33. Parametric Calculus

Math 231E, Lecture 33. Parametric Calculus Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider

More information

Introduction and Review

Introduction and Review Chpter 6A Notes Pge of Introuction n Review Derivtives y = f(x) y x = f (x) Evlute erivtive t x = : y = x x= f f(+h) f() () = lim h h Geometric Interprettion: see figure slope of the line tngent to f t

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

Mass Creation from Extra Dimensions

Mass Creation from Extra Dimensions Journl of oern Physics, 04, 5, 477-48 Publishe Online April 04 in SciRes. http://www.scirp.org/journl/jmp http://x.oi.org/0.436/jmp.04.56058 ss Cretion from Extr Dimensions Do Vong Duc, Nguyen ong Gio

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

Chapter 3. Vector Spaces

Chapter 3. Vector Spaces 3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce

More information

Review: Velocity: v( t) r '( t) speed = v( t) Initial speed v, initial height h, launching angle : 1 Projectile motion: r( ) j v r

Review: Velocity: v( t) r '( t) speed = v( t) Initial speed v, initial height h, launching angle : 1 Projectile motion: r( ) j v r 13.3 Arc Length Review: curve in spce: r t f t i g t j h t k Tngent vector: r '( t ) f ' t i g ' t j h' t k Tngent line t t t : s r( t ) sr '( t ) Velocity: v( t) r '( t) speed = v( t) Accelertion ( t)

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGI OIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. escription

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

More information

Main topics for the Second Midterm

Main topics for the Second Midterm Min topics for the Second Midterm The Midterm will cover Sections 5.4-5.9, Sections 6.1-6.3, nd Sections 7.1-7.7 (essentilly ll of the mteril covered in clss from the First Midterm). Be sure to know the

More information

Geometry and Calculus of Variations Lecture notes

Geometry and Calculus of Variations Lecture notes Sum 2 2012/3/12 23:06 pge 1 #1 Geometry n Clculus of Vritions Lecture notes Mrch 12, 2012 Abstrct This is the type version of Dr A.Gilbert s lecture notes. c 1 Lecture 11 1.1 Spce Curves Definition: A

More information

3.4 Conic sections. In polar coordinates (r, θ) conics are parameterized as. Next we consider the objects resulting from

3.4 Conic sections. In polar coordinates (r, θ) conics are parameterized as. Next we consider the objects resulting from 3.4 Conic sections Net we consier the objects resulting from + by + cy + + ey + f 0. Such type of cures re clle conics, becuse they rise from ifferent slices through cone In polr coorintes r, θ) conics

More information

2A1A Vector Algebra and Calculus I

2A1A Vector Algebra and Calculus I Vector Algebr nd Clculus I (23) 2AA 2AA Vector Algebr nd Clculus I Bugs/queries to sjrob@robots.ox.c.uk Michelms 23. The tetrhedron in the figure hs vertices A, B, C, D t positions, b, c, d, respectively.

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

General Relativity 05/12/2008. Lecture 15 1

General Relativity 05/12/2008. Lecture 15 1 So Fr, We Hve Generl Reltivity Einstein Upsets the Applecrt Decided tht constnt velocity is the nturl stte of things Devised nturl philosophy in which ccelertion is the result of forces Unified terrestril

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

Numerical Linear Algebra Assignment 008

Numerical Linear Algebra Assignment 008 Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

PROBLEM SOLUTION

PROBLEM SOLUTION PROLEM 15.11 The 18-in.-rdius flywheel is rigidly ttched to 1.5-in.-rdius shft tht cn roll long prllel rils. Knowing tht t the instnt shown the center of the shft hs velocity of 1. in./s nd n ccelertion

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

When e = 0 we obtain the case of a circle.

When e = 0 we obtain the case of a circle. 3.4 Conic sections Circles belong to specil clss of cures clle conic sections. Other such cures re the ellipse, prbol, n hyperbol. We will briefly escribe the stnr conics. These re chosen to he simple

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle

MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle MEG6007: Avnce Dynmics -Principles n Computtionl Methos (Fll, 2017) Lecture 4: Euler-Lgrnge Equtions vi Hmilton s Principle This lecture covers: Begin with Alembert s Principle. Cst the virtul work emnting

More information

The Periodically Forced Harmonic Oscillator

The Periodically Forced Harmonic Oscillator The Periodiclly Forced Hrmonic Oscilltor S. F. Ellermeyer Kennesw Stte University July 15, 003 Abstrct We study the differentil eqution dt + pdy + qy = A cos (t θ) dt which models periodiclly forced hrmonic

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

2. Limits. Reading: 2.2, 2.3, 4.4 Definitions.

2. Limits. Reading: 2.2, 2.3, 4.4 Definitions. TOPICS COVERED IN MATH 162 This is summry of the topics we cover in 162. You my use it s outline for clss, or s review. Note: the topics re not necessrily liste in the orer presente in clss. 1. Review

More information

MUST-KNOW MATERIAL FOR CALCULUS

MUST-KNOW MATERIAL FOR CALCULUS MUST-KNOW MATERIAL FOR CALCULUS MISCELLANEOUS: intervl nottion: (, b), [, b], (, b], (, ), etc. Rewrite ricls s frctionl exponents: 3 x = x 1/3, x3 = x 3/2 etc. An impliction If A then B is equivlent to

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

(See Notes on Spontaneous Emission)

(See Notes on Spontaneous Emission) ECE 240 for Cvity from ECE 240 (See Notes on ) Quntum Rdition in ECE 240 Lsers - Fll 2017 Lecture 11 1 Free Spce ECE 240 for Cvity from Quntum Rdition in The electromgnetic mode density in free spce is

More information

Instantaneous Rate of Change of at a :

Instantaneous Rate of Change of at a : AP Clculus AB Formuls & Justiictions Averge Rte o Chnge o on [, ]:.r.c. = ( ) ( ) (lger slope o Deinition o the Derivtive: y ) (slope o secnt line) ( h) ( ) ( ) ( ) '( ) lim lim h0 h 0 3 ( ) ( ) '( ) lim

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Course 2BA1 Supplement concerning Integration by Parts

Course 2BA1 Supplement concerning Integration by Parts Course 2BA1 Supplement concerning Integrtion by Prts Dvi R. Wilkins Copyright c Dvi R. Wilkins 22 3 The Rule for Integrtion by Prts Let u n v be continuously ifferentible rel-vlue functions on the intervl

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

Differentiability. Alex Nita

Differentiability. Alex Nita Differentibilit Ale Nit 1 Mtrices nd Liner Functions 11 Algebric Properties of Mtrices Let us define rel m n mtri s n rr of mn rel numbers ij consisting of m rows nd n columns, 11 1n A 11 m1 mn The inde

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Lecture 3. Limits of Functions and Continuity

Lecture 3. Limits of Functions and Continuity Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

More information

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT IC/69/7 INTERNAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM Lot. IXARQ * Institute of

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information