Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f

Size: px
Start display at page:

Download "Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f"

Transcription

1 ARCH 614 Note Set 7.1 S014bn Monry Deign Nottion: A = ne or re A n = net re, equl to the gro re ubtrcting ny reinorceent A nv = net her re o onry A = re o teel reinorceent in onry deign A t = re o teel reinorceent in onry colun deign ACI = Aericn Concrete Intitute ASCE = Aericn Society o Civil Engineer b = width, oten cro-ectionl C = ne or copreion orce C = copreion orce in the onry or onry deign CMU = horthnd or concrete onry unit d = eective depth ro the top o reinorced onry be to the centroid o the tenile teel e = eccentric ditnce o ppliction o orce (P) ro the centroid o cro ection = xil tre b = bending tre = clculted copreive tre in onry = onry deign copreive tre = tre in the teel reinorceent or onry deign v = her tre F = llowble xil tre F b = llowble bending tre F = llowble tenile tre in reinorceent or onry deign F t = llowble tenile tre F v = llowble her tre F v = llowble her tre o the onry F v = llowble her tre o the her reinorceent h = ne or height = eective height o wll or colun I x = oent o inerti with repect to n x-xi j = ultiplier by eective depth o onry ection or oent r, jd k = ultiplier by eective depth o onry ection or neutrl xi, kd L = ne or length or pn length M = internl bending oent = type o onry ortr M = oent cpcity o reinorced onry be governed by teel tre M = oent cpcity o reinorced onry be governed by onry tre MSJC = Monry Structurl Joint Council n = odulu o elticity trnortion coeicient or teel to onry n.. = horthnd or neutrl xi (N.A.) N = type o onry ortr NCMA = Ntionl Concrete Monry Aocition O = type o onry ortr P = ne or xil orce vector P = llowble xil lod in colun r = rdiu o gyrtion S = ection odulu = type o onry ortr S x = ection odulu with repect to n x-xi t = ne or thickne T = ne or tenion orce T = tenion orce in the teel reinorceent or onry deign TMS = The Monry Society w = ne or ditributed lod 1 = coeicient or deterining tre block height, c, in onry LRFD deign = trin in the onry = trin in the teel = reinorceent rtio in onry deign 1

2 ARCH 614 Note Set 7.1 S014bn Reinorced Monry Deign Structurl deign tndrd or reinorced onry re etblihed by the Monry Stndrd Joint Coittee coniting o ACI, ASCE nd The Monry Society (TMS), nd preent llowble tre deign well liit tte (trength) deign. Mteril = onry pri copreive trength ro teting Reinorcing teel grde re the e thoe ued or reinorced concrete be. Unit cn be brick, concrete or tone. Mortr conit o onry ceent, lie, nd, nd wter. Grde re ned ro the word MASONWORK, with verge trength o 500pi, 1800 pi, 750 pi, 350 pi, nd 75 pi, repectively. Grout i lowble ortr, uully with high ount o wter to ceent teril. It i ued to ill void nd bond reinorceent. Allowble Stre Deign For unreinorced onry, like onry wll, tenion tree re llowed in lexure. Monry wll typiclly ee copreion tree too. For reinorced onry, the teel i preued to reit ll tenile tree nd the tenion in the onry i ignored. Fctor o Sety re pplied to the liit tree or llowble tre vlue: bending (unreinorced) F b = 1/3 bending (reinorced) F b = 0.45 bending (tenion/unreinorced) tble..3. be her (unreinorced or lexure) F v = pi be her (reinorced) M/(Vd) 0.5 F v = 3.0 be her (reinorced) M/(Vd) 1.0 F v =.0 Grde 40 or 50 reinorceent F = 0 ki Grde 60 reinorceent F = 3 ki Wire joint reinorceent F = 30 ki where = peciied copreive trength o onry

3 ARCH 614 Note Set 7.1 S014bn Internl Equilibriu or Bending C = copreion in the onry = tre x re = T = tenion in teel = tre x re = A C = T nd M = T (d-kd/3) = T (jd) M =C (jd) t d BIA Teknote 17 erie b(kd) where = copreive tre in the onry ro lexure = tenile tre in the teel reinorceent kd = the height to the neutrl xi b = width o tre re d = eective depth o ection = depth to n.. o reinorceent jd = oent r ro tenion orce to copreion orce A = re o teel n = E /E ued to trnor teel to equivlent re o onry or eltic tree = reinorceent rtio b grout unit n.. A kd STRAIN A bd /n STRESS F=0: T =A A C = b(kd)/ jd M kd b Criteri or Be Deign For lexure deign: kd M b jd 0. 5 bd jk or M A jd ρbd j The deign i dequte when b Fb in the onry nd F.in the teel. Sher tre i deterined by v = V/A nv where A nv i net her re. Sher trength i deterined ro the her cpcity o the onry nd the tirrup: F v = F v + F v. Stirrup pcing re liited to d/ but not to exceed 48 in. where: 1 M P Fv where M/(Vd) i poitive nd cnnot exceed 1.0 Vd An Av F d (F Fv 0. 5 v = 3.0 when M/(Vd) 0.5 ) Anv (F v =.0 when M(Vd) 1.0.) Vlue cn be linerly interpolted. 3

4 ARCH 614 Note Set 7.1 S014bn Lod nd Reitnce Fctor Deign The deign ethodology i iilr to reinorced concrete ultite trength deign. It i ueul with high her vlue nd or eiic deign. The liiting onry trength i Criteri or Colun Deign 1 c c T C (Monry Joint Code Coittee) Building Code Requireent nd Coentry or Monry Structure deine colun hving b/t < 3 nd h/t > 4. where b = width o the wll t = thickne o the wll h = height o the wll A lender colun h iniu dienion o 8 on one ide nd h/t 5. Colun ut be reinorced, nd hve tie. A iniu eccentricity (cuing bending) o 0.1 tie the ide dienion i required. Allowble Axil Lod or Reinorced Monry h P 0.5 An 0.65AtF 1 or h/t r 70r P 0.5 An 0.65AtF or h/t > 99 h Allowble Axil Stree or Unreinorced Monry h F or h/t r where 70r F 0.5 or h/t > 99 h h = eective length r = rdiu o gyrtion A n = eective (or net) re o onry A t = re o teel reinorceent = peciied onry copreive trength F = llowble copreive tre in colun reinorceent with lterl conineent. Cobined Stree When xiu oent occur oewhere other thn t the end o the colun or wll, virtul eccentricity cn be deterined ro e = M/P. 4

5 ARCH 614 Note Set 7.1 S014bn Monry Colun nd Wll b There re no odiiction ctor, but in ddition to tiying 1. 0, the tenile tre F F cnnot exceed the llowble: reinorced onry: F or the copreive tre exceed llowble or b t b Fb provided F. b 5

6 ARCH 614 Note Set 7.1 S014bn Exple 1 Deterine i the unreinorced CMU wll cn utin it lod with the wind. Speciy ortr type nd unit trength per MSJC. b Fb 3 F F b h F or 140r 70r F 0 5. or h h r 99 h r M b S 99 P A 14-1B: h 1 t( 1in ) 11in o F r 3. 1in in lb 4k( 1000 k ) 133pi 30in 3.1 (1 tkip/t ) (t) (in/t) Mx = Pe b 1/3 154/(1/3) = 46 pi M = Pe/ Mx = wl /8 pi 1; 1056 pi Moent ditribution ro eccentricity Moent ditribution ro ditributed wind lod 5 pi pi 6 = 1056 pi (govern)

7 ARCH 614 Note Set 7.1 S014bn 7

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f ARCH 631 Note Set 3.1 F01n Monry Deign Nottion: A = ne or re A n = net re, equl to the gro re utrcting ny reinorceent A nv = net her re o onry A = re o teel reinorceent in onry deign A t = re o teel reinorceent

More information

twenty four masonry construction: beams & columns Office Hours Masonry Beam & Wall Design Masonry Design Masonry Standards Joint Committee

twenty four masonry construction: beams & columns Office Hours Masonry Beam & Wall Design Masonry Design Masonry Standards Joint Committee ARCHITECTURAL STRUCTURES: FOR, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUER 013 lecure weny our Oice Hour link o poed chedule onry conrucion: e & colun www.u.edu onry Conrucion 1 Lecure 4 Archiecurl Srucure

More information

eleven rigid frames: compression & buckling Rigid Frames Rigid Frames Rigid Frames ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

eleven rigid frames: compression & buckling Rigid Frames Rigid Frames Rigid Frames ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ELEMENTS O RCHITECTURL STRUCTURES: ORM, BEHVIOR, ND DESIGN DR. NNE NICHOLS SRING 018 lecture eleven rigid rmes: compression & uckling Rigid rmes 1 Lecture 11 S009n http:// nisee.erkeley.edu/godden Rigid

More information

Rigid Frames - Compression & Buckling

Rigid Frames - Compression & Buckling ARCH 614 Note Set 11.1 S014n Rigid Frmes - Compression & Buckling Nottion: A = nme or re d = nme or depth E = modulus o elsticity or Young s modulus = xil stress = ending stress z = stress in the x direction

More information

Columns and Stability

Columns and Stability ARCH 331 Note Set 1. Su01n Columns nd Stilit Nottion: A = nme or re A36 = designtion o steel grde = nme or width C = smol or compression C c = column slenderness clssiiction constnt or steel column design

More information

twenty seven masonry construction: beams & columns Masonry Design Masonry Beam & Wall Design Masonry Design

twenty seven masonry construction: beams & columns Masonry Design Masonry Beam & Wall Design Masonry Design ELEENTS O ARCHITECTURAL STRUCTURES: OR, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SRING 017 lecure weny even monry conrucion: em & column onry Conrucion 1 www.heegle.com S009n onry Deign onry Snr Join Commiee

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

Verification Analysis of the Redi Rock Wall

Verification Analysis of the Redi Rock Wall Verifiction Mnul no. Updte 06/06 Verifiction Anlysis of the Redi Rock Wll Progr File Redi Rock Wll Deo_v_etric_en_0.grr In this verifiction nul you will find hnd-de verifiction nlysis of the Redi Rock

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

Location: 229 T y S n - Hμ Néi Code: Eurocode 4 Member: Beams Category: Podium

Location: 229 T y S n - Hμ Néi Code: Eurocode 4 Member: Beams Category: Podium Projet: ipe Toer Lotion: 9 T S n - Hμ Néi Code: Euroode 4 ember: Bem Ctegor: Podium I - DESIGN DT 1. teril: 1.1 Conrete Compoite bem Conrete grde: 400 (TCVN 5574-1991 C5/30 (Euroode 4) Chrteriti ompreion

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job o. Sheet 1 of 8 Rev B 10, Route de Limours -78471 St Rémy Lès Chevreuse Cedex rnce Tel : 33 (0)1 30 85 5 00 x : 33 (0)1 30 5 75 38 CLCULTO SHEET Stinless Steel Vloristion Project Design Exmple 5 Welded

More information

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS Xue Jianyang, Chen Zongping, Zhao Hongtie 3 Proeor, College o Civil Engineering, Xi an Univerity o Architecture

More information

Influence of Mean Stress

Influence of Mean Stress Influence of Men tress Discussion hs been liited to copletely reversible stress thus fr. Mening = 0 However, there re ny instnces of dynic loding when en stress is nonzero. Men tresses Incresing en stress

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 9 The cgrw-hill Compnies, Inc. All rights reserved. Fifth SI Edition CHAPTER 5 ECHANICS OF ATERIALS Ferdinnd P. Beer E. Russell Johnston, Jr. John T. DeWolf Dvid F. zurek Lecture Notes: J. Wlt Oler Texs

More information

Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers

Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers (997) (Rev. 997) (Rev.2 ept. 2000) (Rev.3 July 2004) Evlution of Allowble Hold Loding of Crgo, Hold No. with Crgo Hold No. Flooded, for Existing Bulk Crriers. - Appliction nd definitions These requirements

More information

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span. CE 331, Fall 009 Analyi of Reforce Concrete 1 / 6 Typical Reforce Concrete Builg Cat place reforce concrete tructure have monolithic lab to beam an beam to column connection. Monolithic come from the Greek

More information

A typical reinforced concrete floor system is shown in the sketches below.

A typical reinforced concrete floor system is shown in the sketches below. CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho

More information

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS IV EFFETIVE BUING ENGTH OF OUMN IN WAY FRAMEWOR: OMARION Ojectives In the present context, two different pproches re eployed to deterine the vlue the effective uckling length eff n c of colun n c out the

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

ME311 Machine Design

ME311 Machine Design ME11 Mchine Design Lecture 10: Springs (Chpter 17) W Dornfeld 9Nov018 Firfield University School of Engineering A Free Body Digrm of coil spring (cutting through nywhere on the coil) shows tht there must

More information

Chapter 4 Pure Bending

Chapter 4 Pure Bending Chapter Pure endg INTRODUCTION endg tress W W L endg of embers made of everal aterials 0 5 lumum 0.5 TYP rass teel rass 2.5 2 lumum 2.5 1.5 12 Cross-section, Cross-section, tress Concentrations r r D d

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

A formula sheet and table of physical constants is attached to this paper.

A formula sheet and table of physical constants is attached to this paper. Dt Provided: A formul heet nd tble of phyicl contnt i ttched to thi pper. Ancillry Mteril: DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn 2014 The phyic of mteril 2 hour Intruction: Anwer quetion ONE (Compulory)

More information

STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS

STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS 13 th World Conerence on Earthquake Engineering Vancouver, B.C., Canada Augut 1-6, 004 Paper No. 589 STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS Rebeccah RUSSELL 1, Adolo MATAMOROS,

More information

Working with Powers and Exponents

Working with Powers and Exponents Working ith Poer nd Eponent Nme: September. 00 Repeted Multipliction Remember multipliction i y to rite repeted ddition. To y +++ e rite. Sometime multipliction i done over nd over nd over. To rite e rite.

More information

Some History. Over the Next Several Days. Three Stages of Fatigue Failure. Identifying Fatigue Fractures. Three Approaches. Low vs.

Some History. Over the Next Several Days. Three Stages of Fatigue Failure. Identifying Fatigue Fractures. Three Approaches. Low vs. Over the Next everl Dys Wht is Ftigue? Epiricl Dt Estiting Endurnce/Ftigue trength trtegies for Anlysis oe History Ril The cr xles ll-iportnt icrocrck Role of stress concentns ¾oet irplnes ¾ Unixil Fully

More information

1 Bending of a beam with a rectangular section

1 Bending of a beam with a rectangular section 1 Bending of bem with rectngulr section x3 Episseur b M x 2 x x 1 2h M Figure 1 : Geometry of the bem nd pplied lod The bem in figure 1 hs rectngur section (thickness 2h, width b. The pplied lod is pure

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi 8 3. The thin-wlled cylinder cn be supported in one of two wys s shown. Determine the stte of stress in the wll of the cylinder for both cses if the piston P cuses the internl pressure to be 65 psi. The

More information

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS.

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS. Title DEFORMATION-BASED APPROACH FOR DETERMINATION OF THE IN R/C MEMBERS Author()TUE, N. V.; TUNG, N. Đ. Iue Date 13-9-11 Doc URL http://hdl.handle.net/115/546 Type proceeding Note The Thirteenth Eat Aia-Paciic

More information

Chapter 5 Bending Moments and Shear Force Diagrams for Beams

Chapter 5 Bending Moments and Shear Force Diagrams for Beams Chpter 5 ending Moments nd Sher Force Digrms for ems n ddition to illy loded brs/rods (e.g. truss) nd torsionl shfts, the structurl members my eperience some lods perpendiculr to the is of the bem nd will

More information

Available online at ScienceDirect. Transportation Research Procedia 14 (2016 )

Available online at   ScienceDirect. Transportation Research Procedia 14 (2016 ) Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 14 (016 ) 411 40 6th Transport Research Arena April 18-1, 016 Resistance o reinorced concrete columns subjected

More information

Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion ( )

Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion ( ) World Engineering & Applied Science Journl 6 (): 7-, 5 ISS 79- IDOSI Publiction, 5 DOI:.59/idoi.wej.5.6.. Ftigue Filure of n Ovl Cro Section Primtic Br t Pulting Torion L.Kh. Tlybly nd.m. giyev Intitute

More information

COLLEGE OF ENGINEERING AND TECHNOLOGY

COLLEGE OF ENGINEERING AND TECHNOLOGY COLLEGE OF ENGNEERNG ND TECHNOLOGY DEPRTMENT : Construction nd uilding Engineering COURSE : Structurl nlysis 2 COURSE NO : C 343 LECTURER : Dr. Mohmed SFN T. SSSTNT : Eng. Mostf Yossef, Eng. l-hussein

More information

Contact Analysis on Large Negative Clearance Four-point Contact Ball Bearing

Contact Analysis on Large Negative Clearance Four-point Contact Ball Bearing Avilble online t www.sciencedirect.co rocedi ngineering 7 0 74 78 The Second SR Conference on ngineering Modelling nd Siultion CMS 0 Contct Anlysis on Lrge Negtive Clernce Four-point Contct Bll Bering

More information

CEE 142L Reinforced Concrete Structures Laboratory

CEE 142L Reinforced Concrete Structures Laboratory CEE 14L Reinfored Conrete Struture Lbortory Slender Column Experiment CEE 14L Slender Column Experiment Spring The olumn experiment i deigned to exmine the influene of lenderne on the xil lod pity of the

More information

ME 452: Machine Design II Spring Semester Name of Student: Circle your Lecture Division Number: Lecture 1 Lecture 2 FINAL EXAM

ME 452: Machine Design II Spring Semester Name of Student: Circle your Lecture Division Number: Lecture 1 Lecture 2 FINAL EXAM ME 45: Mchine Design II Spring Semester 01 Nme o Student: Circle your Lecture Division Number: Lecture 1 Lecture FINAL EXAM Thursdy, My 5th, 01 OEN BOOK AND CLOSED NOTES For ull credit you must show ll

More information

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2 Pot-Tenioning Expertie and Deign May 7, 2015 TN465_EC2_erviceability_050715 EC2 SERVICEBILITY CHECK OF POST-TENSIONED ELEMENTS 1 Bijan O alami 2 Thi Technical te explain the erviceability check o pot-tenioned

More information

Measurement and Instrumentation Lecture Note: Strain Measurement

Measurement and Instrumentation Lecture Note: Strain Measurement 0-60 Meurement nd Intrumenttin Lecture Nte: Strin Meurement eview f Stre nd Strin Figure : Structure under tenin Frm Fig., xil tre σ, xil trin, trnvere trin t, Pin' rti ν, nd Yung mdulu E re σ F A, dl

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ME 5 Tutoril, Week# Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5 C enters cooling toer ith ss flo rte of 5000 kg/s. A stre of cooled ter is returned

More information

i 3 i 2 Problem 8.31 Shear flow in circular section The centroidal axes are located at the center of the circle as shown above.

i 3 i 2 Problem 8.31 Shear flow in circular section The centroidal axes are located at the center of the circle as shown above. Problem 8.31 Sher flow in circulr section i 3 R θ s i 2 t Remove@"Globl` "D H remove ll symbols L The centroidl xes re locted t the center of the circle s shown bove. (1) Find bending stiffness: From symmetry,

More information

Verification Analysis of the Slope Stability

Verification Analysis of the Slope Stability Verifiction nul no. 3 Updte 04/016 Verifiction Anlysis of the Slope Stbility Progr: File: Slope Stbility Deo_v_en_03.gst In this verifiction nul you will find hnd-de verifiction nlysis of the stbility

More information

Theme 8 Stability and buckling of members

Theme 8 Stability and buckling of members Elsticity nd plsticity Theme 8 Stility nd uckling o memers Euler s solution o stility o n xilly compressed stright elstic memer Deprtment o Structurl Mechnics culty o Civil Engineering, VSB - Technicl

More information

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved. Renshw: Mths for Econoics nswers to dditionl exercises Exercise.. Given: nd B 5 Find: () + B + B 7 8 (b) (c) (d) (e) B B B + B T B (where 8 B 6 B 6 8 B + B T denotes the trnspose of ) T 8 B 5 (f) (g) B

More information

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s 2. Analyzing tre: Definition and Concept 2.1 Introduction Stre and train - The fundamental and paramount ubject in mechanic of material - Chapter 2: Stre - Chapter 3: Strain 2.2 Normal tre under aial loading

More information

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O.

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O. SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION S. J. E. Dia 1 and J. A. O. Barro 2 1 Aitant Pro., ISISE, Dep. o Civil Eng., Univ. o Minho, Azurém,

More information

Fayoum University. Dr.: Youssef Gomaa Youssef

Fayoum University. Dr.: Youssef Gomaa Youssef Fayoum University Faculty o Engineering Department o Civil Engineering CE 40: Part Shallow Foundation Design Lecture No. (6): Eccentric Footing Dr.: Yousse Gomaa Yousse Eccentric Footing Eccentric ooting:

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting acce to White Roe reearch paper Univeritie o Leed, Sheield and York http://eprint.whiteroe.ac.uk/ Thi i an author produced verion o a paper publihed in Cement and Concrete Compoite. White Roe

More information

EVALUATION OF DESIGN PROVISIONS FOR IN-PLANE SHEAR IN MASONRY WALLS COURTNEY LYNN DAVIS

EVALUATION OF DESIGN PROVISIONS FOR IN-PLANE SHEAR IN MASONRY WALLS COURTNEY LYNN DAVIS EVALUATION OF DESIGN PROVISIONS FOR IN-PLANE SHEAR IN MASONRY WALLS By COURTNEY LYNN DAVIS A thesis subitted in partial fulfillent of the requireents for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

More information

CHAPTER 5 Newton s Laws of Motion

CHAPTER 5 Newton s Laws of Motion CHAPTER 5 Newton s Lws of Motion We ve been lerning kinetics; describing otion without understnding wht the cuse of the otion ws. Now we re going to lern dynics!! Nno otor 103 PHYS - 1 Isc Newton (1642-1727)

More information

B U I L D I N G D E S I G N

B U I L D I N G D E S I G N B U I L D I N G D E S I G N 10.1 DESIGN OF SLAB P R I O D E E P C H O W D H U R Y C E @ K 8. 0 1 7 6 9 4 4 1 8 3 DESIGN BY COEFFICIENT METHOD Loads: DL = 150 pc LL = 85 pc Material Properties: c = 3000

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Theme 9 Stability and buckling of members

Theme 9 Stability and buckling of members Elsticit n plsticit Theme 9 Stilit n uckling o memers Euler s solution o stilit o stright elstic memer uner pressure Deprtment o Structurl Mechnics cult o Civil Engineering, VSB - Technicl Universit Ostrv

More information

Design Data 1M. Highway Live Loads on Concrete Pipe

Design Data 1M. Highway Live Loads on Concrete Pipe Design Dt 1M Highwy Live Lods on Concrete Pipe Foreword Thick, high-strength pvements designed for hevy truck trffic substntilly reduce the pressure trnsmitted through wheel to the subgrde nd consequently,

More information

Flexural Members - Strength Design. Flexural Members - Strength Design

Flexural Members - Strength Design. Flexural Members - Strength Design Flexral Meber - Strength Deign 5.1. Effectie copreie with per bar 5. Bea 5..1 General bea eign 5.. Deep bea 9.1.4 Strength rection factor 9.1.9 Material propertie 9. Reinforce aonry 9.. Deign aption 9...5

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

ESTIMATION OF THE MODULUS OF ELASTICITY FOR DAM CONCRETE

ESTIMATION OF THE MODULUS OF ELASTICITY FOR DAM CONCRETE ESTIMATION OF THE MODULUS OF ELASTICITY FOR DAM CONCRETE J. Vilrdell, A. Agudo, L. Agulló nd R. Gettu Universitt Politècnic de Ctluny, Deprtent of Construction Engineering, ETSECCPB-UPC, Edificio C-1,

More information

M A S O N R Y. Winter Engineering Notes For Design With Concrete Block Masonry. Design of Anchor Bolts in Concrete Masonry

M A S O N R Y. Winter Engineering Notes For Design With Concrete Block Masonry. Design of Anchor Bolts in Concrete Masonry M A S O N R Y Winter 009-10 Engineering Notes For Design With Concrete lock Msonry C H R O N I C L E S... Introduction...... Anchor olts in Concrete Msonry Design of Anchor olts in Concrete Msonry This

More information

3.5b Stress Boundary Conditions: Continued

3.5b Stress Boundary Conditions: Continued 3.5b Stre Boundar Condition: Continued Conider now in more detail a urface between two different material Fig. 3.5.16. One a that the normal and hear tree are continuou acro the urface a illutrated. 2

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

CE 160 Lab 2 Notes: Shear and Moment Diagrams for Beams

CE 160 Lab 2 Notes: Shear and Moment Diagrams for Beams E 160 Lb 2 Notes: Sher nd oment Digrms for ems Sher nd moment digrms re plots of how the internl bending moment nd sher vry long the length of the bem. Sign onvention for nd onsider the rbitrrily loded

More information

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 117 FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS Wu-Wei Kuo

More information

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems

LINKÖPINGS TEKNISKA HÖGSKOLA. Fluid and Mechanical Engineering Systems (6) Fluid nd Mechnicl Engineering Sytem 008086. ) Cvittion in orifice In hydrulic ytem cvittion occur downtrem orifice with high preure drop. For n orifice with contnt inlet preure of p = 00 br cvittion

More information

Ans. Ans. Ans. Ans. Ans. Ans.

Ans. Ans. Ans. Ans. Ans. Ans. 08 Solutions 46060 5/28/10 8:34 M Pge 532 8 1. sphericl gs tnk hs n inner rdius of r = 1.5 m. If it is subjected to n internl pressure of p = 300 kp, determine its required thickness if the mximum norml

More information

Flexural Members - Strength Design. Beams Behavior

Flexural Members - Strength Design. Beams Behavior Flexral Meber - Strength Deign 0.8f c a C=0.8f (b)(0.8c) h Grot -a/ A Maonry Unit > y f y T=A f y A b b Strain Stree Aption: (9..) 1. Plane ection reain plane. All aonry in tenion i neglecte. Perfect bon

More information

Combined Flexure and Axial Load

Combined Flexure and Axial Load Cobied Flexure ad Axial Load Iteractio Diagra Partiall grouted bearig wall Bearig Wall: Sleder Wall Deig Procedure Stregth Serviceabilit Delectio Moet Magiicatio Exaple Pilater Bearig ad Cocetrated Load

More information

ELE B7 Power Systems Engineering. Power System Components Modeling

ELE B7 Power Systems Engineering. Power System Components Modeling Power Systems Engineering Power System Components Modeling Section III : Trnsformer Model Power Trnsformers- CONSTRUCTION Primry windings, connected to the lternting voltge source; Secondry windings, connected

More information

Explanatory Examples for Ductile Detailing of RC Buildings

Explanatory Examples for Ductile Detailing of RC Buildings Document No. :: IITK-GSD-EQ-V3.0 Final Report :: - Earthquake Codes IITK-GSD Project on Building Codes Explanatory Examples or Ductile Detailing o RC Buildings by Dr. R. K. Ingle Department o pplied echanics

More information

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a D Motor Bic he D pernent-gnet otor i odeled reitor ( ) in erie with n inductnce ( ) nd voltge ource tht depend on the ngulr velocity of the otor oltge generted inide the rture K ω (ω i ngulr velocity)

More information

Comparison of the Design of Flexural Reinforced Concrete Elements According to Albanian Normative

Comparison of the Design of Flexural Reinforced Concrete Elements According to Albanian Normative ISBN 978-93-84422-22-6 Proceedings of 2015 Interntionl Conference on Innovtions in Civil nd Structurl Engineering (ICICSE'15) Istnbul (Turkey), June 3-4, 2015 pp. 155-163 Comprison of the Design of Flexurl

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014

twenty one concrete construction: materials & beams ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 ELEMENTS OF ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SPRING 2014 lecture twenty one concrete construction: http:// nisee.berkeley.edu/godden materials & beams Concrete Beams

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Size effect in behavior of lightly reinforced concrete beams

Size effect in behavior of lightly reinforced concrete beams Size effect in behavior of lightly reinforced concrete beam M.L.Zak Ariel Univerity Ariel 47 Irael Abtract The aim of thi work i to ae the effect of ize (depth of ection in the behavior of reinforced concrete

More information

Remarks to the H-mode workshop paper

Remarks to the H-mode workshop paper 2 nd ITPA Confinement Dtbse nd Modeling Topicl Group Meeting, Mrch 11-14, 2002, Princeton Remrks to the H-mode workshop pper The development of two-term model for the confinement in ELMy H-modes using

More information

STRUNET CONCRETE DESIGN AIDS

STRUNET CONCRETE DESIGN AIDS Introtion to Conrete Bem Deign Flow Chrt The onrete em eign low hrt re the ollowing jet: For retnglr em with given imenion: Anlzing the em etion to etere it moment trength n th eining the em etion to e

More information

FBR Neutronics: Breeding potential, Breeding Ratio, Breeding Gain and Doubling time

FBR Neutronics: Breeding potential, Breeding Ratio, Breeding Gain and Doubling time FBR eutronics: Breeding potentil, Breeding Rtio, Breeding Gin nd Doubling time K.S. Rjn Proessor, School o Chemicl & Biotechnology SASTRA University Joint Inititive o IITs nd IISc Funded by MHRD Pge 1

More information

Research on Influences of Retaining Wall Draining Capacity on Stability of Reservoir Bank Slope Retaining Wall

Research on Influences of Retaining Wall Draining Capacity on Stability of Reservoir Bank Slope Retaining Wall 5th Interntionl Conerence on Civil Engineering nd Trnporttion (ICCET 2015) Reerch on Inluence o Retining Wll Drining Cpcity on Stbility o Reervoir Bnk Slope Retining Wll Yiong Zhng1, *Liming Wu1, Zijin

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

APPENDIX 2 LAPLACE TRANSFORMS

APPENDIX 2 LAPLACE TRANSFORMS APPENDIX LAPLACE TRANSFORMS Thi ppendix preent hort introduction to Lplce trnform, the bic tool ued in nlyzing continuou ytem in the frequency domin. The Lplce trnform convert liner ordinry differentil

More information

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods DESIGN OF COLUMN BSE PLTES ND STEEL NCHORGE TO CONCRETE OUTLINE 1. Introduction 2. Base plates a. Material b. Design using ISC Steel Design Guide Concentric axial load xial load plus moment xial load plus

More information

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM

CHOOSING THE NUMBER OF MODELS OF THE REFERENCE MODEL USING MULTIPLE MODELS ADAPTIVE CONTROL SYSTEM Interntionl Crpthin Control Conference ICCC 00 ALENOVICE, CZEC REPUBLIC y 7-30, 00 COOSING TE NUBER OF ODELS OF TE REFERENCE ODEL USING ULTIPLE ODELS ADAPTIVE CONTROL SYSTE rin BICĂ, Victor-Vleriu PATRICIU

More information

Restoration Design for RC Slab Bridges by AASHTO LRFD

Restoration Design for RC Slab Bridges by AASHTO LRFD プレストレストコンクリート工学会第 1 回シンポジウム論文集 (01 年 10 月 ) Retortion Deign or RC Slb Brige b AASHTO LRFD Yokoh Ntionl Univerit, Grute Stuent Abrh G. TAREKEGN Yokoh Ntionl Univerit, Meber o JPCI Ttu TSUBAKI Abtrt: Mot

More information

Steel Fiber-Reinforced Concrete Panels in Shear: Analysis and Modeling

Steel Fiber-Reinforced Concrete Panels in Shear: Analysis and Modeling ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 11-S25 Steel Fiber-Reinorced Concrete Panel in Shear: Analyi and Modeling by Jimmy Suetyo, Paul Gauvreau, and Frank J. Vecchio Finite element (FE) tudie

More information

Shear and torsion interaction of hollow core slabs

Shear and torsion interaction of hollow core slabs Competitive nd Sustinble Growth Contrct Nº G6RD-CT--6 Sher nd torsion interction of hollow core slbs HOLCOTORS Technicl Report, Rev. Anlyses of hollow core floors December The content of the present publiction

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an Chpter 9 9- ( A ek electrolyte only prtilly ionizes hen dissolved in ter. NC is n exmple of ek electrolyte. (b A Brønsted-ory cid is cule tht dontes proton hen it encounters bse (proton cceptor. By this

More information

A Simple Higher Order Theory for Bending Analysis of Steel Beams

A Simple Higher Order Theory for Bending Analysis of Steel Beams SSRG International Journal of Civil Engineering (SSRG-IJCE) volume Iue April 15 A Simple Higher Order Theory for Bending Analyi of Steel Beam T.K. Meghare 1, P.D. Jadhao 1 Department of Civil Engineering,

More information

Analysis of Steel Fiber-Reinforced Concrete Elements Subjected to Shear

Analysis of Steel Fiber-Reinforced Concrete Elements Subjected to Shear ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title No. 113-S25 Analyi o Steel Fiber-Reinorced Conete Element Subjected to Shear by Seong-Cheol Lee, Jae-Yeol Cho, and Frank J. Vecchio In thi paper, a rational

More information

CHAPTER 4a. ROOTS OF EQUATIONS

CHAPTER 4a. ROOTS OF EQUATIONS CHAPTER 4. ROOTS OF EQUATIONS A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskk Spring 00 ENCE 03 - Computtion Methods in Civil Engineering II Deprtment

More information

Software Verification

Software Verification Sotare Veriiation EXAMPLE NZS 3101-06 RC-BM-001 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veriy lab lexural deign in. The load level i adjuted or the ae orreponding

More information

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY VOLUME 2, O. 2, EDISI XXIX JULI 24 IDEALIZED STRESS-STRAI RELATIOSHIP I TESIO OF REIFORCE COCRETE MEMBER FOR FIITE ELEMET MODEL BASED O HASWILLE S THEORY Hardi Wibowo ABSTRACT Untuk penganaliaan kontrol

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Prolems Blinn College - Physics 2426 - Terry Honn Prolem E.1 A wire with dimeter d feeds current to cpcitor. The chrge on the cpcitor vries with time s QHtL = Q 0 sin w t. Wht re the current

More information

MECHANICS OF STRUCTURAL INSTABILITY IN THIN-WALLED STRUCTURES

MECHANICS OF STRUCTURAL INSTABILITY IN THIN-WALLED STRUCTURES MCHNICS OF STRUCTUR INSTBIITY IN THIN-WD STRUCTURS K F Chung The Hong Kong oltechnic Universit, Kowloon, Hong Kong SR BSTRCT Instilit is n iortnt rnch of structurl echnics which exines lternte equiliriu

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information