MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle

Size: px
Start display at page:

Download "MEG6007: Advanced Dynamics -Principles and Computational Methods (Fall, 2017) Lecture 4: Euler-Lagrange Equations via Hamilton s Principle"

Transcription

1 MEG6007: Avnce Dynmics -Principles n Computtionl Methos (Fll, 2017) Lecture 4: Euler-Lgrnge Equtions vi Hmilton s Principle This lecture covers: Begin with Alembert s Principle. Cst the virtul work emnting from Alembert s principle into the time-efinite integrl to obtin Hmilton s Principle. Crry out the vrition of the time-efinite integrl to obtin the Euler-Lgrnge equtions of motion. Apply the Euler-Lgrnge equtions of motion to simple exmple problems. 4.1 A Précis of Euler s n Lgrnge s contributions to mechnics (s well s science n mthemtics) Leonhr Euler ( ) Nturl logrithmic constnt: e = lim n (1+ 1 n )n = Introuction of mny mthemticl nottions: f(x) s function f pplie to the rgument x. Series expnsion of e x = n=0 x n n! Complex exponentil function e iθ = cos θ + i sin θ 1

2 Euler-Bernoulli bem theory: EI 4 w x 4 = q(x) Euler s rottionl equtions for rigi boy(theori motus corporum soliorum seu rigiorum, 1760): J ω + ω (J ω) = M Euler ngles to represent the orienttion of soli boy in the 3-imensionl spce Joseph-Louis Lgrnge ( ) His book, Mécnique Anlytique, ppere in In tht book, Lgrnge orgnize the principles of ynmics into the four principles the conservtion of living forces (first trete by Glileo n perfecte by Huyghens); the conservtion of the motion of the center of grvity(newton); the conservtion of moments or the principle of res (Euler, Bernoulli, Arcy); n the principle of the lest quntity of ction (Mupertuis). Metho of multipliers, now referre to s Lgrnge s metho of multipliers. The principle of virtul work (or sometimes referre to of virtul velocities). He solve the three-boy(erth, Sun n Moon) problem(1764) n ientifie the so-clle Lgrngin points in the Erth- Moon-stellite system ( points). His nme is inscribe on the Eiffel Tower long with 71 other nmes. 2

3 4.2 Extene Hmilton s Principle Let s begin with Alembert s principle: (F i m i r i ) δr i = 0 δt + δ W t (m iṙ i δr i ) = 0, δw = F i δr i, δt = δt i, δt i = δ( 1m 2 iṙ i ṙ i ) i (4.1) Let s integrte (4.1) in time: {δt + δ W {δt + δ W } t = t (m iṙ i δr i )} t = 0 t (m iṙ i δr i ) t (4.2) Noting tht we hve t (m iṙ i δr i ) t = so tht, if r i ( ) n r i (t 2 ) re specifie, we hve (m i ṙ i δr i ) t 2 t1 (4.3) δr i ( ) = δr i (t 2 ) = 0 (4.4) Hence, eqution (4.1) becomes {δt + δ W } t = 0 (4.5) which is known s extene Hmilton s principle. In generl the work one, δ W, consists of two prts: 3

4 δ W = δ W cons + δ W noncons (4.6) where subscripts cons n noncons esignte conservtive n nonconservtive systems, respectively. 4.3 Hmilton s Principle for Conservtive Systems For conservtive systems, we hve hve from (4.5) n (4.6) with δ W noncons = 0: {δt + δ W cons } t = 0 (4.7) which is known s Hmilton s principle for conservtive systems. 4.4 Action Integrl for Conservtive Systems Observe tht the work one on the conservtive systems cn be expresse in terms of the corresponing potentil energy: δ W rref cons = δv, V = ( r F i r i ) (4.8) Substituting (4.8) into (4.7), one obtins: {δt δv } t = 0 {δt δv } t = 0 (4.9) δs = {δl} t = 0, L = T V where L is clle system Lgrngin. 4

5 4.5 Euler-Lgrnge Eqution s of Motion Let s substitute the generl work expression (4.6) into the extene Hmilton s principle (4.5) to obtin: {δt + δ W cons + δ W noncons } t = 0 (4.10) which, with (4.8) n the efinition of the system Lgrngin L = T V, becomes {δl + δ W noncons } t = 0 (4.11) Since δl cn be expresse in terms of the generlize coorintes s δl = one obtins { L δ q k + L δq k } (4.12) q k q k δl t = { L δ q k + L δq k } t (4.13) q k q k Integrting by prt the first term of the preceing integrl, we obtin { L δ q k } t = { L δq k } t 2 q k q k t1 { t ( L )δq k } t q k (4.14) Since δq i ( ) = δq(t 2 ) = 0 s we iscusse in eriving (4.4), we hve { L δ q k } t = q k { t ( L )δq k } t (4.15) q k Substituting (4.15) into (4.13), then introucing the resulting 5

6 expression into (4.11), we finlly obtin: { t ( L ) + L + Q k }δq k t = 0, δ q k q W noncons = Q k δq k k (4.16) Since δq k re rbitrry, we obtin: t ( L q k ) L q k = Q k (4.17) which is clle Euler-Lgrnge s equtions of motion. 4.6 Appliction of Euler-Lgrge s Equtions of Motion: A Spring-Mss-Br System for Euler-Lgrnge s Equtions Notice below how simple the problem escription n its erivtion become now! Step 1. The position vectors for the exmple problem: Position vectors of the sliing mss M, the penulum br t C, n B where the nonconservtive force F is pplie re given by: r A = xi r C = xi + L (sin θi cos θj) 2 r B = xi + L(sin θi cos θj) (4.18) r C = L 2 j Step 2. The kinetic energy of the exmple problem: 6

7 Fig. 1. An exmple problem for pplying Euler-Lgrnge s equtions of motion T = 1 2 m(ṙ A ṙ A ) M(ṙ C ṙ C ) I C θ 2 (4.19) = 1 2 [(M + m)ẋ2 + MLẋ θ cos θ ML2 θ2 ] Step 3. Potentil energy: V totl = V spring + V grvity V spring = V grvity = 0 x rc r C ( kxi) r A = 1 2 kx2 ( Mgj) r C (4.20) = Mg L (1 cos θ) 2 Step 4. Nonconservtive work δ W noncons : δ W noncons = F B δr B = F i [δxi + L(cos θi + sin θj)δθ] = F (δx + L cos θ δθ) Q x = F, Q θ = F L cos θ (4.21) Note tht there re only two stte vribles: x n θ in the 7

8 system kinetic energy, potentil energy n the nonconservtive work. Step 5. Euler-Lgrnge s Equtions of Motion for Exmple Problem t ( L ẋ ) L x = Q x = F t ( L L ) θ θ = Q θ = F L cos θ t [(M + m)ẋ ML θ cos θ] + kx = F ML 6 t (2L θ + 3ẋ cos θ) + 1ML(ẋ θ + g) sin θ = F L cos θ 2 (4.22) 4.7 Mthemticl Derivtion of the Euler-Lgrnge Equtions Mthemticl erivtion of the Euler-Lgrnge equtions cn be crrie out by utilizing the clculus of vritions of efinite integrl. To this en, let us now ress how one obtins sttionry vlue of function vi the clculus of vritions. First, the concept of virtul isplcement shoul not be confuse with the concept of the vrition of function. For we hve the virtul isplcement t our isposl, but the vrition of the function is not. Suppose we re to obtin sttionry vlue of Π = G(y, y, x)x (4.23) with the bounry conitions y() = α, y(b) = β (4.24) 8

9 Assume tht y = f(x) by hypothesis gives sttionry vlue to Π. One wy to prove this to be true is to evlute the sme integrl for slightly moifie function ȳ n estblish tht the rte of chnge of Π ue to the chnge in y is zero (why?). We cn thus write ȳ = f(x) + ɛg(x) = y(x) + ɛg(x) (4.25) where g(x) is n rbitrry function tht must be continuous n ifferentible s y. Since g(x) is n rbitrry function, this ifference is clle the vrition of the function y n is enote by δy: δy = ȳ y = ɛg(x) (4.26) This is seemingly trivil expression but there is n importnt property: The vrition of δy refers to n rbitrry infinitesiml chnge of the vlue of the epenent vrible of y, t the point x. The inepenent vrible, x, oes not prticipte in the process of vrition. A consequence of the bove sttement is δx = 0, (4.27) thus resulting in δy() = δy(b) = 0 (4.28) Before we procee to minimize Π in (4.23), we nee to estblish two itionl properties of the δ-process. Since G(y, y, x) involves y, we nee to know how to express δy. To this en, we note from (4.26) x δy = (ȳ y) = x x (ɛg(x)) = ɛg (4.29) which is the erivtive of the vrition δy. On the other hn, 9

10 for the vrition of the erivtive, we hve δy = ȳ y = (y + ɛg) y = ɛg (4.30) Equtions (4.29) n (4.30) give y δy = δ x x (4.31) Hence, the erivtive of the vrition is the sme s the vrition of the erivtive. Similrly, one cn show δ G(y, y, x)x = δg(y, y, x)x (4.32) In other wors, vrition n ifferentition re commuttive. Similrly, one cn show tht vrition n integrtion re lso commuttive. We re now rey to minimize Π in (4.23). First, we hve δg(y, y, x) = G(y + ɛg, y + ɛg, x) G(y, y, x) = ɛ( G y g + G y g ) (4.33) Now for the vrition of the efinite integrl (4.23), we pply (4.31) n (4.33): δπ = δ = ɛ G(y, y, x)x = ( G y g + G y g )x δg(y, y, x)x (4.34) Upon utilizing the rule of integrtion by prts, we hve G y g x = [ G y g]b x ( G )gx (4.35) y 10

11 Since the vrition of y t x = n x = b is zero from (4.28), we hve the following vritionl quntities: {δy() = ɛg() = 0, δy(b) = ɛg(b) = 0} => g() = g(b) = 0 (4.36) so tht we hve [ G g(b)] [ Gg()] = 0 (4.37) y y Substituting (4.36) n (4.37) into (4.35), we obtin δπ = ɛ ( G y G )gx (4.38) x y As ɛ is ssocite with n rbitrry vrition of y, the sttionry vlue of Π is δπ ɛ = ( G y G )g(x)x = 0 (4.39) x y Since g(x) is n rbitrry function tht represents the vrition of y, we must hve for the sttionry vlue of Π: G y G = 0 (4.40) x y This is the celebrte Euler-Lgrnge eqution in mechnics when G(y, y, x) is replce by the Lgrngin function, L, with substitutions of y by q n x by t: G(y, y, x) = L( q, q, t) = {T ( q, q) V (q)} (4.41) so tht we hve from (4.40) the equtions of motion s given by T t q T q + V q = 0 (4.42) 11

12 Remrk: When G is of the form G = G(y, y, y, x) (4.43) the resulting Euler-Lgrnge eqution is given by G y G x y + 2 G = 0 (4.44) x 2 y with the ssocite bounry conitions given by [( G y x G G )δy + y y δy ] b = 0 (4.45) The preceing equtions re pplicble for bem uner grvity lo for which G becomes G = EI( 2 w(x) x 2 ) 2 mgw(x) (4.46) where m is the mss per unit bem length. 12

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6

EULER-LAGRANGE EQUATIONS. Contents. 2. Variational formulation 2 3. Constrained systems and d Alembert principle Legendre transform 6 EULER-LAGRANGE EQUATIONS EUGENE LERMAN Contents 1. Clssicl system of N prticles in R 3 1 2. Vritionl formultion 2 3. Constrine systems n Alembert principle. 4 4. Legenre trnsform 6 1. Clssicl system of

More information

Course 2BA1 Supplement concerning Integration by Parts

Course 2BA1 Supplement concerning Integration by Parts Course 2BA1 Supplement concerning Integrtion by Prts Dvi R. Wilkins Copyright c Dvi R. Wilkins 22 3 The Rule for Integrtion by Prts Let u n v be continuously ifferentible rel-vlue functions on the intervl

More information

Chapter 2. Constraints, Lagrange s equations

Chapter 2. Constraints, Lagrange s equations Chpter Constrints, Lgrnge s equtions Section Constrints The position of the prticle or system follows certin rules due to constrints: Holonomic constrint: f (r. r,... r n, t) = 0 Constrints tht re not

More information

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for

LECTURE 3. Orthogonal Functions. n X. It should be noted, however, that the vectors f i need not be orthogonal nor need they have unit length for ECTURE 3 Orthogonl Functions 1. Orthogonl Bses The pproprite setting for our iscussion of orthogonl functions is tht of liner lgebr. So let me recll some relevnt fcts bout nite imensionl vector spces.

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Overview of Calculus

Overview of Calculus Overview of Clculus June 6, 2016 1 Limits Clculus begins with the notion of limit. In symbols, lim f(x) = L x c In wors, however close you emn tht the function f evlute t x, f(x), to be to the limit L

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

MatFys. Week 2, Nov , 2005, revised Nov. 23

MatFys. Week 2, Nov , 2005, revised Nov. 23 MtFys Week 2, Nov. 21-27, 2005, revised Nov. 23 Lectures This week s lectures will be bsed on Ch.3 of the text book, VIA. Mondy Nov. 21 The fundmentls of the clculus of vritions in Eucliden spce nd its

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS LEARNING OBJECTIVES After stuying this chpter, you will be ble to: Unerstn the bsics

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

ES.181A Topic 8 Notes Jeremy Orloff

ES.181A Topic 8 Notes Jeremy Orloff ES.8A Topic 8 Notes Jeremy Orloff 8 Integrtion: u-substitution, trig-substitution 8. Integrtion techniques Only prctice will mke perfect. These techniques re importnt, but not the intellectul hert of the

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Conservation Laws and Poynting

Conservation Laws and Poynting Chpter 11 Conservtion Lws n Poynting Vector In electrosttics n mgnetosttics one ssocites n energy ensity to the presence of the fiels U = 1 2 E2 + 1 2 B2 = (electric n mgnetic energy)/volume (11.1) In

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

VII. The Integral. 50. Area under a Graph. y = f(x)

VII. The Integral. 50. Area under a Graph. y = f(x) VII. The Integrl In this chpter we efine the integrl of function on some intervl [, b]. The most common interprettion of the integrl is in terms of the re uner the grph of the given function, so tht is

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Recall Taylor s Theorem for a function f(x) in three dimensions with a displacement δx = (δx, δy, δz): δx + δy + δz + higher order terms. = f. δx +.

Recall Taylor s Theorem for a function f(x) in three dimensions with a displacement δx = (δx, δy, δz): δx + δy + δz + higher order terms. = f. δx +. Chpter 1 Vritionl Methos 1.1 Sttionry Vlues of Functions Recll Tylor s Theorem for function f(x) in three imensions with isplcement δx (δx, δy, δz): so tht f(x + δx) f(x) + f f f δx + δy + δz + higher

More information

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as Y. D. Chong (26) MH28: Complex Methos for the Sciences 2. Integrls If we hve function f(x) which is well-efine for some x, its integrl over those two vlues is efine s N ( ) f(x) = lim x f(x n ) where x

More information

Figure 1: Double pendulum system

Figure 1: Double pendulum system Lecture 1 Introuction MATH-GA 710.001 Mechnics The purpose of this lecture is to motivte vritionl formultions of clssicl mechnics n to provie brief reminer of the essentil ies n results of the clculus

More information

4. Calculus of Variations

4. Calculus of Variations 4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the

More information

Homework Assignment 5 Solution Set

Homework Assignment 5 Solution Set Homework Assignment 5 Solution Set PHYCS 44 3 Februry, 4 Problem Griffiths 3.8 The first imge chrge gurntees potentil of zero on the surfce. The secon imge chrge won t chnge the contribution to the potentil

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

1.6 Mechanical Systems

1.6 Mechanical Systems 1.6 Mechnicl Systems 1.6 Mechnicl Systems 45 Mechnics provies n excellent clss of systems for both motivting the ies of ynmicl systems n to which the ies of ynmicl systems pply. We sw some simple exmples

More information

Notes on the Eigenfunction Method for solving differential equations

Notes on the Eigenfunction Method for solving differential equations Notes on the Eigenfunction Metho for solving ifferentil equtions Reminer: Wereconsieringtheinfinite-imensionlHilbertspceL 2 ([, b] of ll squre-integrble functions over the intervl [, b] (ie, b f(x 2

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Introduction to ODE's (0A) Young Won Lim 3/12/15

Introduction to ODE's (0A) Young Won Lim 3/12/15 Introduction to ODE's (0A) Copyright (c) 2011-2015 Young W. Lim. Permission is grnted to copy, distribute nd/or modify this document under the terms of the GNU Free Documenttion License, Version 1.2 or

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

M 106 Integral Calculus and Applications

M 106 Integral Calculus and Applications M 6 Integrl Clculus n Applictions Contents The Inefinite Integrls.................................................... Antierivtives n Inefinite Integrls.. Antierivtives.............................................................

More information

Calculus of Variations

Calculus of Variations Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function

More information

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x Elementr mthemticl epressions Qurtic equtions b b b The solutions to the generl qurtic eqution re (1) b c () b b 4c (3) Tlor n Mclurin series (power-series epnsion) The Tlor series n n f f f n 1!! n! f

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS 4.5 The Funmentl Theorem of Clculus Contemporry Clculus 4.5 THE FUNDAMENTAL THEOREM OF CALCULUS This section contins the most importnt n most use theorem of clculus, THE Funmentl Theorem of Clculus. Discovere

More information

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx

Math 115 ( ) Yum-Tong Siu 1. Lagrange Multipliers and Variational Problems with Constraints. F (x,y,y )dx Mth 5 2006-2007) Yum-Tong Siu Lgrnge Multipliers nd Vritionl Problems with Constrints Integrl Constrints. Consider the vritionl problem of finding the extremls for the functionl J[y] = F x,y,y )dx with

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

Section 6.3 The Fundamental Theorem, Part I

Section 6.3 The Fundamental Theorem, Part I Section 6.3 The Funmentl Theorem, Prt I (3//8) Overview: The Funmentl Theorem of Clculus shows tht ifferentition n integrtion re, in sense, inverse opertions. It is presente in two prts. We previewe Prt

More information

Harman Outline 1A1 Integral Calculus CENG 5131

Harman Outline 1A1 Integral Calculus CENG 5131 Hrmn Outline 1A1 Integrl Clculus CENG 5131 September 5, 213 III. Review of Integrtion A.Bsic Definitions Hrmn Ch14,P642 Fundmentl Theorem of Clculus The fundmentl theorem of clculus shows the intimte reltionship

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Physics 161: Black Holes: Lecture 6: 14 Jan 2011

Physics 161: Black Holes: Lecture 6: 14 Jan 2011 Physics 161: Blck Holes: Lecture 6: 14 Jn 2011 Professor: Kim Griest 6 Geodesics: Moving in stright lines through curved spcetime We sw tht grvity curves time nd spce. A very importnt result is how things

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Introduction and Review

Introduction and Review Chpter 6A Notes Pge of Introuction n Review Derivtives y = f(x) y x = f (x) Evlute erivtive t x = : y = x x= f f(+h) f() () = lim h h Geometric Interprettion: see figure slope of the line tngent to f t

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

Week 12 Notes. Aim: How do we use differentiation to maximize/minimize certain values (e.g. profit, cost,

Week 12 Notes. Aim: How do we use differentiation to maximize/minimize certain values (e.g. profit, cost, Week 2 Notes ) Optimiztion Problems: Aim: How o we use ifferentition to mximize/minimize certin vlues (e.g. profit, cost, volume, ) Exmple: Suppose you own tour bus n you book groups of 20 to 70 people

More information

Introduction. Calculus I. Calculus II: The Area Problem

Introduction. Calculus I. Calculus II: The Area Problem Introuction Clculus I Clculus I h s its theme the slope problem How o we mke sense of the notion of slope for curves when we only know wht the slope of line mens? The nswer, of course, ws the to efine

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

More information

Generalizations of the Basic Functional

Generalizations of the Basic Functional 3 Generliztions of the Bsic Functionl 3 1 Chpter 3: GENERALIZATIONS OF THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 3.1 Functionls with Higher Order Derivtives.......... 3 3 3.2 Severl Dependent Vribles...............

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Lagrangian Dynamics: Derivations of Lagrange s Equations

Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and Degrees of Freedom 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 4/9/007 Lecture 15 Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

School of Business. Blank Page

School of Business. Blank Page Integrl Clculus This unit is esigne to introuce the lerners to the sic concepts ssocite with Integrl Clculus. Integrl clculus cn e clssifie n iscusse into two thres. One is Inefinite Integrl n the other

More information

Basic Derivative Properties

Basic Derivative Properties Bsic Derivtive Properties Let s strt this section by remining ourselves tht the erivtive is the slope of function Wht is the slope of constnt function? c FACT 2 Let f () =c, where c is constnt Then f 0

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Theorem Suppose f is continuous

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Solutions to Homework Set 3

Solutions to Homework Set 3 Solutions to Homework Set 3 1 Bent brs: First recll some elementry clculus results: the curvture κ, nd the rdius R of the osculting circle, t point (x, y on curve y(x re given by κ = 1 R = dψ = 1 d tn

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

Matrix & Vector Basic Linear Algebra & Calculus

Matrix & Vector Basic Linear Algebra & Calculus Mtrix & Vector Bsic Liner lgebr & lculus Wht is mtrix? rectngulr rry of numbers (we will concentrte on rel numbers). nxm mtrix hs n rows n m columns M x4 M M M M M M M M M M M M 4 4 4 First row Secon row

More information

B Veitch. Calculus I Study Guide

B Veitch. Calculus I Study Guide Clculus I Stuy Guie This stuy guie is in no wy exhustive. As stte in clss, ny type of question from clss, quizzes, exms, n homeworks re fir gme. There s no informtion here bout the wor problems. 1. Some

More information

First variation. (one-variable problem) January 14, 2013

First variation. (one-variable problem) January 14, 2013 First vrition (one-vrible problem) Jnury 14, 2013 Contents 1 Sttionrity of n integrl functionl 2 1.1 Euler eqution (Optimlity conditions)............... 2 1.2 First integrls: Three specil cses.................

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry and basic calculus ES 111 Mthemticl Methods in the Erth Sciences Lecture Outline 1 - Thurs 28th Sept 17 Review of trigonometry nd bsic clculus Trigonometry When is it useful? Everywhere! Anything involving coordinte systems

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Math 3B: Lecture 9. Noah White. October 18, 2017

Math 3B: Lecture 9. Noah White. October 18, 2017 Mth 3B: Lecture 9 Noh White October 18, 2017 The definite integrl Defintion The definite integrl of function f (x) is defined to be where x = b n. f (x) dx = lim n x n f ( + k x) k=1 Properties of definite

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

Problem 1. Brachistochrone time-of-flight

Problem 1. Brachistochrone time-of-flight PHY 320 Homework 3 Solution Spring 207 Problem. Brchistochrone time-of-flight From clss discussion nd the textbook, we know tht the functionl to be minimized is the time: 2 t = d s = 2 +(y') v 2 v d x

More information

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i (

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i ( PHYS851 Quntum Mechnics I, Fll 2009 HOMEWORK ASSIGNMENT 7 1. The continuity eqution: The probbility tht prticle of mss m lies on the intervl [,b] t time t is Pt,b b x ψx,t 2 1 Differentite 1 n use the

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 1 Sturm-Liouville Theory In the two preceing lectures I emonstrte the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series re just the tip of the iceerg of the theory

More information

Calculus of Variations: The Direct Approach

Calculus of Variations: The Direct Approach Clculus of Vritions: The Direct Approch Lecture by Andrejs Treibergs, Notes by Bryn Wilson June 7, 2010 The originl lecture slides re vilble online t: http://www.mth.uth.edu/~treiberg/directmethodslides.pdf

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Some Methods in the Calculus of Variations

Some Methods in the Calculus of Variations CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

More information

Homework Problem Set 1 Solutions

Homework Problem Set 1 Solutions Chemistry 460 Dr. Jen M. Stnr Homework Problem Set 1 Solutions 1. Determine the outcomes of operting the following opertors on the functions liste. In these functions, is constnt..) opertor: / ; function:

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Introduction to Complex Variables Class Notes Instructor: Louis Block

Introduction to Complex Variables Class Notes Instructor: Louis Block Introuction to omplex Vribles lss Notes Instructor: Louis Block Definition 1. (n remrk) We consier the complex plne consisting of ll z = (x, y) = x + iy, where x n y re rel. We write x = Rez (the rel prt

More information

Variational Problems

Variational Problems Vritionl Problems Com S 477/577 Notes Yn-Bin Ji Dec 7, 017 ThevritionlderivtiveoffunctionlJ[y]cnbedefinedsδJ/δy = F y x,y,y d dx F y x,y,y [1, pp. 7 9]. Euler s eqution essentilly sttes tht the vritionl

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

The Form of Hanging Slinky

The Form of Hanging Slinky Bulletin of Aichi Univ. of Eduction, 66Nturl Sciences, pp. - 6, Mrch, 07 The Form of Hnging Slinky Kenzi ODANI Deprtment of Mthemtics Eduction, Aichi University of Eduction, Kriy 448-854, Jpn Introduction

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Special notes. ftp://ftp.math.gatech.edu/pub/users/heil/1501. Chapter 1

Special notes. ftp://ftp.math.gatech.edu/pub/users/heil/1501. Chapter 1 MATH 1501 QUICK REVIEW FOR FINAL EXAM FALL 2001 C. Heil Below is quick list of some of the highlights from the sections of the text tht we hve covere. You shoul be unerstn n be ble to use or pply ech item

More information

cha1873x_p06.qxd 4/12/05 11:50 AM Page 568 PART SIX

cha1873x_p06.qxd 4/12/05 11:50 AM Page 568 PART SIX ch1873x_p6.qx 4/12/5 11:5 AM Pge 568 PART SIX NUMERICAL DIFFERENTIATION AND INTEGRATION PT6.1 MOTIVATION Clculus is the mthemtics of chnge. Becuse engineers must continuously el with systems n processes

More information