Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008


 Lesley Nichols
 9 months ago
 Views:
Transcription
1 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 25pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of the lectures nd redings, i.e. chpters 17 of the textbook, excluding the pseudoinverse (in section 7.4). Approximtely hlf of the exm will be devoted to mteril covered fter the second midterm. Outline of topics covered fter Exm 2 (1) Digonlizbility ( 6.2) () We sy A is digonlizble if it hs n linerly independent eigenvectors. Equivlently, there is bsis of R n consisting of eigenvectors of A. (b) Some mtrices re digonlizble (like ( )), while others re not (like ( )). (c) A rndom mtrix is likely to be digonlizble, nd ny mtrix cn be mde digonlizble by chnging its entries by n rbitrrily smll mount. (d) If A hs n distinct eigenvlues, then A is digonlizble; this follows from two fcts: (i) Every eigenvlue hs t lest one ssocited eigenvector (ii) Eigenvectors with different eigenvlues re linerly independent (e) If λ is n eigenvlue of A, its lgebric multiplicity is the number of times it ppers s root of det(a λi). For exmple, if det(a λi) = λ 2 (λ + 1)(λ 2) 3 then the lgebric multiplicities re: λ AM (f) If λ is n eigenvlue of A, its geometric multiplicity is the mximl number of linerly independent eigenvectors with eigenvlue λ, i.e. GM = dim N(A λi). For exmple, here re two 2 2 mtrices whose only eigenvlue is 2 (hence AM = 2), but where the geometric multiplicities differ. A GM of λ = 2 ( ) 2 ( ) 1 (g) A is digonlizble exctly when AM = GM for ech eigenvlue. Since GM AM, nondigonlizble mtrices re exctly those with too few eigenvectors.
2 2 (2) Digonliztion ( 6.2) () Suppose A is digonlizble mtrix with eigenvlues λ 1,..., λ n nd ssocited eigenvectors x 1,..., x n, i.e. Ax i = λ i x i. (b) Let λ 1 λ 2 Λ =.... λ n This is the digonl eigenvlue mtrix. (c) Let S = x 1 x 2 x n This is the eigenvector mtrix, which is invertible becuse its columns form bsis of R n. (d) Since Ax i = λ i x i, we hve A = SΛS 1. (e) Conversely, if A = SΛS 1, then the columns of S re eigenvectors nd the digonl entries of Λ re the eigenvlues. (f) Since A k = SΛ k S 1, the mtrix A k hs the sme eigenvectors s A, with eigenvlues λ k 1,..., λk n. (g) If 0 is not n eigenvlue, then A is invertible nd A 1 = SΛ 1 S 1, so A 1 hs the sme eigenvectors s A, with eigenvlues 1/λ i,..., 1/λ n. (h) A k 0 s k if ll of the eigenvlues of A stisfy λ i < 1. (This is true even if A is not digonblizble, but for digonlizble mtrices it follows from A = SΛS 1.) (3) Appliction: Difference Equtions ( 6.2) () Define sequence of vectors strting with u 0 nd pplying the rule u k+1 = Au k. (b) If x i is n eigenvector of A with eigenvlue λ i, then u k = λ k i x i is solution of u k+1 = Au k. (c) If λ i < 1, then the corresponding solution decys s k, while if λ i > 1 the solution blows up. (d) If λ i = 1, then ny multiple of x i is stedystte solution, becuse Ax i = x i. (e) If A is digonlizble, then its eigenvectors form bsis of R n, so ny strting vector u 0 is liner combintion of them: u 0 = c 1 x c n x n
3 3 The corresponding solution to u k+1 = Au k is therefore u k = c 1 λ k 1x c n λ k nx n (f) The mtrix form of this solution is u k = A k u 0 = SΛ k S 1 u k = SΛ k c. (g) This method llows us to find n explicit formul for the Fiboncci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 33,...), which obey the secondorder reltion F k+2 = F k+1 + F k. This cn be mde into firstorder difference eqution by considering the vector Fk+1 u k = F k which stisfies u k+1 = 1 1 u 1 0 k. (h) The k th Fiboncci number is pproximtely ( F k ) k becuse is the only eigenvlue of ( ) lrger thn 1. (The fctor 5 comes from the initil conditions F 0 = 0, F 1 = 1.) (4) Appliction: Differentil Equtions ( 6.3) () Given n n n mtrix A, consider the system of differentil equtions where du dt = Au u 1 (t) u(t) =.. u n (t) This system is liner, firstorder, nd hs constnt coefficients. (b) If x i is n eigenvector of A with eigenvlue λ i, then u(t) = e λ it x i is solution of du dt = Au. It is pure exponentil solution, where u(t) moves long the line of multiples of x i. (c) If Re(λ i ) < 0, then the corresponding solution decys s t, while if Re(λ i ) > 0 the solution blows up. (d) If λ i = 0, then ny multiple of x i is stedystte solution, becuse Ax i = 0.
4 4 (e) If A is digonlizble, then its eigenvectors form bsis of R n, so ny initil condition u(0) is liner combintion of them: u(0) = c 1 x c n x n The corresponding solution to du dt = Au is therefore u(t) = c 1 e λ 1t x c n e λnt x n (f) The mtrix form of this solution is u(t) = e At u(0) = Se Λt S 1 u(0) = Se Λt c. (g) The mtrix exponentil e A is defined by e A = I + A A2 + = k! Ak k=1 nd this sum converges for ll n n mtrices A. (h) The exponentil of digonl mtrix is e 0 λ 1 λ2... λ n 1 C A = e λ 1 e λ e λn (i) Higherorder liner equtions with constnt coefficients cn be reduced to systems of firstorder equtions; for exmple, to solve the eqution y + by + ky = 0 we consider the vector function ( y u(t) = ) (t) y(t) which stisfies du dt = b k u. 1 0 (j) For 2 2 mtrix A, the solutions of du dt = Au will be stble (decy s t ) if the trce of A is negtive nd the determinnt of A is positive: tr(a) < 0 nd det(a) > 0 (5) Symmetric Mtrices nd the Spectrl Theorem ( 6.4) () Every symmetric mtrix A is digonlizble. (b) The eigenvlues of symmetric mtrix re rel, nd its eigenvectors re orthogonl. (c) If the eigenvectors re chosen to hve unit length, they form n orthonorml bsis of R n, so the eigenvector mtrix Q is orthogonl. Thus digonliztion becomes A = QΛQ T for symmetric mtrix A, which is the spectrl theorem.
5 (d) The spectrl theorem llows us to write A s combintion of projections, A = λ 1 P λ n P n where P i is the projection onto the spn of the eigenvector q i. (e) The pivots nd the eigenvlues of symmetric mtrix re different, but re both rel. Furthermore, the number of positive (resp. negtive) pivots is equl to the number of positive (resp. negtive) eigenvlues. The number of zero eigenvlues is the dimension of the null spce (which one might be tempted to cll the number of zero pivots ). (6) Positive Definite Mtrices ( 6.5) () A mtrix is positive definite if it is symmetric nd its eigenvlues re positive, i.e. λ i > 0. (b) A symmetric mtrix is positive definite if nd only if its pivots re positive. This is the pivot test, which works becuse the pivots nd eigenvlues of symmetric mtrix hve the sme signs. (c) A symmetric mtrix A is positive definite if nd only if its upperleft determinnts d 1,..., d n re positive, where d 1 = det( 11 ) = d 2 = det ,(n 1) d n 1 = det.. (n 1),1 (n 1),(n 1) d n = det(a) This is the determinnt test, which works becuse the pivots re rtios of these determinnts. (d) A symmetric mtrix A is positive definite if nd only if x T Ax > 0 for ll nonzero vectors x. This is the qudrtic form test. (e) The quntity x T Ax is qudrtic form, mening tht it is qudrtic expression in the components of x; specificlly, x T Ax = i,j x 1 ij x i x j where x =. (f) The qudrtic form test works becuse x T Ax cn be written s sum of squres where the coefficients re the pivots; this is clerly positive if ll of the pivots re positive, nd cn be zero or negtive otherwise. x n. 5
6 6 (g) For 2 2 symmetric mtrix A, we hve the LDL T decomposition b b = b c 0 1 b 1 0 c b 2 so the pivots re nd c b2. Similrly, the qudrtic form x T Ax is sum of squres: ( x T Ax = x bx 1 x 2 + cx 2 2 = x 1 + b 2 2) x + c b 2 (x 2 ) 2 (h) If A is positive definite, then the grph of x T Ax is prboloid. Its minimum is t x = 0. (i) If A hs both positive nd negtive eigenvlues, then the grph of x T Ax is sddleshped. (j) If A is positive definite, the eqution x T Ax = 1 defines n ellipsoid in R n. The principl xes of the ellipsoid re the lines contining the eigenvectors q 1,..., q n of A, nd the hlfxis lengths re 1/ λ i. This comes from A = QΛQ T. (k) Thus one cn drw the ellipse defined by x 2 + 2bxy + cy 2 by finding the eigenvlues nd eigenvectors of A = b b c. (l) Positive definite mtrices generlize the secondderivtive test from clculus: A criticl point of relvlued function f(x 1,..., x n ) is minimum if the Hessin mtrix is positive definite. lwys symmetric. 2 f H ij = x i x j Becuse prtil derivtives commute, the Hessin is (7) Similr Mtrices nd Jordn s Theorem ( 6.6) () Two n n mtrices A nd B re similr if B = M 1 AM for some invertible mtrix M. (b) Similrity is n equivlence reltion, mening it is (i) Symmetric: A similr to B iff B similr to A (ii) Trnsitive: A similr to B nd B similr to C implies A similr to C (c) A is digonlizble if nd only if it is similr to digonl mtrix Λ. (d) Similr mtrices hve the sme: (i) eigenvlues, (ii) lgebric nd geometric multiplicities, (iii) trce, nd (iv) determinnt. (e) The eigenvectors of A nd of B = M 1 AM re different, but relted; if x is n eigenvector of A with eigenvlue λ, then M 1 x is n eigenvlue of B with eigenvlue λ. (f) If A hs distinct eigenvlues λ 1,..., λ n, then its similrity clss (i.e. the set of ll mtrices similr to A) consists of ll mtrices with eigenvlues λ 1,..., λ n.
7 (g) If A hs repeted eigenvlue, then nother mtrix with the sme eigenvlues my or my not be similr to A. For exmple, A = nd B = hve only one eigenvlue (λ = 2) but re not similr. In fct, B is not similr to ny mtrix except itself. (h) Even if A nd B hve the sme eigenvlues nd the sme number of eigenvectors, they my not be similr. For exmple A = nd B = hve zero s their only eigenvlue, ech hs two independent eigenvectors, but A 2 = 0 while B 2 0 so they re not similr. (i) To clssify the different similrity clsses of mtrices, we find good representtive of ech clss, generlizing the digonl mtrix Λ similr to ny digonlizble mtrix. (j) The k k Jordn block J k (λ) hs λ s its only eigenvlue, nd hs one eigenvector: λ J k (λ) =... 1 λ 7 (k) Jordn s Theorem sys tht every mtrix A is similr to blockdigonl mtrix J of Jordn blocks. Furthermore J is unique up to reordering the blocks, nd is clled the Jordn form of A. The numbers λ i in on the digonls of the blocks re the eigenvlues of A, while the number of blocks is the number of eigenvectors. (l) A is digonlizble if nd only if its Jordn form hs n blocks, ech of which must then hve size 1 1. (8) Singulr Vlue Decomposition ( 6.7) () If S is symmetric mtrix, then S = QΛQ T, so S preserves set of orthogonl coordinte xes. Most liner trnsformtions do not hve this property. The SVD ttempts to do something similr for more generl mtrices. (b) For generl squre mtrix A, one cn find n orthonorml bsis v 1,..., v n such tht Av 1,... Av n is n orthogonl bsis. (c) For such v 1,..., v n, we hve nother orthonorml bsis consisting of u 1 = 1 σ 1 Av 1, u 2 = 1 σ 2 Av 2,..., u n = 1 σ n Av n where σ i = Av i. These numbers σ i re the singulr vlues of A. (d) The singulr vlues of A re not the sme s the eigenvlues of A.
8 8 (e) If U is the mtrix with columns u i, nd V is the mtrix with columns v i, then both re orthogonl, nd we hve A = UΣV T where Σ is the digonl mtrix with digonl entries σ 1,..., σ n. This is the singulr vlue decomposition. (f) Finding the SVD: The vectors v i re the eigenvectors of A T A, nd σi 2 re the eigenvlues. Similrly, the vectors u i re eigenvectors of AA T, with the sme eigenvlues σi 2. (g) Geometriclly, the singulr vlues re the hlfxis lengths of the ellipsoid {Ax x = 1}. (9) Liner Trnsformtions ( ) () A mp T : V W (where V nd W re vector spces) is liner trnsformtion if both of these conditions hold: (i) T (cv) = ct (v) for ll c R nd v V (ii) T (v 1 + v 2 ) = T (v 1 ) + T (v 2 ) for ll v 1, v 2 V (b) A liner trnsformtion is lso clled liner mp, or liner mpping, or we my simply sy tht T is liner. (c) A liner mp T stisfies T (0) = 0 (d) Exmples of liner mps include: (i) T : R n R m defined by T (x) = Ax where A is n m n mtrix (ii) The identity mp Id : V V, defined by Id(v) = v for ll v (iii) The zero mp Z : V W, defined by Z(v) = 0 for ll v (iv) A rottion R : R 2 R 2 of the plne bout the origin (v) Projection P : R 2 R 2 of the plne onto line through the origin (e) The following mps re not liner: (i) The determinnt mp, det : M n n R (ii) The length mp L : R n R, where L(v) = v (iii) A shift mp T : V V, where T (v) = v + v 0 nd v 0 0 (f) If v 1,..., v n is bsis of V, then ny vector v V cn be expressed s v = c 1 v c n v n for unique rel numbers c 1,..., c n. These numbers re the coordintes of v with respect to the bsis v 1,..., v n. (g) If v 1,..., v n is bsis of V, then ny liner mp T : V W is uniquely determined by the vectors T (v 1 ),..., T (v n ) W (h) Choosing n input bsis v 1,..., v n of V nd n output bsis w 1,..., w m of W llows us to ssocite mtrix A to liner trnsformtion T ; the
9 9 entries of A re the coordintes of T (v i ): T (v 1 ) = 11 w w m1 w m T (v 2 ) = 12 w w m2 w m. T (v n ) = 1n w 1 + 2n w mn w m Thus A is n m n mtrix whose j th column gives the coordintes of T (v j ) with respect to w 1,..., w m. 11 1n A =.. m1 mn (i) If T : V V is liner trnsformtion from vector spce to itself, nd v 1,..., v n is bsis of eigenvectors, then the mtrix ssocited to T (using v 1,..., v n s both the input nd output bsis vectors) is digonl. (j) Stndrd bsis of R n is e 1,..., e n where 1 0 e 1 = 0 e 2 = 1 etc... (k) Chnge of bsis for R n : If w 1,..., w n form bsis of R n, put these into the columns of mtrix W. Then the mtrix W 1 trnsforms vector into its coordintes with respect to w 1,..., w n. Tht is, if v = c 1 w 1 + c 2 w 2 + c n w n then 1 c. = W 1 v c n (l) We cn regrd W s the mtrix of the identity trnsformtion with input bsis e 1,..., e n nd output bsis w 1,..., w n. (m) If w 1,..., w n nd z 1,..., z n re bses of R n, then Z 1 W chnges coordintes reltive to w i into coordintes reltive to z i. Red this s from w i to stndrd, then from stndrd to z i. Thus M = Z 1 W is chnge of bsis mtrix. (n) This chnge of bsis mtrix M is the mtrix of the identity liner trnsformtion, with input bsis w 1,..., w n nd output bsis z 1,..., z n. (o) If A nd B re mtrices representing the sme liner trnsformtion T : V W, then A = W 1 BW 2 where W i re chnge of bsis mtrices. (p) If A nd B re mtrices representing T : V V, nd in ech cse, the output nd input bses re the sme, then A nd B re similr.
Matrix Eigenvalues and Eigenvectors September 13, 2017
Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues
More informationMATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN SPACE AND SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
More informationChapter 3. Vector Spaces
3.4 Liner Trnsformtions 1 Chpter 3. Vector Spces 3.4 Liner Trnsformtions Note. We hve lredy studied liner trnsformtions from R n into R m. Now we look t liner trnsformtions from one generl vector spce
More informationBest Approximation in the 2norm
Jim Lmbers MAT 77 Fll Semester 111 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
More informationCSCI 5525 Machine Learning
CSCI 555 Mchine Lerning Some Deini*ons Qudrtic Form : nn squre mtri R n n : n vector R n the qudrtic orm: It is sclr vlue. We oten implicitly ssume tht is symmetric since / / I we write it s the elements
More informationThings to Memorize: A Partial List. January 27, 2017
Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors  Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved
More informationElements of Matrix Algebra
Elements of Mtrix Algebr Klus Neusser Kurt Schmidheiny September 30, 2015 Contents 1 Definitions 2 2 Mtrix opertions 3 3 Rnk of Mtrix 5 4 Specil Functions of Qudrtic Mtrices 6 4.1 Trce of Mtrix.........................
More informationElementary Linear Algebra
Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร
More informationState space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies
Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response
More informationdx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.
Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd
More informationQuadratic Forms. Quadratic Forms
Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte
More information20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
More informationChapter 14. Matrix Representations of Linear Transformations
Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn
More information2. VECTORS AND MATRICES IN 3 DIMENSIONS
2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2dimensionl Vectors x A point in 3dimensionl spce cn e represented y column vector of the form y z zxis yxis z x y xxis Most of the
More informationAbstract inner product spaces
WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the
More informationMultivariate problems and matrix algebra
University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured
More informationChapter 3 Polynomials
Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling
More informationODE: Existence and Uniqueness of a Solution
Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =
More informationModule 6: LINEAR TRANSFORMATIONS
Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for
More informationRecitation 3: More Applications of the Derivative
Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech
More informationHere we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.
Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous
More informationREPRESENTATION THEORY OF PSL 2 (q)
REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory
More informationChapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY
Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in
More informationMatrices, Moments and Quadrature, cont d
Jim Lmbers MAT 285 Summer Session 201516 Lecture 2 Notes Mtrices, Moments nd Qudrture, cont d We hve described how Jcobi mtrices cn be used to compute nodes nd weights for Gussin qudrture rules for generl
More informationThe Regulated and Riemann Integrals
Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue
More informationLecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
More informationHW3, Math 307. CSUF. Spring 2007.
HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem
More information1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation
1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview
More informationMath Lecture 23
Mth 8  Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4
More informationMATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
More informationLecture Solution of a System of Linear Equation
ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville  D. Keffer, 5/9/98 (updted /) Lecture 8  Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner
More informationMath 61CM  Solutions to homework 9
Mth 61CM  Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ
More informationPHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS
PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS To strt on tensor clculus, we need to define differentition on mnifold.a good question to sk is if the prtil derivtive of tensor tensor on mnifold?
More informationARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac
REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b
More informationReview of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
More informationReview of basic calculus
Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below
More informationEE263 homework 8 solutions
EE263 Prof S Boyd EE263 homework 8 solutions 37 FIR filter with smll feedbck Consider cscde of 00 onesmple delys: u z z y () Express this s liner dynmicl system x(t + ) = Ax(t) + Bu(t), y(t) = Cx(t) +
More informationLinear Systems with Constant Coefficients
Liner Systems with Constnt Coefficients 4305 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system
More informationLINEAR ALGEBRA AND MATRICES. n ij. is called the main diagonal or principal diagonal of A. A column vector is a matrix that has only one column.
PART 1 LINEAR ALGEBRA AND MATRICES Generl Nottions Mtri (denoted by cpitl boldfce letter) A is n m n mtri. 11 1... 1 n 1... n A ij...... m1 m... mn ij denotes the component t row i nd column j of A. If
More informationRecitation 3: Applications of the Derivative. 1 HigherOrder Derivatives and their Applications
Mth 1c TA: Pdric Brtlett Recittion 3: Applictions of the Derivtive Week 3 Cltech 013 1 HigherOrder Derivtives nd their Applictions Another thing we could wnt to do with the derivtive, motivted by wht
More informationPrecalculus Spring 2017
Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify
More informationEngineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: TuTh 11:0012:00
Engineering Anlysis ENG 3420 Fll 2009 Dn C. Mrinescu Office: HEC 439 B Office hours: TuTh 11:0012:00 Lecture 13 Lst time: Problem solving in preprtion for the quiz Liner Algebr Concepts Vector Spces,
More informationSTURMLIOUVILLE BOUNDARY VALUE PROBLEMS
STURMLIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2
More informationME 501A Seminar in Engineering Analysis Page 1
Phseplne Anlsis of Ordinr November, 7 Phseplne Anlsis of Ordinr Lrr Cretto Mechnicl Engineering 5A Seminr in Engineering Anlsis November, 7 Outline Mierm exm two weeks from tonight covering ODEs nd Lplce
More informationContinuous Random Variables
STAT/MATH 395 A  PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is relvlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
More informationMath 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8
Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite
More informationLinearity, linear operators, and self adjoint eigenvalue problems
Linerity, liner opertors, nd self djoint eigenvlue problems 1 Elements of liner lgebr The study of liner prtil differentil equtions utilizes, unsurprisingly, mny concepts from liner lgebr nd liner ordinry
More informationApplied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman
Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout
More informationMath 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
More informationNumerical Linear Algebra Assignment 008
Numericl Liner Algebr Assignment 008 Nguyen Qun B Hong Students t Fculty of Mth nd Computer Science, Ho Chi Minh University of Science, Vietnm emil. nguyenqunbhong@gmil.com blog. http://hongnguyenqunb.wordpress.com
More informationHow do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
More informationThe final exam will take place on Friday May 11th from 8am 11am in Evans room 60.
Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23
More informationImproper Integrals, and Differential Equations
Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted
More informationChapter 4 Contravariance, Covariance, and Spacetime Diagrams
Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz
More informationMath& 152 Section Integration by Parts
Mth& 5 Section 7.  Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible
More informationFinal Exam  Review MATH Spring 2017
Finl Exm  Review MATH 5  Spring 7 Chpter, 3, nd Sections 5.5.5, 5.7 Finl Exm: Tuesdy 5/9, :37:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.
More information308K. 1 Section 3.2. Zelaya Eufemia. 1. Example 1: Multiplication of Matrices: X Y Z R S R S X Y Z. By associativity we have to choices:
8K Zely Eufemi Section 2 Exmple : Multipliction of Mtrices: X Y Z T c e d f 2 R S X Y Z 2 c e d f 2 R S 2 By ssocitivity we hve to choices: OR: X Y Z R S cr ds er fs X cy ez X dy fz 2 R S 2 Suggestion
More information4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.
4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)
More information1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a nonconstant can be solved with the same idea as above.
1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt
More informationCS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 2
CS434/54: Pttern Recognition Prof. Olg Veksler Lecture Outline Review of Liner Algebr vectors nd mtrices products nd norms vector spces nd liner trnsformtions eigenvlues nd eigenvectors Introduction to
More information1 2D Second Order Equations: Separation of Variables
Chpter 12 PDEs in Rectngles 1 2D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +
More informationDefinition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim
Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)
More information4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve
Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions
More informationGeometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.
Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number
More informationEnergy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
More informationapproaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
More informationA REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007
A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus
More informationDifferential Geometry: Conformal Maps
Differentil Geometry: Conforml Mps Liner Trnsformtions Definition: We sy tht liner trnsformtion M:R n R n preserves ngles if M(v) 0 for ll v 0 nd: Mv, Mw v, w Mv Mw v w for ll v nd w in R n. Liner Trnsformtions
More informationOrthogonal Polynomials and LeastSquares Approximations to Functions
Chpter Orthogonl Polynomils nd LestSqures Approximtions to Functions **4/5/3 ET. Discrete LestSqures Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
More informationMath 270A: Numerical Linear Algebra
Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner
More information4.4 Areas, Integrals and Antiderivatives
. res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order
More informationMath 3B Final Review
Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:4510:45m SH 1607 Mth Lb Hours: TR 12pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems
More informationThe Algebra (aljabr) of Matrices
Section : Mtri lgebr nd Clculus Wshkewicz College of Engineering he lgebr (ljbr) of Mtrices lgebr s brnch of mthemtics is much broder thn elementry lgebr ll of us studied in our high school dys. In sense
More informationECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
More informationMATH SS124 Sec 39 Concepts summary with examples
This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples
More informationTheoretical foundations of Gaussian quadrature
Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of
More informationMath Bootcamp 2012 Calculus Refresher
Mth Bootcmp 0 Clculus Refresher Exponents For ny rel number x, the powers of x re : x 0 =, x = x, x = x x, etc. Powers re lso clled exponents. Remrk: 0 0 is indeterminte. Frctionl exponents re lso clled
More informationMATH 260 Final Exam April 30, 2013
MATH 60 Finl Exm April 30, 03 Let Mpn,Rq e the spce of nyn mtrices with rel entries () We know tht (with the opertions of mtrix ddition nd sclr multipliction), M pn, Rq is vector spce Wht is the dimension
More informationIntroduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices
Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes
More informationLINEAR ALGEBRA APPLIED
5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nthorder
More informationRead section 3.3, 3.4 Announcements:
Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f
More informationJack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah
1. BornOppenheimer pprox. energy surfces 2. Menfield (HrtreeFock) theory orbitls 3. Pros nd cons of HF RHF, UHF 4. Beyond HF why? 5. First, one usully does HFhow? 6. Bsis sets nd nottions 7. MPn,
More information8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
More informationBases for Vector Spaces
Bses for Vector Spces 22625 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything
More informationSection 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
More informationOrdinary differential equations
Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview IntroductionModelling Bsic concepts to understnd n ODE. Description nd properties
More informationOverview of Calculus I
Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,
More informationChapter 2. Determinants
Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if dbc0. The expression dbc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is
More informationVariational Techniques for SturmLiouville Eigenvalue Problems
Vritionl Techniques for SturmLiouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment
More information4402 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam
4402 Geometry/Topology: Differentible Mnifolds Northwestern University Solutions of Prctice Problems for Finl Exm 1) Using the cnonicl covering of RP n by {U α } 0 α n, where U α = {[x 0 : : x n ] RP
More informationLecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature
Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics  A Peirce UBC Lecture 6: Singulr Integrls, Open Qudrture rules, nd Guss Qudrture (Compiled 6 August 7) In this lecture we discuss the
More informationMatrices and Determinants
Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd GussJordn elimintion to solve systems of liner
More informationContents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport
Contents Structured Rnk Mtrices Lecture 2: Mrc Vn Brel nd Rf Vndebril Dept. of Computer Science, K.U.Leuven, Belgium Chemnitz, Germny, 2630 September 2011 1 Exmples relted to structured rnks 2 2 / 26
More informationTHE DISCRIMINANT & ITS APPLICATIONS
THE DISCRIMINANT & ITS APPLICATIONS The discriminnt ( Δ ) is the epression tht is locted under the squre root sign in the qudrtic formul i.e. Δ b c. For emple: Given +, Δ () ( )() The discriminnt is used
More informationMath Theory of Partial Differential Equations Lecture 29: SturmLiouville eigenvalue problems (continued).
Mth 412501 Theory of Prtil Differentil Equtions Lecture 29: SturmLiouville eigenvlue problems (continued). Regulr SturmLiouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()
More informationPractice final exam solutions
University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If
More informationPolynomials and Division Theory
Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the
More informationMORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
More information1 Linear Least Squares
Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving
More information