Conservation Law. Chapter Goal. 6.2 Theory

Size: px
Start display at page:

Download "Conservation Law. Chapter Goal. 6.2 Theory"

Transcription

1 Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the very importnt conservtion lw which is use in mny moels. Lter on, we will use the conservtion lw to erive more specific moels. The first one will be the het eqution. 6.2 Theory Mny PDE moels involve the stuy of how certin quntity chnges with time n spce. This chnge follows bsic lw clle the conservtion lw. Simply put, this lw sys tht the rte t which quntity chnges in given omin must equl the rte t which the quntity flows cross the bounry of tht omin plus the rte t which the quntity is crete or estroye, insie the omin. For exmple, consier the stuy of the popultion of certin niml species within fixe geogrphic re (our omin). The popultion in this geogrphic re will be etermine by how mny nimls re born, how mny ie, how mny migrte in n out. The conservtion lw pplie to this exmple sys tht the rte of chnge of the niml popultion is equl to the rte t which nimls migrte in the region minus the rte t which they migrte out plus the birth rte minus the eth rte. Similr sttements cn be me bout mny other quntities such s het energy, the mss of chemicl, the number of utomobiles on freewy,... Now, we trnsform such sttement into equtions, tht is we quntify it. For this, let u (x, t) enote the ensity of certin quntity (mss, energy, nimls,...). Recll tht ensity is mesure in mount of quntity per unit volume or per unit length. So tht if we know the ensity of the quntity n the volume of the region where it is contine, then we lso know the mount of the quntity. Let us ssume for now tht ny vrition in the ensity be restricte 29

2 30 CHAPTER 6. CONSERVATION LAW Figure 6.1: Tube with cross-sectionl re A to one sptil imension we will cll x. Tht is, we ssume one-imensionl omin, ech cross section being lbele by the sptil vrible x. Figure 6.1 illustrtes this ie in the cse of tube s our omin. It s cross-sectionl re is clle A. We ssume tht the lterl sies re insulte so tht the quntity being stuie only vries in the x-irection n in time. For ech vlue of x, u (x, t) oes not vry within the cross section t x. Remrk 31 Let us mke some remrks n introuce further nottion: 1. The omin escribe here hs constnt cross-sectionl re A. In more complex omin, the cross-sectionl re might epen on x (see problems). 2. The mount of the quntity t time t in smll section of with x will be u (x, t) Ax for ech x. It follows tht the mount of the quntity in n rbitrry section x b will be u (x, t) Ax. 3. Let φ = φ (x, t) enote the flux of the quntity t x, t time t. It mesures the mount of the quntity crossing the section t x, t time t. Its units re mount of quntity per unit re, per unit time. So, the ctul mount of the quntity crossing the section t x, t time t is given by Aφ (x, t). By convention, flux is positive if the flow is to the right, n negtive if the flow is to the left. 4. Let f (x, t) be the given rte t which the quntity is crete or estroye within the section t x, t time t. It is mesure in mount of quntity per unit volume, per unit time. f is clle source if it is positive n sink if it is negtive. So, the mount of the quntity being crete in smll section of with x for ech x is f (x, t) Ax per unit time. It follows tht the mount of the quntity being crete in n rbitrry section x b will be f (x, t) Ax. We re now rey to formulte the conservtion lw in smll section of the tube, of re A for ech x such tht x b. The conservtion lw sys tht

3 6.2. THEORY 31 the rte of chnge of the mount of the quntity in tht section must be equl to the rte t which the quntity flows in t x = minus the rte t which it flows out t b plus the rte t which it is crete within the section x b. Using the remrks n nottion bove, the lw becomes t u (x, t) Ax = Aφ (, t) Aφ (b, t) + f (x, t) Ax (6.1) Let us first notice tht since A is constnt, it cn be tken out of the integrls n cncele from the formul to obtin t u (x, t) x = φ (, t) φ (b, t) + f (x, t) x (6.2) This eqution is the funmentl conservtion lw. It simply inictes blnce between how much goes in, how much goes out n how much is chnge. Eqution 6.1 is n integrl eqution. We cn reformulte it s PDE if we mke further ssumptions. We begin by remining the reer of theorem known s Leibniz rule, lso known s "ifferentiting uner the integrl". Theorem 32 (Leibniz Rule) If (t), b (t), n F (x, t) re continuously ifferentible then t (t) (t) F (y, t) y = (t) (t) F t (y, t) y+f (b (t), t) b (t) F ( (t), t) (t) (6.3) This is often known s "tking the erivtive insie the integrl". If we ssume tht u hs continuous prtil erivtives, then using Leibniz rule, the left sie of eqution 6.2 becomes t u (x, t) x = u t (x, t) x If we lso ssume tht φ hs continuous prtil erivtives, then using the funmentl theorem of clculus, we cn write φ (, t) φ (b, t) = Therefore, eqution 6.2 cn be rewritten φ x (x, t) x [u t (x, t) + φ x (x, t) f (x, t)] x = 0 It is possible for n integrl to be 0 without the integrn being equl to 0. However, in our cse, the intervl of integrtion ws rbitrry. In other wors,

4 32 CHAPTER 6. CONSERVATION LAW we re sying tht no mtter wht n b re, this integrl must be 0. Since the integrn is continuous, it follows tht it must be 0 in other wors or u t (x, t) + φ x (x, t) f (x, t) = 0 u t (x, t) + φ x (x, t) = f (x, t) (6.4) It is importnt to remember tht this eqution ws obtine uner the ssumption tht u n φ re continuously ifferentible. Eqution 6.4 will be clle the funmentl conservtion lw. Summry 33 We stuy how certin quntity chnges with time in given region. We mke the following ssumptions: 1. u (x, t) enotes the ensity of the quntity being stuie. u is ssume to be continuously iff erentible. 2. φ (x, t) is the flux of the quntity t time t t x. It mesures the mount of the quntity crossing cross section of our region t x. φ is ssume to be continuously iff erentible. 3. f (x, t) is the rte t which the quntity is crete or estroye within our region. f is ssume to be continuous. 4. We ssume the quntity being stuie only vries in the x irection. 5. Then, the eqution escribing how our quntity chnges with time in the given region is u t (x, t) + φ x (x, t) = f (x, t) Remrk 34 Let us mke few remrks before looking specific exmples. 1. Eqution 6.4 is often written s for simplicity. u t + φ x = f 2. The functions φ n f re functions of x n t. Tht epenence my be through the function u. For exmple, we my hve f = f (u). Similrly, we my hve φ = φ (u). These epenencies my le to nonliner moel. We will see one in the exmples. 3. Eqution 6.4 involves two unknown functions: u n φ, usully the source f is ssume to be given. This mens tht nother eqution relting u n φ is neee. Such n eqution usully rises from physicl ssumptions on the meium.

5 6.3. ADVECTION EQUATION Eqution 6.4 is in its most generl form. As we look t specific moels, it will tke on ifferent forms. For exmple, when we tlke bout flow in this section, we i not specify how the quntity trvele. In the next sections we will consier vrious possibilities incluing vection n iff usion. Also, the source term cn tke on ifferent forms. We now look t specific exmples. Here, we will simply write own the eqution corresponing to the moel. We will iscuss how to solve them little lter. 6.3 Avection Eqution Avection refers to trnsport of certin substnce in flui (wter, ny liqui, ir,...). An exmple of vection is trnsport of pollutnt in river. The flow of the river crries the pollutnt. A moel where the flux is proportionl to the ensity is clle n vection moel. It is esy to unerstn why. Thinking of the exmple of the river crrying pollutnt, the mount of pollutnt which crosses the bounry of given region in the river clerly epens on the ensity of the pollutnt. In this cse, we hve for some constnt c: φ = cu The constnt c is the spee of the flui. In our exmple bove, it will be how fst the river flows. Eqution 6.4 becomes: We look t specific exmples. u t + cu x = f (x, t) Avection When f (x, t) = 0 (No Source) In the bsence of sources, Eqution 6.4 becomes: u t + cu x = 0 (6.5) Eqution 6.5 is clle the vection eqution. Note tht c must hve velocity units (length per time). As note bove, c is the spee t which the flui is flowing Exmple: Avection n Decy Recll from elementry ifferentil equtions tht ecy is moele by the lw u t = λu

6 34 CHAPTER 6. CONSERVATION LAW where λ is the ecy rte. For exmple, substnce vecting through tube t velocity c, n ecying t rte of ecy λ woul be moele by the vectionecy eqution u t + cu x = λu (6.6) Here, λu correspons to the source term (the function f in eqution 6.4) Generl Avection eqution In its most generl form, the vection eqution is where: n c re constnts. u t + cu x + u = f (x, t) (6.7) cu x is the term which correspons to the flux. Recll, in the vection moel, the flux φ is φ = cu, c being the spee of the flow of the flui in the vection moel. u n f (x, t) correspon to the source. u sys tht the rte of chnge of the quntity within the omin is proportionl to the quntity. Exmples inclue rioctive ecy, popultion growth. f (x, t) sys tht the rte of chnge of the quntity within the omin is some given function. An exmple of this woul be pollutnts flowing in river, some pollutnts being umpe within the omin. f (x, t) woul give the rte t which the pollutnt is being umpe. Exmple 35 If the eqution is u t +cu x +u = f (x, t), then it mens tht there is vection (cu x ), ecy or growth (u) s well s quntity being e t rte given by f (x, y). Exmple 36 If the eqution is u t + cu x + u = 0, then it mens tht there is vection n growth or ecy. Exmple 37 If the eqution is u t + cu x = 0, then then it mens tht there is only vection. 6.4 Problems 1. How oes the conservtion lw in eqution 6.4 chnge if the tube hs vrible cross-sectionl re A = A (x) inste of constnt one?

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS 4.5 The Funmentl Theorem of Clculus Contemporry Clculus 4.5 THE FUNDAMENTAL THEOREM OF CALCULUS This section contins the most importnt n most use theorem of clculus, THE Funmentl Theorem of Clculus. Discovere

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

VII. The Integral. 50. Area under a Graph. y = f(x)

VII. The Integral. 50. Area under a Graph. y = f(x) VII. The Integrl In this chpter we efine the integrl of function on some intervl [, b]. The most common interprettion of the integrl is in terms of the re uner the grph of the given function, so tht is

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

Basic Derivative Properties

Basic Derivative Properties Bsic Derivtive Properties Let s strt this section by remining ourselves tht the erivtive is the slope of function Wht is the slope of constnt function? c FACT 2 Let f () =c, where c is constnt Then f 0

More information

Section 6.3 The Fundamental Theorem, Part I

Section 6.3 The Fundamental Theorem, Part I Section 6.3 The Funmentl Theorem, Prt I (3//8) Overview: The Funmentl Theorem of Clculus shows tht ifferentition n integrtion re, in sense, inverse opertions. It is presente in two prts. We previewe Prt

More information

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS LEARNING OBJECTIVES After stuying this chpter, you will be ble to: Unerstn the bsics

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivtives 0. Introuction So fr much of the term hs been sent fining erivtives or rtes of chnge. But in some circumstnces we lrey know the rte of chnge n we wish to etermine the originl function. For

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information

MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle

MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle MEG6007: Avnce Dynmics -Principles n Computtionl Methos (Fll, 2017) Lecture 4: Euler-Lgrnge Equtions vi Hmilton s Principle This lecture covers: Begin with Alembert s Principle. Cst the virtul work emnting

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Overview of Calculus

Overview of Calculus Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L

More information

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6 EULER-LAGRANGE EQUATIONS EUGENE LERMAN Contents 1. Clssicl system of N prticles in R 3 1 2. Vritionl formultion 2 3. Constrine systems n Alembert principle. 4 4. Legenre trnsform 6 1. Clssicl system of

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics

1.1 Functions. 0.1 Lines. 1.2 Linear Functions. 1.3 Rates of change. 0.2 Fractions. 0.3 Rules of exponents. 1.4 Applications of Functions to Economics 0.1 Lines Definition. Here re two forms of the eqution of line: y = mx + b y = m(x x 0 ) + y 0 ( m = slope, b = y-intercept, (x 0, y 0 ) = some given point ) slope-intercept point-slope There re two importnt

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

3 Conservation Laws, Constitutive Relations, and Some Classical PDEs

3 Conservation Laws, Constitutive Relations, and Some Classical PDEs 3 Conservtion Lws, Constitutive Reltions, nd Some Clssicl PDEs As topic between the introduction of PDEs nd strting to consider wys to solve them, this section introduces conservtion of mss nd its differentil

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Math 211A Homework. Edward Burkard. = tan (2x + z)

Math 211A Homework. Edward Burkard. = tan (2x + z) Mth A Homework Ewr Burkr Eercises 5-C Eercise 8 Show tht the utonomous system: 5 Plne Autonomous Systems = e sin 3y + sin cos + e z, y = sin ( + 3y, z = tn ( + z hs n unstble criticl point t = y = z =

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

x dx does exist, what does the answer look like? What does the answer to

x dx does exist, what does the answer look like? What does the answer to Review Guie or MAT Finl Em Prt II. Mony Decemer th 8:.m. 9:5.m. (or the 8:3.m. clss) :.m. :5.m. (or the :3.m. clss) Prt is worth 5% o your Finl Em gre. NO CALCULATORS re llowe on this portion o the Finl

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

The Fundamental Theorem of Calculus Part 2, The Evaluation Part

The Fundamental Theorem of Calculus Part 2, The Evaluation Part AP Clculus AB 6.4 Funmentl Theorem of Clculus The Funmentl Theorem of Clculus hs two prts. These two prts tie together the concept of integrtion n ifferentition n is regre by some to by the most importnt

More information

( x) ( ) takes at the right end of each interval to approximate its value on that

( x) ( ) takes at the right end of each interval to approximate its value on that III. INTEGRATION Economists seem much more intereste in mrginl effects n ifferentition thn in integrtion. Integrtion is importnt for fining the expecte vlue n vrince of rnom vriles, which is use in econometrics

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 213 1: (Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

INTEGRALS. Chapter Introduction

INTEGRALS. Chapter Introduction INTEGRALS 87 hpter 7 INTEGRALS Just s mountineer clims mountin ecuse it is there, so goo mthemtics stuent stuies new mteril ecuse it is there. JAMES B. BRISTOL 7. Introuction Differentil lculus is centre

More information

M 106 Integral Calculus and Applications

M 106 Integral Calculus and Applications M 6 Integrl Clculus n Applictions Contents The Inefinite Integrls.................................................... Antierivtives n Inefinite Integrls.. Antierivtives.............................................................

More information

Year 11 Matrices. A row of seats goes across an auditorium So Rows are horizontal. The columns of the Parthenon stand upright and Columns are vertical

Year 11 Matrices. A row of seats goes across an auditorium So Rows are horizontal. The columns of the Parthenon stand upright and Columns are vertical Yer 11 Mtrices Terminology: A single MATRIX (singulr) or Mny MATRICES (plurl) Chpter 3A Intro to Mtrices A mtrix is escribe s n orgnise rry of t. We escribe the ORDER of Mtrix (it's size) by noting how

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE HANS RINGSTRÖM. Questions nd exmples In the study of Fourier series, severl questions rise nturlly, such s: () (2) re there conditions on c n, n Z, which ensure

More information

Introduction to Complex Variables Class Notes Instructor: Louis Block

Introduction to Complex Variables Class Notes Instructor: Louis Block Introuction to omplex Vribles lss Notes Instructor: Louis Block Definition 1. (n remrk) We consier the complex plne consisting of ll z = (x, y) = x + iy, where x n y re rel. We write x = Rez (the rel prt

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Funmentl Teorem of Clculus Liming Png 1 Sttement of te Teorem Te funmentl Teorem of Clculus is one of te most importnt teorems in te istory of mtemtics, wic ws first iscovere by Newton n Leibniz inepenently.

More information

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is Jnury 28, 2002 13. The Integrl The concept of integrtion, nd the motivtion for developing this concept, were described in the previous chpter. Now we must define the integrl, crefully nd completely. According

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line APPENDIX D Preclculus Review APPENDIX D.1 Rel Numers n the Rel Numer Line Rel Numers n the Rel Numer Line Orer n Inequlities Asolute Vlue n Distnce Rel Numers n the Rel Numer Line Rel numers cn e represente

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

ES.181A Topic 8 Notes Jeremy Orloff

ES.181A Topic 8 Notes Jeremy Orloff ES.8A Topic 8 Notes Jeremy Orloff 8 Integrtion: u-substitution, trig-substitution 8. Integrtion techniques Only prctice will mke perfect. These techniques re importnt, but not the intellectul hert of the

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Chpter 6 Lecture Notes Review nd Two New Sections Sprint 17 Net Distnce nd Totl Distnce Trvelled Suppose s is the position of prticle t time t for t [, b]. Then v dt = s (t) dt = s(b) s(). s(b) s() is

More information

Figure 1: Double pendulum system

Figure 1: Double pendulum system Lecture 1 Introuction MATH-GA 710.001 Mechnics The purpose of this lecture is to motivte vritionl formultions of clssicl mechnics n to provie brief reminer of the essentil ies n results of the clculus

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Area Under the Torque vs. RPM Curve: Average Power

Area Under the Torque vs. RPM Curve: Average Power Are Uner the orque vs. RM Curve: Averge ower Wht is torque? Some Bsics Consier wrench on nut, the torque bout the nut is Force, F F θ r rf sinθ orque, If F is t right ngle to moment rm r then rf How oes

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

cha1873x_p06.qxd 4/12/05 11:50 AM Page 568 PART SIX

cha1873x_p06.qxd 4/12/05 11:50 AM Page 568 PART SIX ch1873x_p6.qx 4/12/5 11:5 AM Pge 568 PART SIX NUMERICAL DIFFERENTIATION AND INTEGRATION PT6.1 MOTIVATION Clculus is the mthemtics of chnge. Becuse engineers must continuously el with systems n processes

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35 7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

CHAPTER 4 MULTIPLE INTEGRALS

CHAPTER 4 MULTIPLE INTEGRALS CHAPTE 4 MULTIPLE INTEGAL The objects of this chpter re five-fold. They re: (1 Discuss when sclr-vlued functions f cn be integrted over closed rectngulr boxes in n ; simply put, f is integrble over iff

More information