JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

Size: px
Start display at page:

Download "JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson"

Transcription

1 JUST THE MATHS UNIT NUMBER 13.6 INTEGRATION APPLICATIONS 6 (First moments of n rc) by A.J.Hobson Introduction First moment of n rc bout the y-xis First moment of n rc bout the x-xis The centroid of n rc Exercises Answers to exercises

2 UNIT INTEGRATION APPLICATIONS 6 FIRST MOMENTS OF AN ARC INTRODUCTION Suppose tht C denotes n rc (with length s) in the xy-plne of crtesin co-ordintes; nd suppose tht δs is the length of smll element of this rc. Then the first moment of C bout fixed line, l, in the plne of C is given by lim δs C hδs, where h is the perpendiculr distnce, from l, of the element with length δs. h l δs C FIRST MOMENT OF AN ARC ABOUT THE Y-AXIS Let us consider n rc of the curve, whose eqution is y = f(x), joining two points, P nd Q, t x = nd x = b, respectively. 1

3 y δy P δs Q O δx x b The rc my divided up into smll elements of typicl length, δs, by using neighbouring points long the rc, seprted by typicl distnces of δx (prllel to the x-xis) nd δy (prllel to the y-xis). The first moment of ech element bout the y-xis is x times the length of the element; tht is xδs, implying tht the totl first moment of the rc bout the y-xis is given by lim δs C xδs. But, from Pythgors Theorem, δs ( ) (δx) + (δy) δy = 1 + δx, δx so tht the first moment of the rc becomes lim δx x=b x= ( ) δy x 1 + δx = δx b ( ) x 1 + dx. dx Note: If the curve is given prmetriclly by x = x(t), y = y(t),

4 then, using the sme principles s in Unit 13.4, we my conclude tht the first moment of the rc bout the y-xis is given by t ± t 1 ) ( dx x + ( ), ccording s dx is positive or negtive FIRST MOMENT OF AN ARC ABOUT THE X-AXIS () For n rc whose eqution is y = f(x), contined between x = nd x = b, the first moment bout the x-xis will be b ( ) y 1 + dx. dx Note: If the curve is given prmetriclly by x = x(t), y = y(t), then, using the sme principles s in Unit 13.4, the first moment of the rc bout the x-xis is given by t ± t 1 ) ( dx y + ( ), ccording s dx is positive or negtive. 3

5 (b) For n rc whose eqution is x = g(y), contined between y = c nd y = d, we my reverse the roles of x nd y in section so tht the first moment of the rc bout the x-xis is given by d c ( ) dx y 1 +. d y S δy δs c R O δx x Note: If the curve is given prmetriclly by x = x(t), y = y(t), then, using the sme principles s in Unit 13.4, we my conclude tht the first moment of the rc bout the x-xis is given by t ± t 1 ) ( dx y + ( ), ccording s is positive or negtive nd where t = t 1 when y = c nd t = t when y = d. 4

6 EXAMPLES 1. Determine the first moments bout the x-xis nd the y-xis of the rc of the circle, with eqution x + y =, lying in the first qudrnt. Solution y O x Using implicit differentition, we hve x + y dx =, nd hence, dx = x y. The first moment of the rc bout the y-xis is therefore given by x But x + y = nd y = x. Hence, 1 + x y dx = x x y + y dx. first moment = x ] [ x dx = ( x ) =. By symmetry, the first moment of the rc bout the x-xis will lso be. 5

7 . Determine the first moments bout the x-xis nd the y-xis of the first qudrnt rc of the curve with prmetric equtions Solution x = cos 3 θ, y = sin 3 θ. y O x Firstly, we hve dx dθ = 3cos θ sin θ nd dθ = 3sin θ cos θ. Hence, the first moment bout the x-xis is given by π which, on using cos θ + sin θ 1, becomes y 9 cos 4 θsin θ + 9 sin 4 θcos θ dθ, π sin 3 θ.3 cos θ sin θ dθ = 3 π sin 4 θ cos θ dθ [ sin = 3 5 ] π θ 5 =

8 Similrly, the first moment of the rc bout the y-xis is given by π ) ( ) ( dx π x + dθ = cos 3 θ.(3 cos θ sin θ) dθ dθ dθ = 3 π cos 4 θ sin θ dθ = 3 [ ] π cos5 θ 5 = 3 5, though, gin, this second result could be deduced, by symmetry, from the first THE CENTROID OF AN ARC Hving clculted the first moments of n rc bout both the x-xis nd the y-xis it is possible to determine point, (x, y), in the xy-plne with the property tht () The first moment bout the y-xis is given by sx, where s is the totl length of the rc; nd (b) The first moment bout the x-xis is given by sy, where s is the totl length of the rc. The point is clled the centroid or the geometric centre of the rc nd, for n rc of the curve with eqution y = f(x), between x = nd x = b, its co-ordintes re given by x = b 1 x + ( ) dx dx b 1 + ( ) nd y = dx dx b 1 y + ( ) dx dx b 1 + ( ). dx dx Notes: (i) The first moment of n rc bout n xis through its centroid will, by definition, be zero. In prticulr, if we tke the y-xis to be prllel to the given xis, with x s the perpendiculr distnce from n element, δs, to the y-xis, the first moment bout the given xis will be C (x x)δs = C xδs x C δs = sx sx =. (ii) The centroid effectively tries to concentrte the whole rc t single point for the purposes of considering first moments. In prctice, it corresponds, for exmple, to the position of the centre of mss of thin wire with uniform density. 7

9 EXAMPLES 1. Determine the crtesin co-ordintes of the centroid of the rc of the circle, with eqution x + y =, lying in the first qudrnt. Solution y O x From n erlier exmple in this unit, we know tht the first moments of the rc bout the x-xis nd the y-xis re both equl to. Also, the length of the rc is π, which implies tht x = π nd y = π.. Determine the crtesin co-ordintes of the centroid of the first qudrnt rc of the curve with prmetric equtions x = cos 3 θ, y = sin 3 θ. 8

10 Solution y O x From n erlier exmple in this unit, we know tht dx dθ = 3cos θ sin θ nd dθ = 3sin θ cos θ nd tht the first moments of the rc bout the x-xis nd the y-xis re both equl to 3 5. Also, the length of the rc is given by π This simplifies to ) ( dx + dθ ( ) dθ = dθ π 9 cos 4 θsin θ + 9 sin 4 θcos θ dθ. π 3 cos θ sin θ dθ = 3 [ sin θ ] π = 3. Thus, x = 5 nd y = 5. 9

11 EXERCISES 1. Determine the first moment bout the y-xis of the rc of the curve with eqution lying between x = nd x = 1. y = x,. Determine the first moment bout the x-xis of the rc of the curve with eqution lying between y =.1 nd y =.5. x = 5y, 3. Determine the first moment bout the x-xis of the rc of the curve with eqution lying between x = 3 nd x = 4. y = x, 4. Verify, using integrtion, tht the centroid of the stright line segment, defined by the eqution y = 3x +, from x = to x = 1, lies t its centre point. 5. Determine the crtesin co-ordintes of the centroid of the rc of the circle given prmetriclly by from θ = π 6 to θ = π For the curve whose eqution is x = 5 cos θ, y = 5 sin θ, 9y = x(3 x), show tht dx = 1 x x. Hence ( show tht the centroid of the first qudrnt rch of this curve lies t the point 7, )

12 ANSWERS TO EXERCISES x = 1 nd y = x = 15 π 4.77, y =. 11

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 8 (First moments of a volume) A.J.Hobson JUST THE MATHS UNIT NUMBER 3.8 INTEGRATIN APPLICATINS 8 (First moments of volume) b A.J.Hobson 3.8. Introduction 3.8. First moment of volume of revolution bout plne through the origin, perpendiculr to

More information

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 11 (Second moments of an area (A)) A.J.Hobson

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 11 (Second moments of an area (A)) A.J.Hobson JUST THE MATHS SLIDES NUMBER. INTEGRATIN APPLICATINS (Second moments of n re (A)) b A.J.Hobson.. Introduction..2 The second moment of n re bout the -xis.. The second moment of n re bout the x-xis UNIT.

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson JUST THE MATHS UNIT NUMBE 13.1 INTEGATION APPLICATIONS 1 (Second moments of n re (B)) b A.J.Hobson 13.1.1 The prllel xis theorem 13.1. The perpendiculr xis theorem 13.1.3 The rdius of grtion of n re 13.1.4

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson JUST THE MATHS SLIDES NUMBER 13.12 INTEGRATION APPLICATIONS 12 (Second moments of n re (B)) b A.J.Hobson 13.12.1 The prllel xis theorem 13.12.2 The perpendiculr xis theorem 13.12.3 The rdius of grtion

More information

Geometric and Mechanical Applications of Integrals

Geometric and Mechanical Applications of Integrals 5 Geometric nd Mechnicl Applictions of Integrls 5.1 Computing Are 5.1.1 Using Crtesin Coordintes Suppose curve is given by n eqution y = f(x), x b, where f : [, b] R is continuous function such tht f(x)

More information

(6.5) Length and area in polar coordinates

(6.5) Length and area in polar coordinates 86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically. Liner Inequlities: Ech of the following crries five mrks ech:. Solve the system of equtions grphiclly. x + 2y 8, 2x + y 8, x 0, y 0 Solution: Considerx + 2y 8.. () Drw the grph for x + 2y = 8 by line.it

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m.

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m. SET I. If y x y + 5 = 0 is (A) circle with centre (, ) (B) prbol with vertex (, ) (C) prbol with directrix x = 3. The focus of the prbol x 8x + y + 7 = 0 is (D) prbol with directrix x = 9 9 (A) 0, (B)

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

PARABOLA EXERCISE 3(B)

PARABOLA EXERCISE 3(B) PARABOLA EXERCISE (B). Find eqution of the tngent nd norml to the prbol y = 6x t the positive end of the ltus rectum. Eqution of prbol y = 6x 4 = 6 = / Positive end of the Ltus rectum is(, ) =, Eqution

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes Lengths of curves nd surfces of revolution 4.4 Introduction Integrtion cn be used to find the length of curve nd the re of the surfce generted when curve is rotted round n xis. In this section we stte

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A Time : hours 0 - Mthemtics - Mrch 007 Mrks : 100 Pg - 1 Instructions : 1. Answer ll questions.. Write your nswers ccording to the instructions given below with the questions.. Begin ech section on new

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.13 INTEGRATION APPLICATIONS 13 (Second moments of a volume (A)) by A.J.Hobson 13.13.1 Introduction 13.13. The second moment of a volume of revolution about the y-axis 13.13.3

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x

Further integration. x n nx n 1 sinh x cosh x log x 1/x cosh x sinh x e x e x tan x sec 2 x sin x cos x tan 1 x 1/(1 + x 2 ) cos x sin x Further integrtion Stndrd derivtives nd integrls The following cn be thought of s list of derivtives or eqully (red bckwrds) s list of integrls. Mke sure you know them! There ren t very mny. f(x) f (x)

More information

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS

12 TRANSFORMING BIVARIATE DENSITY FUNCTIONS 1 TRANSFORMING BIVARIATE DENSITY FUNCTIONS Hving seen how to trnsform the probbility density functions ssocited with single rndom vrible, the next logicl step is to see how to trnsform bivrite probbility

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Centre of Mass, Moments, Torque

Centre of Mass, Moments, Torque Centre of ss, oments, Torque Centre of ss If you support body t its center of mss (in uniform grvittionl field) it blnces perfectly. Tht s the definition of the center of mss of the body. If the body consists

More information

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS JEE(MAIN) 05 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 0 th APRIL, 05) PART B MATHEMATICS CODE-D. Let, b nd c be three non-zero vectors such tht no two of them re colliner nd, b c b c. If is the ngle

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by PROPERTES OF RES Centroid The concept of the centroid is prol lred fmilir to ou For plne shpe with n ovious geometric centre, (rectngle, circle) the centroid is t the centre f n re hs n is of smmetr, the

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

S56 (5.3) Vectors.notebook January 29, 2016

S56 (5.3) Vectors.notebook January 29, 2016 Dily Prctice 15.1.16 Q1. The roots of the eqution (x 1)(x + k) = 4 re equl. Find the vlues of k. Q2. Find the rte of chnge of 剹 x when x = 1 / 8 Tody we will e lerning out vectors. Q3. Find the eqution

More information

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018 Finl xm olutions, MA 3474 lculus 3 Honors, Fll 28. Find the re of the prt of the sddle surfce z xy/ tht lies inside the cylinder x 2 + y 2 2 in the first positive) octnt; is positive constnt. olution:

More information

On the diagram below the displacement is represented by the directed line segment OA.

On the diagram below the displacement is represented by the directed line segment OA. Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

Problem Set 4: Mostly Magnetic

Problem Set 4: Mostly Magnetic University of Albm Deprtment of Physics nd Astronomy PH 102 / LeClir Summer 2012 nstructions: Problem Set 4: Mostly Mgnetic 1. Answer ll questions below. Show your work for full credit. 2. All problems

More information

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Core Mathematics (C2) Required Knowledge Information Sheet. Daniel Hammocks Edexcel GCE Core Mthemtics (C) Required Knowledge Informtion Sheet C Formule Given in Mthemticl Formule nd Sttisticl Tles Booklet Cosine Rule o = + c c cosine (A) Binomil Series o ( + ) n = n + n 1 n 1

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Sample Problems for the Final of Math 121, Fall, 2005

Sample Problems for the Final of Math 121, Fall, 2005 Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

Ellipse. 1. Defini t ions. FREE Download Study Package from website: 11 of 91CONIC SECTION

Ellipse. 1. Defini t ions. FREE Download Study Package from website:  11 of 91CONIC SECTION FREE Downlod Stud Pckge from wesite: www.tekoclsses.com. Defini t ions Ellipse It is locus of point which moves in such w tht the rtio of its distnce from fied point nd fied line (not psses through fied

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes The Vector Product 9.4 Introduction In this section we descrie how to find the vector product of two vectors. Like the sclr product its definition my seem strnge when first met ut the definition is chosen

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Math 211/213 Calculus III-IV. Directions. Kenneth Massey. September 17, 2018

Math 211/213 Calculus III-IV. Directions. Kenneth Massey. September 17, 2018 Mth 211/213 Clculus -V Kenneth Mssey Crson-Newmn University September 17, 2018 C-N Mth 211 - Mssey, 1 / 1 Directions You re t the origin nd giving directions to the point (4, 3). 1. n Mnhttn: go est 4

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( ) lim where lim f or lim f limg. c g = c limg( ) = c = c = c How to find it: Try nd find limits by

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2 MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points

More information

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet Ciro Governorte Nozh Directorte of Eduction Nozh Lnguge Schools Ismili Rod Deprtment : Mth Form : rd prep. Sheet Alg. Sheet () [] Find the vlues of nd in ech of the following if : ) (, ) ( -5, 9 ) ) (,

More information

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola. Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.

More information

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx

CHAPTER 10 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS. dy dx CHAPTER 0 PARAMETRIC, VECTOR, AND POLAR FUNCTIONS 0.. PARAMETRIC FUNCTIONS A) Recll tht for prmetric equtions,. B) If the equtions x f(t), nd y g(t) define y s twice-differentile function of x, then t

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2 SET I. If the locus of the point of intersection of perpendiculr tngents to the ellipse x circle with centre t (0, 0), then the rdius of the circle would e + / ( ) is. There re exctl two points on the

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

Chapter 2. Constraints, Lagrange s equations

Chapter 2. Constraints, Lagrange s equations Chpter Constrints, Lgrnge s equtions Section Constrints The position of the prticle or system follows certin rules due to constrints: Holonomic constrint: f (r. r,... r n, t) = 0 Constrints tht re not

More information

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests. ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

CBSE-XII-2015 EXAMINATION. Section A. 1. Find the sum of the order and the degree of the following differential equation : = 0

CBSE-XII-2015 EXAMINATION. Section A. 1. Find the sum of the order and the degree of the following differential equation : = 0 CBSE-XII- EXMINTION MTHEMTICS Pper & Solution Time : Hrs. M. Mrks : Generl Instruction : (i) ll questions re compulsory. There re questions in ll. (ii) This question pper hs three sections : Section, Section

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Chapter 9. Arc Length and Surface Area

Chapter 9. Arc Length and Surface Area Chpter 9. Arc Length nd Surfce Are In which We ppl integrtion to stud the lengths of curves nd the re of surfces. 9. Arc Length (Tet 547 553) P n P 2 P P 2 n b P i ( i, f( i )) P i ( i, f( i )) distnce

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Tody s Topics Sources of the Mgnetic Field (Ch. 28) Biot-Svrt Lw Ampere s Lw Mgnetism in Mtter Mxwell s Equtions Homework #7: due Tues 3/11 t 11 PM (4th problem optionl) Mgnetic

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R rern Tower, Rod No, Contrctors Are, Bistupur, Jmshedpur 800, Tel 065789, www.prernclsses.com IIT JEE 0 Mthemtics per I ART III SECTION I Single Correct Answer Type This section contins 0 multiple choice

More information

The Dirac distribution

The Dirac distribution A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution

More information

Lesson-5 ELLIPSE 2 1 = 0

Lesson-5 ELLIPSE 2 1 = 0 Lesson-5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors

Chapter 2. Vectors. 2.1 Vectors Scalars and Vectors Chpter 2 Vectors 2.1 Vectors 2.1.1 Sclrs nd Vectors A vector is quntity hving both mgnitude nd direction. Emples of vector quntities re velocity, force nd position. One cn represent vector in n-dimensionl

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100. Drill Exercise - 1 1 Find the coordintes of the vertices, foci, eccentricit nd the equtions of the directrix of the hperol 4x 5 = 100 Find the eccentricit of the hperol whose ltus-rectum is 8 nd conjugte

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

More information

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t A-PDF Wtermrk DEMO: Purchse from www.a-pdf.com to remove the wtermrk Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Functions Asolute Vlue Function Inverse Function If f ( x ), if f ( x ) 0 f ( x) y f

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate L8 VECTOR EQUATIONS OF LINES HL Mth - Sntowski Vector eqution of line 1 A plne strts journey t the point (4,1) moves ech hour long the vector. ) Find the plne s coordinte fter 1 hour. b) Find the plne

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

Triangles The following examples explore aspects of triangles:

Triangles The following examples explore aspects of triangles: Tringles The following exmples explore spects of tringles: xmple 1: ltitude of right ngled tringle + xmple : tringle ltitude of the symmetricl ltitude of n isosceles x x - 4 +x xmple 3: ltitude of the

More information