Chapter 4 Contravariance, Covariance, and Spacetime Diagrams
|
|
- Egbert Horn
- 1 years ago
- Views:
Transcription
1 Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz Trnsformtion, it is necessry to drw coordinte systems tht re skewed to ech other rther thn to use the trditionl orthogonl coordinte systems. It is therefore pproprite to digress for moment nd look into some of the chrcteristics of skewed coordinte system. For simplicity nd clrity we will strt our discussion in two dimensions, lter we will extend the discussion to more thn two dimensions. Consider the skewed coordinte system shown in figure 4.. We will use the stndrd nottion tht is used in reltivity nd use superscripts to lbel the coordintes x l nd x s shown. (x does not men x squred, it is just different mens of lbeling the coordintes, the reson for which, will become cler in moment.) A series of lines everywhere prllel to these coordinte xis estblishes spce grid. The intersection of ny of these two lines estblishes set of coordintes for ny prticulr point considered. Let us now drw the vector r in this coordinte system. Now let us find the components of the vector r in this skewed coordinte system. But how do we find the components of vector in skewed coordinte system? r x x Figure 4. A skewed coordinte system. () Rectngulr Components of Vector in n Orthogonl Coordinte System. First, let us recll how we find the components of vector in n orthogonl coordinte system. To find the x-component of the vector we project r onto the x-xis by dropping perpendiculr line from the tip of r down to the x-xis s shown in figure 4.(). Its intersection with the x-xis, we cll the x-component of the vector. Note tht the line perpendiculr to the x-xis y y y r r j y j i x x () (b) Figure 4. An orthogonl coordinte system. i x x 4-
2 is lso prllel to the y-xis. The y-component is found by projecting r onto the y-xis by dropping perpendiculr line from the tip of r to the y-xis. Its intersection is clled the y-component of the vector r. Also note tht the line perpendiculr to the y-xis is prllel to the x-xis. In terms of the unit vectors i nd j, nd the x nd y-components, the vector r cn be expressed s r ix + jy (4.) The set of vectors i nd j re sometimes clled set of bse vectors. Implied in the representtion of the vector r by eqution 4. is the prllelogrm lw of vector ddition, becuse ix is vector in the x-direction nd jy is vector in the y-direction. Moving these vectors prllel to themselves genertes the prllelogrm, nd the digonl of tht prllelogrm represents the sum of the two vectors ix nd jy s shown in figure 4.(b). Exmple 4. Rectngulr components of vector. A vector r hs mgnitude of 5 units nd mkes n ngle of with the x-xis. Find the x- nd y-components of this vector. Solution The x-component of the vector r is found s x r cos θ x 5 cos x 4.33 y y r The y-component of the vector r, is found s y r sin θ y 5 sin y.50 θ x x Figure 4.3 The rectngulr components of vector. To go to this Interctive Exmple click on this sentence. (b) Contrvrint components of vector. Now let us return to the sme vector in the skewed coordinte system. We introduce new system of bse vectors l nd s shown in figure 4.4. The bse vector l is in the direction of the x l xis nd is in the direction of the x xis. The bse vectors nd will be clled unitry vectors lthough they don t necessrily hve to be unit vectors. We return to the originl question. How do we find the components of r? For the orthogonl system, the perpendiculr from the tip of r ws perpendiculr to one xis nd prllel to the other. For the skewed coordinte system the prllel of one xis is not perpendiculr to the other. So there ppers to be two wys to find the components of vector in skewed coordinte system. For the first component let us drop line from the tip of r, prllel to the x xis, to the x l xis. This component will be clled the contrvrint component of the vector r nd will be designted s x nd is shown in red in figure 4.4(). Drop nother line, prllel to the x xis, to the x xis. This gives the second contrvrint component x, which is lso shown in red in figure 4.4(). In terms of these contrvrint components the vector r cn be written s 4-
3 x x x x cos α α x r α r α x θ α α x x cos α x x α O x () Contrvrint components (b) Prllelogrm lw Figure 4.4. Contrvrint components of vector. x r x + x (4.) We observe from figure 4.4(b) tht the vectors x nd x dd up to the vector r by the prllelogrm lw of vector ddition. So tht eqution 4. is vlid representtion of vector in the skewed coordinte system. Exmple 4. Contrvrint components of vector. A vector r hs mgnitude of 5.00 units nd mkes n ngle of with the x-xis. If the skewed coordinte system, figure 4.5, mkes n ngle α , () find the contrvrint components of this vector, nd (b) express the vector in terms of its contrvrint components. Solution. The contrvrint components of the vector r re found from the geometry of figure 4.5. The contrvrint component x is found by observing from tringle I sin α r sin (α θ) (4.3) x Upon solving for the contrvrint component x we get r sin ( α - θ) x (4.4) x 5.00 sin( ) 5.00 (0.643) 5(0.684) sin x 3.4 x (α θ) α θ α α x x x x x Figure 4.5 Contrvrint components. r I x r sin (α θ) x II r sin θ The contrvrint component x is found by observing from tringle II tht 4-3
4 sin α r sin θ x (4.5) nd upon solving for the contrvrint component x we get r sin θ x (4.6) x 5.00 sin (0.500) sin x.66 5(0.53) b. The vector r cn now be written in terms of its contrvrint components from eqution 4. s r As check tht these re the correct contrvrint components of the vector r, let us determine the mgnitude r from this result. We cn no longer use the Pythgoren Theorem to determine r, becuse we no longer hve right tringle s we do in the cse of rectngulr components. We cn however pply the lw of cosines to the tringle of figure 4.4(b) to obtin r (x ) + (x ) + x x cos α (3.4) + (.66) + (3.4)(.66) cos( ) (.7) + (7.08) + (8.) (0.34) r 5.00 We see tht we do get the correct result for the mgnitude of the vector r. To go to this Interctive Exmple click on this sentence. (c) Covrint components of vector. For second representtion of the components of vector in skewed coordinte system, we now drop perpendiculr from the tip of r to the x xis intersecting it t the point tht we will now designte s x, nd is shown in yellow in figure 4.6(). We will cll x covrint component of the vector r. Now drop perpendiculr from the tip of r to the x xis, obtining the second covrint component x, lso shown s yellow line. We now hve the two vector components x nd x. But these vector components do not stisfy the prllelogrm lw of vector ddition when we try to dd them together hed to til, s is obvious from figure 4.6(b). Tht is, by dding the vectors from hed to til, you cn see tht x + x will not dd up to the vector r. In fct you cn see tht the sum would be ctully greter thn the mgnitude of r, nd would not be in the correct direction. Therefore in terms of these components r x + x At first glnce it therefore seems tht the only wy we cn find the components of vector tht is consistent with the prllelogrm lw of vector ddition is to drop lines from the tip of r tht re prllel to the coordinte xis, thereby obtining the contrvrint components of vector. 4-4
5 x x r α θ () x x (b) Figure 4.6 Covrint components of vector. However there is still nother wy to determine the components of the vector r nd tht is to estblish new coordinte system with unit vectors e nd e where e is perpendiculr to nd e is perpendiculr to. This new bse system is shown in figure 4.7(), long with the old bse system. The bse vector e defines the direction of new xis x, while the bse vector e defines L L L L () (b) Figure 4.7 Introduction of some new bse vectors. 4-5
6 new xis x. We now drop perpendiculr from the tip of r to the x xis, but insted of terminting the perpendiculr t the x xis, we continue it down until it intersects the new x xis. (Note tht the perpendiculr line is perpendiculr to the x -xis but not the x xis.) We cll the projection on the new xis, L. Now drop perpendiculr from the tip of r to x, then extrpolte it until it crosses the new x xis t the point L. Then we cn see from figure 4.7, tht the vectors Le nd Le will dd up by the prllelogrm lw of vector ddition to r Le + Le (4.7) Cn we express the lengths L nd L, in terms of the covrint components x nd x? Referring bck to figure 4.4(), we first note tht the ngle α is the mesure ngle of the mount of skewness of the coordintes. The covrint component x cn be seen to be composed of two lengths, i.e. x x + x cosα (4.8) while the covrint component x is composed of the two lengths From the bottom tringle in figure 4.7() we observe tht x x + x cosα (4.9) nd hence L x x L (4.0) And from the upper tringle in figure 4.7() we hve Therefore L x x L (4.) Replcing equtions 4.0 nd 4. into eqution 4.7 gives r x e + x e (4.) or upon slightly rerrnging terms, we cn write this s r x e + x e If we now define the two new bse vectors nd e sin α e sin α (4.3) (4.4) 4-6
7 then the vector r cn be written in terms of the covrint components s r x + x (4.5) Since eqution 4.5 is just eqution 4.7, but in different nottion, it lso stisfies the prllelogrm lw of vector ddition. Exmple 4.3 Covrint components of vector. A vector r hs mgnitude of 5.00 units nd mkes n ngle of with the x-xis. If the skewed coordinte system mkes n ngle α , () find the covrint components of this vector, (b) express the vector in terms of its covrint components, nd (c) find the vlues of the bse vectors. Solution. To express the vector in terms of its covrint components we use eqution 4.5 r x + x The covrint component x is found from figure 4.7() s while the covrint component x is found from figure 4.7() s x r cos θ (4.6) x 5.00 cos ( ) 5.00 (0.866) x 4.33 x r cos (α θ) (4.7) x 5.00 cos ( ) 5.00 cos ( ) x 3.83 As check let us find the covrint component x from eqution 4.8 in terms of the contrvrint components s x x + x cosα (4.8) The vlues of x nd x were determined in Exmple 4. to be nd x r sin (α θ) (4.4) sin α x 5.00 sin( ) 3.4 sin 70 0 x r sin θ sin α x 5.00 sin sin 70 0 (4.6) Replcing these vlues into eqution 4.8 gives for the covrint component x x x + x cosα (4.8) x cos
8 x 4.33 The covrint component x is found from eqution 4.9 in terms of the contrvrint components s x x + x cosα (4.9) x cos x 3.83 Notice tht the components re the sme for either procedure. b. The vector r in terms of the covrint components is obtined from eqution 4.5 s Hence, r x + x r As check tht these re the correct covrint components of the vector r, let us determine the mgnitude r from this result. We cn no longer use the Pythgoren Theorem to determine r, becuse we no longer hve right tringle s we do in the cse of rectngulr components. We cn however pply the lw of cosines to the tringle of figure 4.4(b) to obtin r (x) + (x) xx cos α r (4.33) + (3.83) (4.33)(3.83) cos 70 r 4.70 units But something is wrong here. We know the mgnitude of r should be 5 nd it is not. The trouble is tht the unitry vectors re not unit vectors but unitry vectors. They re not equl to one. We hve to tke these vectors into ccount. They re tken into ccount by using the bse vectors e nd e which re unit vectors. c. The bse vector is found from eqution 4.3 s e e e sin e (4.3) The bse vector is found from eqution 4.4 s e e e sin e (4.4) Notice tht the bse vectors nd re not unit vectors, nd their vlue will vry depending upon the ngle α tht the coordintes re skewed. If we wish we could lso write the vector in terms of the unit vectors e nd e by using equtions 4.3 nd 4.4. r x + x r r (4.33)(.06)e + (3.83)(.06)e 4-8
9 r (4.6)e + (4.08)e Recll from eqution 4.7 nd figure 4.7b tht r Le + Le (4.7) where L x times the mgnitude of the unitry vector,. Tht is nd L x L (4.33)(.06) 4.6 L (3.83)(.06) 4.08 As check tht these re the correct covrint components of the vector r, let us determine the mgnitude r from this result. As we showed erlier for the contrvrint vector, we cn no longer use the Pythgoren Theorem to determine r, becuse we no longer hve right tringle s we do in the cse of rectngulr components. We cn however pply the lw of cosines to the tringle of figure 4.7(b) to obtin r (L) + (L) LL cos α r (4.6) + (4.08) (4.6)(4.08) cos 70 r 5.0 r 5.00 units Notice tht we get the sme mgnitude of 5 units s we did in exmples 4. nd 4.. We could lso use eqution 4.7 by first determining the vlues of L nd L from the equtions nd L x / sin α L (4.33) / sin (70) L (4.6) L x / sin α L (3.83) / sin (70) L (4.08) nd plcing these into the lw of cosines we get r (L) + (L) LL cos α r (4.6) + (4.08) (4.6)(4.08) cos 70 r 5.0 r 5.00 units Agin notice tht we get the sme correct result for the mgnitude of the vector r. To go to this Interctive Exmple click on this sentence. To summrize our results, eqution 4. is the representtion of the vector r in terms of its contrvrint components, r x + x (4.) while eqution 4.5 is the representtion of the vector r in terms of its covrint components, i.e. 4-9
10 r x + x (4.5) So in skewed coordinte system there re two types of components- contrvrint nd covrint. The contrvrint components re found by prllel projections onto the coordinte xes while the covrint components re found by perpendiculr projections. Contrvrint components re designted by superscripts, x i, while covrint components re designted by subscripts, xi. The bse vectors nd re not unit vectors even if nd re. The distinction between contrvrint nd covrint components disppers in orthogonl coordintes, becuse the xes re orthogonl. Tht is, in orthogonl coordintes, projection which is prllel to one xis, is lso perpendiculr to the other. Let us now return to the spcetime digrms we discussed in chpter nd see how these concepts of covrince nd contrvrince re pplied to these spcetime digrms. 4. Different Forms of The Spcetime Digrms Figure.9 showed the reltion between the S nd S frmes of reference in spcetime. The S frme ws the sttionry frme nd S ws frme moving to the right with the velocity v. The ngle θ, of figure.9 ws given by eqution.3 s θ tn But we lredy sid tht there is no frme of reference tht is bsolutely t rest, nd yet our digrm shows the preferred sttionry frme, S, s n orthogonl coordinte system while the moving frme, S, is n cute skewed coordinte system. So it seems s if the rest frme is specil frme compred to the moving frme. However, the principle of reltivity sys tht ll frmes re equivlent. Tht is, there should be no distinction between frme of reference tht is t rest or one tht is moving t constnt velocity v. Figure 3.9 should be modified to show tht there is no preferentil frme of reference. We showed in Chpter, tht if body is t rest nd body moves to the right with velocity v, tht this is equivlent to body being t rest nd body moving to the left with the velocity v. Another equivlence is to hve n rbitrry observer t rest between nd nd body cn move to the right with velocity v/ with respect to the frme t rest nd body cn move to the left with velocity v/. We cn incorporte these generlities by redrwing figure 3.9 for S with the τ xis now mking n ngle θ/ with the originl τ-xis, nd by showing second observer, S, moving to the left of the sttionry observer with the velocity v/. This is shown in the spcetime digrm of figure 4.8 s the τ xis mking n ngle θ/ with the τ-xis. The ngle θ/ is computed in the sme wy s the computtion for the τ -xis, tht is, v c θ/ tn v/ c θ/ tn v/ c S frme moving to the right with velocity v/ with respect to S frme S frme moving to the left with velocity v/ with respect to S frme In this wy the S frme will be moving t the velocity v with respect to the S frme. Similrly n x -xis cn be drwn t n ngle θ/ from the x-xis. Notice tht the x nd τ re found in the sme wy tht we found x nd τ, except tht x nd τ hve negtive slopes, indictive of the motion to the left. These new x - nd τ -xes generte new cute skewed coordinte system, S, locted in the fourth qudrnt, s seen in figure 4.8() nd 4.8(b). Note tht the S coordinte system is shown in blue while the S coordinte system is shown in red. Also notice tht becuse of the symmetry, the scles re the sme in the S frme s they re in the S frme, which is of course different to the scle in the S frme s we showed before. Also note tht in figure.9, θ ws the ngle between τ nd τ becuse S ws moving t the speed v with respect to the S frme. Now 4-0
11 notice tht θ/ is the ngle between τ nd τ becuse S is now moving t the speed v/ with respect to the S frme of reference. Also note tht θ is now the ngle between τ nd τ becuse S is now moving t the speed v with respect to S. θ/ θ/ θ/ θ/ θ θ/ θ/ θ θ/ θ/ () (b) Figure 4.8 Reltion of S nd S frme of references. Also note from figure 4.8 tht the x -xis is orthogonl to the τ -xis since but α 90 0 θ. Hence, nd τ 0x α + θ τ 0x 90 0 θ + θ τ 0x 90 0 Similrly, the τ -xis is perpendiculr to the x -xis, since but φ 90 0 θ/. Hence, nd x 0τ φ + θ/ x 0τ 90 0 θ/ + θ/ x 0τ 90 0 The fct tht the x -xis is orthogonl to the τ -xis, nd the τ -xis is orthogonl to the x -xis, should remind us of how the x xis ws perpendiculr to the x xis nd the x xis ws perpendiculr to the x xis in figure 4.7 in our study of some of the chrcteristics of covrint nd contrvrint components. We will return to this similrity shortly. Figure 4.8 shows tht the S nd S frmes re symmetricl with respect to the S frme of reference, but not with respect to ech other. Both frmes should lso mesure the sme velocity of light c, which is ssured if the light line OL were to bisect both sets of coordinte xes. Also note tht becuse of the symmetry of both S nd S frmes, they would both intersect the scle hyperbols t the sme vlues. Hence, the scle on the S frme is the sme s the scle on the S frme. We cn modify figure 4.8 by reflecting the x -xis in the fourth qudrnt, through the origin of the coordintes, to mke n x -xis in the second qudrnt, s shown in figure 4.9. Note tht now 4-
12 the light line OL does indeed bisect the x,τ -xes nd the x,τ -xes gurnteeing tht the speed of light is sme in both coordinte systems. The S coordinte system is now n obtuse skewed coordinte system insted of the cute one it ws in the fourth qudrnt. Figure 4.9 should now be used to describe events in the S nd S coordinte systems, insted of figure 3.9 which described events in the S nd S frmes of reference. θ/ θ/ θ θ/ θ/ θ/ θ θ/ θ/ θ θ/ () (b) Figure 4.9 New S nd S frme of references. 4.3 Reciprocl Systems of Vectors We hve discussed the spcetime digrms in two dimensions. We would like to extend tht discussion first into three dimensions nd then into four or more dimensions. In order to extend this discussion we must first discuss the concept of reciprocl systems of vectors. Consider the three dimensionl oblique coordinte system shown in figure 4.3. The three xes re described by the constnt unitry vectors,, nd 3 s shown in the figure. We now define the set of reciprocl unitry vectors s 3 3 (4.6) Figure 4.3 The reciprocl unitry vectors (4.7) (4.8) 4-
13 By nture of the cross product of two vectors, nd s cn be seen in figure 4.3, is perpendiculr to the plne generted by nd 3; is perpendiculr to the plne generted by 3 nd ; nd 3 is perpendiculr to the plne generted by nd. Hence,,, nd 3 re clled unitry vectors, while the vectors,, nd 3 re clled reciprocl unitry vectors. Let us now consider combintions of products of these unitry vectors nd their reciprocl unitry vectors. First, let us consider the product nd 3 3 ( 3) ( 3) 3 (4.9) (4.0) But s you recll from vector nlysis, by the vector triple product of three vectors, cyclic interchnge of letters is permissible, tht is, Applying this to our unitry vectors we get Using eqution 4. in eqution 4.0 gives ( b c) b ( c ) c ( b ) (4.) ( 3) 3 3 (4.) Agin using eqution 4.8 we find for the third product ( 3) 3 3 (4.3) The results of equtions 4.9, 4., nd 4.3 shows tht the product of unitry vector nd its reciprocl unitry vector is equl to one, tht is, (4.4) 3 3 When we consider the mixed products of these unitry vectors nd their reciprocl unitry vectors we get 3 ( 3 ) ( 3) ( 3) But s cn be seen in figure 4.3, 3 is perpendiculr to the plne generted by nd 3 nd hence is perpendiculr to the vector nd hence its dot product with is equl to zero. Tht is, Hence (3 ) 3 cos
14 Similrly the mixed product 3 ( 3) 3 But s cn lso be seen in figure 4.3, is perpendiculr to the plne generted by nd nd hence is perpendiculr to the vector nd hence its dot product with is equl to zero. Tht is, ( ) cos Hence the dot product of ( ) is equl to zero, therefore 3 0 In similr wy, ll the mixed products of the unitry vectors nd the reciprocl unitry vectors re equl to zero. Tht is, (4.5) In summry, the reciprocl unitry vectors re defined by equtions 4.6, 4.7, nd 4.8, nd the product of these unitry vectors nd the reciprocl unitry vectors re summrized in equtions 4.4 nd 4.5. Just s equtions expressed the reciprocl unitry vectors in terms of the unitry vectors, the unitry vectors cn be expressed in terms of the reciprocl unitry vectors by the sme reciprocl reltions. Tht is, 3 (4.6) (4.7) (4.8) Since the order of dot product is not significnt, tht is, b b, the combintions of ll the products in eqution 4.9 through 4.5 re the sme. Tht is, nd get (4.9) (4.30) If we pply the sme resoning process to the orthogonl i, j, k, system of unit vectors we j k i i i i ( j k) i i k i j j j i ( j k) i i i j k k k i j k i i 4-4
15 Therefore, the reciprocl vectors of i, j, k, re the vectors i, j, k, themselves. In fct for ny orthogonl set of unit vectors, whether rectngulr, sphericl, cylindricl etc., the reciprocl unit vectors will be the unit vectors themselves. All orthogonl sets of vectors re self-reciprocl. The only time we will hve reciprocl sets of vectors is when we hve oblique coordinte systems, s we do in our spcetime digrms. In section 4. we nlyzed skewed coordinte system in two-dimensions nd showed tht we could represent vector in tht two-dimensionl system by using either contrvrint or covrint components of vector. Tht is, we found the vector r could be written in terms of the contrvrint components x nd x s r x + x (4.) nd in terms of the covrint components x nd x s r x + x (4.5) Remember tht the contrvrint components were found by dropping lines tht were prllel to the pproprite xes, while the covrint components were found by dropping lines tht were perpendiculr to the pproprite xes. Now tht we hve estblished three dimensionl skewed coordinte system, we cn now write the vector r, in figure 4.3, in terms of the three dimensionl contrvrint components x, x, nd x 3, nd the unitry vectors,, nd 3 s r x + x + x 3 3 (4.3) r Figure 4.3 Three dimensionl skewed coordinte system. The vector r cn lso be expressed in terms of the covrint components x, x, nd x3 of the vector nd the reciprocl system of unitry vectors,, nd 3 s r x + x + x3 3 (4.3) where the reciprocl unit vectors,, nd 3 re given by equtions 4.6, 4.7, nd 4.8. Exmple 4.4 In section 4. we showed tht we could estblish new coordinte system with unit vectors e nd e where e is perpendiculr to nd e is perpendiculr to. The bse vector e defined 4-5
16 the direction of new xis x, while the bse vector e defined new xis x. In this new set of coordinte we showed tht vector r could be written in terms of the covrint components s if we defined the two new bse vectors nd r x + x (4.5) e e (4.3) (4.4) Show tht eqution 4.3 is equivlent to eqution (4.6) The reciprocl unitry vector is given by Solution 3 3 But the ngle between the unitry vectors nd 3 is the skew ngle α of the coordintes. Hence, 3 3 sin α sin α Where 3 since they re unit vectors. Also since the ngle between the vectors nd ( 3) is (90 0 α), then ( 3) ( 3) cos (90 0 α) 3 sin α cos (90 0 α) But 3 since they re unit vectors. Therefore However, Therefore ( 3) sin α cos (90 0 α) cos (90 0 α) cos 90 0 cos α + sin 90 0 sin α sin α ( 3) sin α cos (90 0 α) sin α Replcing these vlues in eqution 4.6 gives nd hence sin α 3 3 e Hence the cse shown in section 4. for finding the covrint components of vector is specil cse of the reciprocl system of vectors. 4-6
17 4.4 Exmple of The Use of Covrint nd Contrvrint Vectors As we hve seen, ny vector cn be written in two wys. One in terms of the contrvrint components nd the other in terms of the covrint components. A vector written in terms of its contrvrint components is clled contrvrint vector. A vector written in terms of its covrint components is clled covrint vector. As n exmple, force vector cn be written s or F F + F Contrvrint Vector ( 4.33 ) F F + F Covrint Vector (4.34) Notice tht the contrvrint vector is represented in terms of the contrvrint components nd the bse vectors nd, while the covrint vector is represented in terms of the covrint components nd the bse vectors nd. Either bse system or both my be used in connection with the vectoril tretment of given problem. As n exmple, the work done in moving n object through displcement r by force F cn be expressed three wys: () in terms of contrvrint vectors (b) in terms of covrint vectors (c) in terms of mixture of contrvrint nd covrint vectors. () Work done using contrvrint vectors. The work done in terms of the contrvrint vectors is Now W F r (F + F ) (x + x ) (4.35) W F x + F x + F x + F x cos0 0 (4.36) cos0 0 (4.37) If the ngle between the two xis is α then Therefore the work done in terms of the contrvrint components is which is not prticulrly simple nd is dependent upon the ngle α. (b) The work done using covrint vectors. The work done in terms of the covrint vectors is Now we showed in equtions 4.3 nd 4.4 tht cos α cosα (4.38) cos α cosα (4.39) W F x + F x + (F x + F x ) cosα (4.40) W F r (F + F ) (x + x ) (4.4) W Fx + Fx + Fx + Fx (4.4) 4-7
18 Therefore, nd e nd e sin α 0 cos0 (4.43) sin α 0 cos0 (4.44) Now the ngle between nd is (80 0 α) s cn be seen in figure 4.7. Therefore but Therefore 0 cos(80 α ) cos(80 0 α) cos(80 0 ) cos α sin (80 0 ) sin( α) cos α cos α sin α cos α sin α (4.45) (4.46) Substituting equtions 4.43 through 4.45 into eqution 4.4 gives for the work done W Fx + Fx Fx cos α Fx cos α sin α sin α sin α sin α (4.47) which is rther complicted form for the work done (c) The work done using mixture of contrvrint nd covrint components. The work done cn be expressed s the product of the contrvrint force vector nd the covrint displcement vector. Tht is, W F r (F + F ) (x + x ) (4.48) W F x + Fx + F x + F x (4.49) But s cn be seen in figure 4.7, nd shown in eqution 4.30 nd by eqution becuse 0 becuse Replcing these vlues into eqution 4.49 gives W F x + F x (4.50) Eqution 4.50 gives the work done expressed in terms of contrvrint nd covrint components. If we hd expressed the force s covrint vector nd the displcement s the contrvrint vector we would hve obtined W F r (F + F ) (x + x ) 4-8
19 W F x + F x (4.5) In generl the product of contrvrint vector with covrint vector will yield n invrint (sclr) which will be independent of the coordinte system used. Hence, when using skewed coordinte systems, it is n dvntge to hve two reciprocl bse systems. In most of the nlysis done in generl reltivity by tensor nlysis, there will usully be mix of covrint nd contrvrint vectors. Also note tht the unitry vectors nd cn hve ny mgnitude. As n exmple if nd l then the spce grid would look s in figure 4.33(). If on the other hnd nd l, the spce grid would pper s in figure 4.33(b). We see tht this mounts to hving different scle on ech xis. Tht is, unit length on the x xis is twice s lrge s the unit length on the x xis. Although l nd cn hve ny mgnitude in generl, we will lmost lwys let them hve unit mgnitude () l (b) ; Equl Spced Grid Different scle on x nd x xis. Figure 4.3 The unitry vectors nd cn hve ny mgnitude. Note tht the contrvrint vector in eqution 4.33 hs the contrvrint components of the vector, F nd F, nd the unitry bse vectors nd ; while the covrint vector in eqution 4.34 is represented in terms of the covrint components of the vector F nd F nd the reciprocl unitry bse vectors nd. F F + F Contrvrint Vector (4.33 ) nd F F + F Covrint Vector (4.34) Notice tht the unitry bse vectors re described with subscripts, while the reciprocl unitry bse vectors re described with superscripts. Notice tht the product of ech term is product of contrvrint superscript nd covrint subscript. Hence, the vector cn be thought of s consisting of contrvrint nd covrint terms; superscript times subscript for contrvrint vector nd subscript times superscript for covrint vector. Since the product of contrvrint vector nd covrint vector gives us n invrint quntity or constnt, this nottion will give us n invrint quntity for the mgnitude of ny vector. We will see much more of this lter. In generl, the product of contrvrint vector with covrint vector will yield n invrint (sclr) which will be independent of the coordinte system used. Hence when using skewed coordinte systems, it is n dvntge to hve two reciprocl bse systems. We will see tht in most of the nlysis done in generl reltivity, there will usully be mix of covrint nd contrvrint vectors. Summry of Bsic Concepts Skewed Coordinte Systems. In order to show inertil motion tht is consistent with the Lorentz Trnsformtion, it is necessry to drw coordinte systems tht re skewed to 4-9
20 ech other rther thn to use the trditionl orthogonl coordinte systems. Components of vector in rectngulr coordinte system. The x-component of vector is found by dropping perpendiculr line from the tip of r down to the x-xis. Note tht the line perpendiculr to the x-xis is lso prllel to the y-xis. The y-component is found by dropping perpendiculr line from the tip of r to the y-xis. Also note tht the line perpendiculr to the y-xis is prllel to the x-xis. Contrvrint components of vector in skewed coordinte system. For the skewed coordinte system the prllel of one xis is not perpendiculr to the other. For the first component we drop line from the tip of r, prllel to the x xis, to the x l xis. This component is clled the contrvrint component of the vector r nd is designted s x. Drop nother line, prllel to the x xis, to the x xis. This gives the second contrvrint component x. The bse vector l is in the direction of the x l xis nd is in the direction of the x xis. The bse vectors nd re clled unitry vectors lthough they don t necessrily hve to be unit vectors. The vector r cn be written in terms of the contrvrint components s r x + x Covrint components of vector in skewed coordinte system. For second representtion of the components of vector in skewed coordinte system, we drop line from the tip of r, perpendiculr to the x xis intersecting it t the point tht we will now designte s x, We will cll x covrint component of the vector r. We now drop line from the tip of r perpendiculr to the x xis, obtining the second covrint component x. We now hve the two vector components x nd x. However, these vector components do not stisfy the prllelogrm lw of vector ddition when we try to dd them together hed to til. Tht is, r x + x, However, if we define two new bse vectors e e nd sin α sin α then the vector r cn be written in terms of the covrint components s r x + x In generl the product of contrvrint vector with covrint vector will yield n invrint (sclr) which will be independent of the coordinte system used. Hence, when using skewed coordinte systems, it is n dvntge to hve two reciprocl bse systems. We will see tht in most of the nlysis done in generl reltivity, there will usully be mix of covrint nd contrvrint vectors. In Summry, in skewed coordinte system there re two types of components- contrvrint nd covrint. The contrvrint components re found by prllel projections onto the coordinte xes while the covrint components re found by perpendiculr projections. Contrvrint components re designted by superscripts, x i, while covrint components re designted by subscripts, xi. The bse vectors nd re not unit vectors even if nd re. The distinction between contrvrint nd covrint components disppers in orthogonl coordintes, becuse the xes re orthogonl. Tht is, in orthogonl coordintes, projection which is prllel to one xis, is lso perpendiculr to the other. 4-0
21 Summry of Importnt Equtions The vector r written in terms of contrvrint components r x + x (4.) Contrvrint component x r sin ( α - θ) x Contrvrint component x r sin θ x The bse vectors e sin α e sin α (4.4) (4.6) (4.3) (4.4) The vector r written in terms of covrint components r x + x (4.5) Covrint component x x r cos θ (4.6) Covrint component x x r cos (α θ) (4.7) Lorentz trnsformtion for spce coordintes x '' x ' + vt' (4.3) v / c Lorentz trnsformtion for the time v t' + x' coordintes. t'' c v / c (4.35) Inverse Lorentz Trnsformtion for spce coordintes x ' x '' vt'' (4.36) v / c Inverse Lorentz Trnsformtion for time v t'' x'' coordintes t' c (4.37) v / c Length contrction formul L L0 v / c (4.46) Time diltion formul t'' t' t ' 0 v / c t '' 0 v / c (4.5) (4.56) The invrint intervl of Spcetime ( s ) ( x ) c ( t ) (4.94) nd ( s ) ( x ) c ( t ) (4.95) The invrint intervl of Spcetime in terms of differentil quntities (ds ) (dx ) c (dt ) (4.96) nd (ds ) (dx ) c (dt ) (4.97) The invrint intervl in four-dimensionl spcetime (ds) c (dt) (dx) (dy) (dz) (4.98) Reciprocl unitry vectors expressed in terms of the unitry vectors 3 (4.6) ( 3) 3 (4.7) ( 3) 3 (4.8) 3 Products of the unitry vectors nd the reciprocl unitry vectors 3 3 (4.4) (4.5) The unitry vectors expressed in terms of the reciprocl unitry vectors, 3 (4.6) (4.7) 4-
22 3 3 (4.8) The combintions of ll the products (4.9) nd (4.9) For three dimensionl skewed coordinte system, the vector r is written in terms of the three dimensionl contrvrint components x, x, nd x 3, nd the unitry vectors,, nd 3 s r x + x + x 3 3 (4.3) the vector nd the reciprocl system of unitry vectors,, nd 3 s r x + x + x3 3 (4.3) Work done using contrvrint vectors. W F r (F + F ) (x + x )(4.35) W F x + F x + (F x + F x ) cosα (4.40) Work done using covrint vectors. W F r (F + F ) (x + x ) (4.4) W Fx + Fx Fx cos α Fx cos α(4.47) sin α sin α sin α sin α The work done using mixture of contrvrint nd covrint components. W F r (F + F ) (x + x )(4.48) W F x + F x (4.50) W F x + F x (4.5) The vector r cn lso be expressed in terms of the covrint components x, x, nd x3 of. Why cn t we just use orthogonl systems in our nlysis of reltivity?. Wht is contrvrint vector? 3. Wht is covrint vector? 4. Is unitry vector the sme s unit vector? Questions for Chpter 4 Problems for Chpter 4 5. When using product of two vectors, is it better to hve two covrint vectors, two contrvrint vectors, or one of ech? 4. The Components of Vector in Skewed Coordintes. A vector r hs mgnitude of 5.0 units nd mkes n ngle of with the x- xis. Find the rectngulr components of this vector. A vector r hs mgnitude of 5.0 units nd mkes n ngle of with the x- xis. If the skewed coordinte system, mkes n ngle α , () find the contrvrint components of this vector, nd (b) express the vector in terms of its contrvrint components. 3. A vector r hs mgnitude of 5.0 units nd mkes n ngle of with the x- xis. If the skewed coordinte system mkes n ngle α , () find the covrint components of this vector, (b) express the vector in terms of its covrint components, nd (c) find the vlues of the bse vectors. To go to nother chpter, return to the tble of contents by clicking on this sentence. 4-
DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS
3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive
Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.
1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples
20 MATHEMATICS POLYNOMIALS
0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of
4 VECTORS. 4.0 Introduction. Objectives. Activity 1
4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply
Partial Derivatives. Limits. For a single variable function f (x), the limit lim
Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles
Line and Surface Integrals: An Intuitive Understanding
Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of
13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS
33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in
MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)
MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give
Best Approximation in the 2-norm
Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion
Lesson Notes: Week 40-Vectors
Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples
Best Approximation. Chapter The General Case
Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given
2. VECTORS AND MATRICES IN 3 DIMENSIONS
2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the
along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate
L8 VECTOR EQUATIONS OF LINES HL Mth - Sntowski Vector eqution of line 1 A plne strts journey t the point (4,1) moves ech hour long the vector. ) Find the plne s coordinte fter 1 hour. b) Find the plne
Mapping the delta function and other Radon measures
Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support
How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?
XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=
MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1
MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further
3.1 Review of Sine, Cosine and Tangent for Right Angles
Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,
The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).
The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples
63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1
3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =
Section 14.3 Arc Length and Curvature
Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in
Lecture 1. Functional series. Pointwise and uniform convergence.
1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is
Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230
Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given
Chapter 9 Definite Integrals
Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished
NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.
NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose
12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS
1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility
Coordinate geometry and vectors
MST124 Essentil mthemtics 1 Unit 5 Coordinte geometry nd vectors Contents Contents Introduction 4 1 Distnce 5 1.1 The distnce etween two points in the plne 5 1.2 Midpoints nd perpendiculr isectors 7 2
The Wave Equation I. MA 436 Kurt Bryan
1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string
Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon
Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,
Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus
Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl
Lecture 7 notes Nodal Analysis
Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions
New Expansion and Infinite Series
Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University
Conducting Ellipsoid and Circular Disk
1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,
Review of Gaussian Quadrature method
Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge
1B40 Practical Skills
B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need
MA Handout 2: Notation and Background Concepts from Analysis
MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,
Math 113 Exam 1-Review
Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between
STRAND J: TRANSFORMATIONS, VECTORS and MATRICES
Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors
Math 8 Winter 2015 Applications of Integration
Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl
5.2 Volumes: Disks and Washers
4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict
DIRECT CURRENT CIRCUITS
DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through
Discrete Least-squares Approximations
Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve
Anti-derivatives/Indefinite Integrals of Basic Functions
Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second
dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.
Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd
MATRICES AND VECTORS SPACE
MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR
A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.
A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c
The Basic Functional 2 1
2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................
The Dirac distribution
A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution
approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below
. Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.
USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year
1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.
42nd International Mathematical Olympiad
nd Interntionl Mthemticl Olympid Wshington, DC, United Sttes of Americ July 8 9, 001 Problems Ech problem is worth seven points. Problem 1 Let ABC be n cute-ngled tringle with circumcentre O. Let P on
FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems:
FINAL EVIEW 1. Vector Fields, Work, nd Flux uggested Problems: { 14.1 7, 13, 16 14.2 17, 25, 27, 29, 36, 45 We dene vector eld F (x, y) to be vector vlued function tht mps ech point in the plne to two
Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40
Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since
Lecture 3. Limits of Functions and Continuity
Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live
Partial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry
Numerical integration
2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter
Triangles The following examples explore aspects of triangles:
Tringles The following exmples explore spects of tringles: xmple 1: ltitude of right ngled tringle + xmple : tringle ltitude of the symmetricl ltitude of n isosceles x x - 4 +x xmple 3: ltitude of the
BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS
BIFRCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS FRANCESCA AICARDI In this lesson we will study the simplest dynmicl systems. We will see, however, tht even in this cse the scenrio of different possible
Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet
Ciro Governorte Nozh Directorte of Eduction Nozh Lnguge Schools Ismili Rod Deprtment : Mth Form : rd prep. Sheet Alg. Sheet () [] Find the vlues of nd in ech of the following if : ) (, ) ( -5, 9 ) ) (,
16 Newton s Laws #3: Components, Friction, Ramps, Pulleys, and Strings
Chpter 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings 16 Newton s Lws #3: Components, riction, Rmps, Pulleys, nd Strings When, in the cse of tilted coordinte system, you brek up the
Lecture 19: Continuous Least Squares Approximation
Lecture 19: Continuous Lest Squres Approximtion 33 Continuous lest squres pproximtion We begn 31 with the problem of pproximting some f C[, b] with polynomil p P n t the discrete points x, x 1,, x m for
I. Equations of a Circle a. At the origin center= r= b. Standard from: center= r=
11.: Circle & Ellipse I cn Write the eqution of circle given specific informtion Grph circle in coordinte plne. Grph n ellipse nd determine ll criticl informtion. Write the eqution of n ellipse from rel
Handout: Natural deduction for first order logic
MATH 457 Introduction to Mthemticl Logic Spring 2016 Dr Json Rute Hndout: Nturl deduction for first order logic We will extend our nturl deduction rules for sententil logic to first order logic These notes
u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.
nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $
If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du
Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible
Math 360: A primitive integral and elementary functions
Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:
We divide the interval [a, b] into subintervals of equal length x = b a n
Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:
Orthogonal Polynomials and Least-Squares Approximations to Functions
Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny
3.4 Numerical integration
3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,
Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...
Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting
MATH 423 Linear Algebra II Lecture 28: Inner product spaces.
MATH 423 Liner Algebr II Lecture 28: Inner product spces. Norm The notion of norm generlizes the notion of length of vector in R 3. Definition. Let V be vector spce over F, where F = R or C. A function
ECON 331 Lecture Notes: Ch 4 and Ch 5
Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve
Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014
Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method
Chapter 4. Additional Variational Concepts
Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.
STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t
Faith Scholarship Service Friendship
Immcult Mthemtics Summer Assignment The purpose of summer ssignment is to help you keep previously lerned fcts fresh in your mind for use in your net course. Ecessive time spent reviewing t the beginning
Section 6.1 INTRO to LAPLACE TRANSFORMS
Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform
Dynamics: Newton s Laws of Motion
Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html
Math Calculus with Analytic Geometry II
orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem
Sections 5.2: The Definite Integral
Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)
AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system
Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex
POLYPHASE CIRCUITS. Introduction:
POLYPHASE CIRCUITS Introduction: Three-phse systems re commonly used in genertion, trnsmission nd distribution of electric power. Power in three-phse system is constnt rther thn pulsting nd three-phse
5.5 The Substitution Rule
5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in
Continuous Random Variables
STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht
SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014
SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.
A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions
Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 2451-2460 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch
Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:
Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl
Matrices and Determinants
Nme Chpter 8 Mtrices nd Determinnts Section 8.1 Mtrices nd Systems of Equtions Objective: In this lesson you lerned how to use mtrices, Gussin elimintion, nd Guss-Jordn elimintion to solve systems of liner
Math 100 Review Sheet
Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s
LINEAR ALGEBRA APPLIED
5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order
We know that if f is a continuous nonnegative function on the interval [a, b], then b
1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going
Miller indices and Family of the Planes
SOLID4 Miller Indices ltest Fmily of Plnes nd Miller indices; Miller indices nd Fmily of the Plnes The geometricl fetures of the crystls represented by lttice points re clled Rtionl. Thus lttice point
Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University
U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions
Precalculus Spring 2017
Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify
8 Laplace s Method and Local Limit Theorems
8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved
Quantum Physics II (8.05) Fall 2013 Assignment 2
Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.
MATH 174A: PROBLEM SET 5. Suggested Solution
MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion
INTRODUCTION TO LINEAR ALGEBRA
ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR
Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero
Math 554 Integration
Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we