Design of T and L Beams in Flexure

Size: px
Start display at page:

Download "Design of T and L Beams in Flexure"

Transcription

1 Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed Introduction to T nd L Bems ACI Code provisions for T nd L Bems Design Cses Design of Rectngulr T-bem Design of True T-bem References Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 2 1

2 Objectives At the end of this lecture, students will be ble to; Differentite between T-bem nd L-bem Explin Mechnics of Rectngulr T-bem nd true T-bem Design T-bem for flexure Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 3 Introduction to T nd L Bem The T or L Bem gets its nme when the slb nd bem produce the cross sections hving the typicl T nd L shpes in monolithic reinforced concrete construction. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 4 2

3 Introduction to T nd L Bem In csting of reinforced concrete floors/roofs, forms re built for bem sides, the underside of slbs, nd the entire concrete is mostly poured t once, from the bottom of the deepest bem to the top of the slb. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 5 Introduction to T nd L Bem Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 6 3

4 Introduction to T nd L Bem Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 7 Introduction to T nd L Bem Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 8 4

5 Introduction to T nd L Bem b b b b Compression Tension Tension Compression Section - Section b-b Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 9 Introduction to T nd L Bem Positive Bending Moment In the nlysis nd design of floor nd roof systems, it is common prctice to ssume tht the monolithiclly plced slb nd supporting bem interct s unit in resisting the positive bending moment. As shown, the slb becomes the compression flnge, while the supporting bem becomes the web or stem. Flnge Compression Tension Web Section - Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 10 5

6 Introduction to T nd L Bem Negtive Bending Moment In the cse of negtive bending moment, the slb t the top of the stem (web) will be in tension, while the bottom of the stem will be in compression. This usully occurs t interior support of continuous bem. Tension Compression Section b-b Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 11 ACI Code Provisions for T nd L Bems For T nd L bems supporting monolithic or composite slbs, the effective flnge width shll include the bem weidth plus n effective overhnging flnge width in ccordnce with ACI Tble Slb Effective Flnge Width Flnge h f Web or Stem s w Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 12 6

7 ACI Code Provisions for T nd L Bems Clcultion of Effective Flnge Width ( ) (ACI ) T - Bem h f 2 + s w s w s w 3 + l n /4 Lest of the bove vlues is selected Where, = Width of the bem; h f = Slb thickness; s w = Cler distnce to the djcent bem; l n = Cler length of bem. Note: In ACI ( ), h is used for slb thickness, while in ACI ( ), h is used for bem depth. However, in this lecture, for differentition between bem depth nd slb thickness, h f will be used to denote slb thickness. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 13 ACI Code Provisions for T nd L Bems Clcultion of Effective Flnge Width ( ) (ACI ) L - Bem Slb Effective Flnge Width 1 + 6h f 2 + s w /2 3 + l n /12 b w s w s w Flnge h f Web or Stem Lest of the bove vlues is selected Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 7

8 Design Cses In designing T-Bem for positive bending moment, there exists two conditions: Cse 1. The depth of the compression block my be less thn or equl to the slb depth i.e. flnge thickness ( h f ) In such condition the T-Bem is designed s rectngulr bem for positive bending with the width of compression block equl to. hf d N.A A s Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 15 Design Cses Cse 2. The compression block cover the flnge nd extend into the web ( h f ) In such condition the T-Bem is designed s true T-bem. ( - )/2 d h f N.A A st Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 16 8

9 Design of Rectngulr T-bem Flexurl Cpcity Cse 1. When h f hf d N.A A s Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 17 Design of Rectngulr T-bem Flexurl Cpcity ( F x = 0) h f ε c 0.85f c /2 C 0.85f c = A s f y d N.A l = (d - /2) = A s f y / 0.85f c ( M = 0) A s ε s T M n = T*l = A s f y (d /2) As ΦM n = M u ; ΦA s f y (d /2) = M u Therefore, A s = M u /Φf y (d /2) The other checks remin sme s tht of rectngulr bem design. Note: In clculting A smx nd A smin, use, not. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 18 9

10 Design of Rectngulr T-bem Exmple 01 The roof of hll hs 5 thick slith bems hving 30 feet. c/c nd 28.5 feet cler length. The bems re hving 9 feet cler spcing nd hve been cst monolithiclly with slb. Overll depth of bem (including slb thickness) being 24 in. nd width of bem web being 14 in. Clculte the steel reinforcement re for the simply supported bem ginst totl fctored lod (including self weight of bem) of 3 k/ft. Use f c = 3 ksi nd f y = 60 ksi. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 19 Design of Rectngulr T-bem Solution: Spn length (l c/c ) = 30 ; cler length (l n ) = 28.5 W u = 3 k/ft d = = 21.5, = 14 ; h f = 5 5 Effective flnge width ( ) is minimum of, + 16h f = = A s 19 + s w = = l n /4 + = /4 = Therefore, = 94 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 20 10

11 Design of Rectngulr T-bem Solution: Check if the bem behviour is T or rectngulr. M u = w u l 2 c/c /8 = 3 x 30 2 x12 / 8 = 4050 in-kips Tril # 01 Let = h f = 5 A s = M u /Φf y (d /2) = 4050/{ (21.5 5/2)} = 3.94 in 2 Tril # 02 = A s f y /(0.85f c ) = / ( ) = 0.98 h f = 5 Therefore, design s Rectngulr bem. A s = M u /Φf y (d /2) = 4050/{ ( /2)} = 3.56 in 2 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 21 Design of Rectngulr T-bem Solution: Tril # 03 = A s f y /(0.85f c ) = / ( ) = 0.89 A s = M u /Φf y (d /2) = 4050/{ ( /2)} = 3.56 in 2 Therefore A s = 3.56 in 2 Try #8 brs, No of Brs = 3.56 / 0.8 = 4.45, sy 5 brs Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 22 11

12 Design of Rectngulr T-bem Solution: Check for mximum nd minimum reinforcement llowed by ACI: A smin = 3 ( f c / f y ) d (200/f y ) d ; (Greter of these two) 3 ( f c /f y ) d = 3 ( 3000 /60000) d = 0.82 in 2 (200/f y ) d = (200/60000) x = 1.0 in 2 Therefore, A smin = 1.0 in 2 A smx = 0.27 (f c / f y ) d = 0.27 x (3/60) x = 4.06 in 2 A smin (1.0) < A s (4.0) < A smx (4.06) O.K! Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 23 Design of Rectngulr T-bem Drfting = (3+2),#8 brs =14 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 24 12

13 Design of Rectngulr T-bem Clss Activity: Design the Bem B1 for the following moments f c = 4 ksi, f y = 60 ksi, bem weidth = 15, Slb thickness = 6 Overll bem depth (including slb thickness) = 24, 1764 K 1764 K 24 cler length 24 cler length 3122 K B1-Moment Digrm Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 25 Design of True T-bem Flexurl Cpcity Cse 2. When > h f ( - )/2 ( - )/2 d h f h f d = + d N.A A st A sf A s bw ΦM n ΦM n1 ΦM n2 ΦM n = ΦM n1 + ΦM n2 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 26 13

14 Design of True T-bem Flexurl Cpcity ΦM n1 Clcultion: From stress digrm d ( - )/2 h f h f /2 C 1 N.A l 1 = d - h f /2 T 1 = C 1 A sf T 1 C 1 = 0.85 f c ( - )h f ΦM n1 T 1 = A sf f y A sf f y = 0.85f c ( - )h f Everything in the eqution is known except A sf Therefore, A sf = 0.85f c ( - )h f / f y ΦM n1 = T 1 x l 1 = ΦA sf f y (d h f /2) Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 27 Design of True T-bem Flexurl Cpcity ΦM n2 Clcultion: From stress digrm T 2 = C 2 d ( - )/2 h f /2 C 2 l 2 = d - /2 N.A A s C 2 = 0.85 f c T 2 ΦM n2 T 2 = A s f y A s f y = 0.85f c = A s f y / (0.85 f c ) ΦM n2 = T 2 x l 2 = Φ A s f y (d /2) Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 28 14

15 Design of True T-bem A s Clcultion ( - )/2 We know tht ΦM n = M u ΦM n1 + ΦM n2 = M u d h f /2 C 2 l 2 = d - /2 N.A ΦM n1 is lredy known to us, A s T 2 Therefore ΦM n2 = M u ΦM n1 And s, ΦM n2 = T 2 x l 2 = Φ A s f y (d /2) ΦM n2 Also ΦM n2 = M u ΦM n1 Therefore, A s = (M u ΦM n1 )/ Φf y (d /2); nd = A s f y / (0.85 f c ) Clculte A s by tril nd success method. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 29 Design of True T-bem Ductility Requirements T = C 1 + C 2 [ F x = 0 ] A st f y =0.85f c ( )h f f c A st f y = A sf f y +0.85f c For ductility ε s = ε t = (ACI tble ) For = β 1 c = β d, A st will become A stmx, Therefore, A stmx f y = 0.85f c β d + A sf f y (For f c 4000 psi, β 1 = 0.85) A stmx = 0.27 (f c / f y ) d + A sf Alterntively A stmx (True T bem) = A smx (singly) + A sf So, for T-bem to behve in ductile mnner A st, provided A stmx (True T bem) Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 30 15

16 Design of True T-bem Exmple 02 Design simply supported T bem to resist fctored positive moment equl to 6700 in-kip. The bem is 12 wide nd is hving 24 totl depth including slb thickness of 3 inches. The centre to centre nd cler lengths of the bem re 25.5 nd 24 respectively. The cler spcing between the djcent bems is 3 ft. Tke f c = 3 ksi nd f y = 60 ksi. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 31 Design of True T-bem Solution: Spn length (l c/c ) = 25.5 ; cler length (l n ) = 24 d = 21.5 ; = 12 ; h f = 3 Effective flnge width ( ) is minimum of, + 16h f = = 60 + s w = = 48 + l n /4 = /4 = 84 Therefore, = 48 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 32 16

17 Design of True T-bem Solution: Check if the bem behviour is T or rectngulr. Let = h f = 3 A s = M u /Φf y (d /2) = 6700/{ (21.5 3/2)} = in 2 = A s f y /(0.85f c ) = / ( ) = > h f Therefore, design s True T-bem. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 33 Design of True T-bem Solution: Design: Clculte A sf A sf = 0.85f c ( ) h f /f y = (48 12) 3/60 = 4.59 in 2 The nominl moment resistnce (ФM n1 ), provided by A sf is, ФM n1 = ФA sf f y {d h f /2} = {21.5 3/2} = in-kip Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 34 17

18 Design of True T-bem Solution: Design: The nominl moment resistnce (ФM n2 ), provided by remining steel A s is, ФM n2 = M u ФM n1 = = in-kip Let = 0.2d = = 4.3 A s = ФM n2 / {Фf y (d /2)} = / { ( /2)}= in 2 = A s f y /(0.85f c ) = / ( ) = 3.27 By tril nd success method, finlly A s = 1.62 in 2 A st = A sf + A s = = 6.21 in 2 (9 #8 Brs) A st(provided) = 9 x 0.8 = 7.2 in 2 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 35 Design of True T-bem Solution: Ductility requirements, A smin (A st = A s + A sf ) A stmx (True T-Bem) A smin = 3 ( f c / f y ) d (200/f y ) d 3 ( f c / f y ) d = 3 ( (3000)/60000) x 12 x 21.5 = in 2 200/f y d = (200/60000) x 12 x 21.5 = 0.86 in 2 A smx (singly) =0.27(f c /f y )bd = 0.27x3/60x12x21.5 = 3.48 in 2 A stmx (True T- Bem) = A smx (singly) + A sf = = 8.07 in 2 A smin (0.8) < A st(provided) (7.2) < A stmx (True T- Bem) (8.07), O.K. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 36 18

19 Design of True T-bem Solution: (Clss Activity) Check design cpcity your self. Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 37 Design of True T-bem Drfting: =48 3 d= (3+3+3),#8 brs =12 Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 38 19

20 References Design of Concrete Structures 14th Ed. by Nilson, Drwin nd Doln. Building Code Requirements for Structurl Concrete (ACI ) Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design 39 20

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Comparison of the Design of Flexural Reinforced Concrete Elements According to Albanian Normative

Comparison of the Design of Flexural Reinforced Concrete Elements According to Albanian Normative ISBN 978-93-84422-22-6 Proceedings of 2015 Interntionl Conference on Innovtions in Civil nd Structurl Engineering (ICICSE'15) Istnbul (Turkey), June 3-4, 2015 pp. 155-163 Comprison of the Design of Flexurl

More information

Shear and torsion interaction of hollow core slabs

Shear and torsion interaction of hollow core slabs Competitive nd Sustinble Growth Contrct Nº G6RD-CT--6 Sher nd torsion interction of hollow core slbs HOLCOTORS Technicl Report, Rev. Anlyses of hollow core floors December The content of the present publiction

More information

1 Bending of a beam with a rectangular section

1 Bending of a beam with a rectangular section 1 Bending of bem with rectngulr section x3 Episseur b M x 2 x x 1 2h M Figure 1 : Geometry of the bem nd pplied lod The bem in figure 1 hs rectngur section (thickness 2h, width b. The pplied lod is pure

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 8 The Force Method of Anlysis: Bems Version CE IIT, Khrgpur Instructionl Objectives After reding

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

M A S O N R Y. Winter Engineering Notes For Design With Concrete Block Masonry. Design of Anchor Bolts in Concrete Masonry

M A S O N R Y. Winter Engineering Notes For Design With Concrete Block Masonry. Design of Anchor Bolts in Concrete Masonry M A S O N R Y Winter 009-10 Engineering Notes For Design With Concrete lock Msonry C H R O N I C L E S... Introduction...... Anchor olts in Concrete Msonry Design of Anchor olts in Concrete Msonry This

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

Design Data 1M. Highway Live Loads on Concrete Pipe

Design Data 1M. Highway Live Loads on Concrete Pipe Design Dt 1M Highwy Live Lods on Concrete Pipe Foreword Thick, high-strength pvements designed for hevy truck trffic substntilly reduce the pressure trnsmitted through wheel to the subgrde nd consequently,

More information

99/105 Comparison of OrcaFlex with standard theoretical results

99/105 Comparison of OrcaFlex with standard theoretical results 99/105 Comprison of OrcFlex ith stndrd theoreticl results 1. Introduction A number of stndrd theoreticl results from literture cn be modelled in OrcFlex. Such cses re, by virtue of being theoreticlly solvble,

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.6 INTEGRATION APPLICATIONS 6 (First moments of n rc) by A.J.Hobson 13.6.1 Introduction 13.6. First moment of n rc bout the y-xis 13.6.3 First moment of n rc bout the x-xis

More information

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I)

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I) By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Introduction Earthquake

More information

CE 160 Lab 2 Notes: Shear and Moment Diagrams for Beams

CE 160 Lab 2 Notes: Shear and Moment Diagrams for Beams E 160 Lb 2 Notes: Sher nd oment Digrms for ems Sher nd moment digrms re plots of how the internl bending moment nd sher vry long the length of the bem. Sign onvention for nd onsider the rbitrrily loded

More information

Experimental Study, Stiffness of Semi-Rigid Beam-to-Column Connections Using Bolts and Angles

Experimental Study, Stiffness of Semi-Rigid Beam-to-Column Connections Using Bolts and Angles nd rd Interntionl Conference on Electricl, Electronics nd Civil Engineering (ICEECE'1) Jnury 4-5, 1 Bli (Indonesi) Experimentl Study, Stiffness of Semi-Rigid -to- s Using Bolts nd Angles Khled M. Amtered

More information

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin Solution Mnul for Frcture Mechnics by C.T. Sun nd Z.-H. Jin Chpter rob.: ) 4 No lod is crried by rt nd rt 4. There is no strin energy stored in them. Constnt Force Boundry Condition The totl strin energy

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE Determintion RevAdvMterSci of mechnicl 0(009) -7 properties of nnostructures with complex crystl lttice using DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Calculus - Activity 1 Rate of change of a function at a point.

Calculus - Activity 1 Rate of change of a function at a point. Nme: Clss: p 77 Mths Helper Plus Resource Set. Copright 00 Bruce A. Vughn, Techers Choice Softwre Clculus - Activit Rte of chnge of function t point. ) Strt Mths Helper Plus, then lod the file: Clculus

More information

Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers

Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers (997) (Rev. 997) (Rev.2 ept. 2000) (Rev.3 July 2004) Evlution of Allowble Hold Loding of Crgo, Hold No. with Crgo Hold No. Flooded, for Existing Bulk Crriers. - Appliction nd definitions These requirements

More information

Chapter 5 Bending Moments and Shear Force Diagrams for Beams

Chapter 5 Bending Moments and Shear Force Diagrams for Beams Chpter 5 ending Moments nd Sher Force Digrms for ems n ddition to illy loded brs/rods (e.g. truss) nd torsionl shfts, the structurl members my eperience some lods perpendiculr to the is of the bem nd will

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015 Prof. Anchordoui Problems set # 4 Physics 169 Mrch 3, 15 1. (i) Eight eul chrges re locted t corners of cube of side s, s shown in Fig. 1. Find electric potentil t one corner, tking zero potentil to be

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

More information

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an Chpter 9 9- ( A ek electrolyte only prtilly ionizes hen dissolved in ter. NC is n exmple of ek electrolyte. (b A Brønsted-ory cid is cule tht dontes proton hen it encounters bse (proton cceptor. By this

More information

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued) V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 6 Plne ending Deformtion. Digrms of nternl Forces (Continued) 1 Construction of ending Moment nd Shering Force Digrms for Two Supported ems n this mode of loding,

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student) A-Level Mthemtics Trnsition Tsk (compulsory for ll mths students nd ll further mths student) Due: st Lesson of the yer. Length: - hours work (depending on prior knowledge) This trnsition tsk provides revision

More information

COLLEGE OF ENGINEERING AND TECHNOLOGY

COLLEGE OF ENGINEERING AND TECHNOLOGY COLLEGE OF ENGNEERNG ND TECHNOLOGY DEPRTMENT : Construction nd uilding Engineering COURSE : Structurl nlysis 2 COURSE NO : C 343 LECTURER : Dr. Mohmed SFN T. SSSTNT : Eng. Mostf Yossef, Eng. l-hussein

More information

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job o. Sheet 1 of 8 Rev B 10, Route de Limours -78471 St Rémy Lès Chevreuse Cedex rnce Tel : 33 (0)1 30 85 5 00 x : 33 (0)1 30 5 75 38 CLCULTO SHEET Stinless Steel Vloristion Project Design Exmple 5 Welded

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodal Analysis Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

SAINT IGNATIUS COLLEGE

SAINT IGNATIUS COLLEGE SAINT IGNATIUS COLLEGE Directions to Students Tril Higher School Certificte 0 MATHEMATICS Reding Time : 5 minutes Totl Mrks 00 Working Time : hours Write using blue or blck pen. (sketches in pencil). This

More information

15. Quantisation Noise and Nonuniform Quantisation

15. Quantisation Noise and Nonuniform Quantisation 5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

than 1. It means in particular that the function is decreasing and approaching the x-

than 1. It means in particular that the function is decreasing and approaching the x- 6 Preclculus Review Grph the functions ) (/) ) log y = b y = Solution () The function y = is n eponentil function with bse smller thn It mens in prticulr tht the function is decresing nd pproching the

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 9 The cgrw-hill Compnies, Inc. All rights reserved. Fifth SI Edition CHAPTER 5 ECHANICS OF ATERIALS Ferdinnd P. Beer E. Russell Johnston, Jr. John T. DeWolf Dvid F. zurek Lecture Notes: J. Wlt Oler Texs

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

Math 154B Elementary Algebra-2 nd Half Spring 2015

Math 154B Elementary Algebra-2 nd Half Spring 2015 Mth 154B Elementry Alger- nd Hlf Spring 015 Study Guide for Exm 4, Chpter 9 Exm 4 is scheduled for Thursdy, April rd. You my use " x 5" note crd (oth sides) nd scientific clcultor. You re expected to know

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson JUST THE MATHS UNIT NUMBE 13.1 INTEGATION APPLICATIONS 1 (Second moments of n re (B)) b A.J.Hobson 13.1.1 The prllel xis theorem 13.1. The perpendiculr xis theorem 13.1.3 The rdius of grtion of n re 13.1.4

More information

Student Session Topic: Particle Motion

Student Session Topic: Particle Motion Student Session Topic: Prticle Motion Prticle motion nd similr problems re on the AP Clculus exms lmost every yer. The prticle my be prticle, person, cr, etc. The position, velocity or ccelertion my be

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson JUST THE MATHS UNIT NUMBER 3.8 INTEGRATIN APPLICATINS 8 (First moments of volume) b A.J.Hobson 3.8. Introduction 3.8. First moment of volume of revolution bout plne through the origin, perpendiculr to

More information

Optimization. x = 22 corresponds to local maximum by second derivative test

Optimization. x = 22 corresponds to local maximum by second derivative test Optimiztion Lectue 17 discussed the exteme vlues of functions. This lectue will pply the lesson fom Lectue 17 to wod poblems. In this section, it is impotnt to emembe we e in Clculus I nd e deling one-vible

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution

Normal Distribution. Lecture 6: More Binomial Distribution. Properties of the Unit Normal Distribution. Unit Normal Distribution Norml Distribution Lecture 6: More Binomil Distribution If X is rndom vrible with norml distribution with men µ nd vrince σ 2, X N (µ, σ 2, then P(X = x = f (x = 1 e 1 (x µ 2 2 σ 2 σ Sttistics 104 Colin

More information

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram - Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

Design Beam Flexural Reinforcement

Design Beam Flexural Reinforcement COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

More information

Prep Session Topic: Particle Motion

Prep Session Topic: Particle Motion Student Notes Prep Session Topic: Prticle Motion Number Line for AB Prticle motion nd similr problems re on the AP Clculus exms lmost every yer. The prticle my be prticle, person, cr, etc. The position,

More information

2. My instructor s name is T. Snee (1 pt)

2. My instructor s name is T. Snee (1 pt) Chemistry 342 Exm #1, Feb. 15, 2019 Version 1 MY NAME IS: Extr Credit#1 1. At prissy Hrvrd, E. J. Corey is Nobel Prize (1990 winning chemist whom ll students cll (two letters 2. My instructor s nme is

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Solutions to Supplementary Problems

Solutions to Supplementary Problems Solutions to Supplementry Problems Chpter 8 Solution 8.1 Step 1: Clculte the line of ction ( x ) of the totl weight ( W ).67 m W = 5 kn W 1 = 16 kn 3.5 m m W 3 = 144 kn Q 4m Figure 8.10 Tking moments bout

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by PROPERTES OF RES Centroid The concept of the centroid is prol lred fmilir to ou For plne shpe with n ovious geometric centre, (rectngle, circle) the centroid is t the centre f n re hs n is of smmetr, the

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information