Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers

Size: px
Start display at page:

Download "Evaluation of Allowable Hold Loading of, Hold No. 1 with Cargo Hold No. 1 Flooded, for Existing Bulk Carriers"

Transcription

1 (997) (Rev. 997) (Rev.2 ept. 2000) (Rev.3 July 2004) Evlution of Allowble Hold Loding of Crgo, Hold No. with Crgo Hold No. Flooded, for Existing Bulk Crriers. - Appliction nd definitions These requirements pply to ll bulk crriers of 50 m in length nd bove, in the foremost hold, intending to crry solid bulk crgoes hving density of,78 t/m 3, or bove, with single deck, topside tnks nd hopper tnks, (i) the foremost hold is bounded by the side shell only for ships which were contrcted for construction prior to July 998, nd hve not been constructed in complince with IAC Unified Requirement 20, (ii) the foremost hold is double side skin construction less thn 760 mm bredth mesured perpendiculr to the side shell in ships, the keels of which were lid, or which were t similr stge of construction, before July 999 nd hve not been constructed in complince with IAC Unified Requirement 20 (Rev. 2, ept. 2000). Erly completion of specil survey coming due fter July 998 to postpone complince is not llowed. The loding in crgo hold No. is not to exceed the llowble hold loding in the flooded condition, clculted s per.4, using the lods given in.2 nd the sher cpcity of the double bottom given in.3. In no cse, the llowble hold loding in flooding condition is to be tken greter thn the design hold loding in intct condition..2 - Lod model.2. - Generl The lods to be considered s cting on the double bottom of hold No. re those given by the externl se pressures nd the combintion of the crgo lods with those induced by the flooding of hold No.. The most severe combintions of crgo induced lods nd flooding lods re to be used, depending on the loding conditions included in the loding mnul: - homogeneous loding conditions; - non homogeneous loding conditions; - pcked crgo conditions (such s steel mill products). For ech loding condition, the mximum bulk crgo density to be crried is to be considered in clculting the llowble hold limit Inner bottom flooding hed The flooding hed h f (see Figure ) is the distnce, in m, mesured verticlly with the ship in the upright position, from the inner bottom to level locted t distnce d f, in m, from the bseline equl to: - D in generl - 0,95 D for ships less thn 50,000 tonnes dedweight with Type B freebord. D being the distnce, in m, from the bseline to the freebord deck t side midship (see Figure ). Note: Chnges introduced in Rev.2 re to be uniformly implemented by IAC Members nd Assoicites from July The contrcted for construction dte mens the dte on which the contrct to build the vessel is signed between the prospective owner nd the shipbuilder. For further detils regrding the dte of contrct for construction, refer to IAC Procedurl Requirement (PR) No IAC Req. 997/Rev

2 .3 - her cpcity of the double bottom of hold No. The sher cpcity C of the double bottom of hold No. is defined s the sum of the sher strength t ech end of: - ll floors djcent to both hoppers, less one hlf of the strength of the two floors djcent to ech stool, or trnsverse bulkhed if no stool is fitted (see Figure 2), - ll double bottom girders djcent to both stools, or trnsverse bulkheds if no stool is fitted. The strength of girders or floors which run out nd re not directly ttched to the boundry stool or hopper girder is to be evluted for the one end only. Note tht the floors nd girders to be considered re those inside the hold boundries formed by the hoppers nd stools (or trnsverse bulkheds if no stool is fitted). The hopper side girders nd the floors directly below the connection of the bulkhed stools (or trnsverse bulkheds if no stool is fitted) to the inner bottom re not to be included. When the geometry nd/or the structurl rrngement of the double bottom re such to mke the bove ssumptions indequte, to the ociety s discretion, the sher cpcity C of the double bottom is to be clculted ccording to the ociety s criteri. In clculting the sher strength, the net thicknesses of floors nd girders re to be used. The net thickness t net, in mm, is given by: t net = t - t c t t c = s built thickness, in mm, of floors nd girders = corrosion diminution, equl to 2 mm, in generl; lower vlue of tc my be dopted, provided tht mesures re tken, to the ociety s stisfction, to justify the ssumption mde Floor sher strength The floor sher strength in wy of the floor pnel djcent to hoppers f, in kn, nd the floor sher strength in wy of the openings in the outermost by (i.e. tht by which is closest to hopper) f2, in kn, re given by the following expressions: f 3 = 0 τ Af f2 3 τ = 0 Af,h 2 A f A f,h = sectionl re, in mm 2, of the floor pnel djcent to hoppers = net sectionl re, in mm 2, of the floor pnels in wy of the openings in the outermost by IAC Req. 997/Rev

3 (i.e. tht by which is closest to hopper) = llowble sher stress, in N/mm 2, to be tken equl to : σ F / 3 F = minimum upper yield stress, in N/mm 2, of the mteril =,0 2 =,20 2 my be reduced, t the ociety s discretion, down to,0 where pproprite reinforcements re fitted to the ociety s stisfction Girder sher strength The girder sher strength in wy of the girder pnel djcent to stools (or trnsverse bulkheds, if no stool is fitted) g, in kn, nd the girder sher strength in wy of the lrgest opening in the outermost by (i.e. tht by which is closest to stool, or trnsverse bulkhed, if no stool is fitted) g2, in kn, re given by the following expressions: g 3 τ = 0 Ag g2 3 τ = 0 Ag, h 2 A g A g,h = minimum sectionl re, in mm 2, of the girder pnel djcent to stools (or trnsverse bulkheds, if no stool is fitted) = net sectionl re, in mm 2, of the girder pnel in wy of the lrgest opening in the outermost by (i.e. tht by which is closest to stool, or trnsverse bulkhed, if no stool is fitted) = llowble sher stress, in N/mm 2, s given in.3. =,0 2 =,5 2 my be reduced, t the ociety s discretion, down to,0 where pproprite reinforcements re fitted to the ociety s stisfction.4 - Allowble hold loding The llowble hold loding W, in t, is given by: W = ρc V F F =,05 in generl,00 for steel mill products c = crgo density, in t/m 3 ; for bulk crgoes see.2.; for steel products, c is to be tken s the -3 IAC Req. 997/Rev

4 density of steel V = volume, in m 3, occupied by crgo t level h X h = ρ g c X = for bulk crgoes, the lesser of X nd X 2 given by X Z + ρ g ( E hf ) = ρ + ( perm ) ρ c X2 = Z + ρ g ( E h perm) f X = for steel products, X my be tken s X, using perm = 0 = se wter density, in t/m 3 g E d f, D h f perm = 9,8 m/s 2, grvity ccelertion = d f - 0, D = s given in.2.2 = flooding hed, in m, s defined in.2.2 = permebility of crgo, to be tken s 0,3 for ore (corresponding bulk crgo density for iron ore my generlly be tken s 3,0 t/m 3 ). Z = the lesser of Z nd Z2 given by: Z Z = C A h DB, h C A e = 2 DB, e C h = C e = sher cpcity of the double bottom, in kn, s defined in.3, considering, for ech floor, the lesser of the sher strengths f nd f2 (see.3.) nd, for ech girder, the lesser of the sher strengths g nd g2 (see.3.2) sher cpcity of the double bottom, in kn, s defined in.3, considering, for ech floor, the sher strength f (see.3.) nd, for ech girder, the lesser of the sher strengths g nd g2 (see.3.2) IAC Req. 997/Rev

5 n A = B DB, h i DB, i n ADB, e = i BDB s n i = number of floors between stools (or trnsverse bulkheds, if no stool is fitted) = spce of ith-floor, in m B DB,i =B DB - s B DB,i =B DB,h for floors whose sher strength is given by f (see.3.) for floors whose sher strength is given by f 2 (see.3.) B DB = bredth of double bottom, in m, between hoppers (see Figure 3) B DB,h = distnce, in m, between the two considered opening (see Figure 3) s = spcing, in m, of double bottom longitudinls djcent to hoppers -5 IAC Req. 997/Rev

6 Figure V = Volume of crgo -6 IAC Req. 997/Rev

7 Figure 2 Figure 3 END -7 IAC Req. 997/Rev

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions (1997) (Rev. 1 1997) (Rev. Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 000) (Rev.5 July 004) Evaluation of Scantlings of the Transverse Watertight Corrugated Bulkhead between Cargo Holds Nos. 1 and, with

More information

Sniped stiffeners, requirement to buckling capacity - please see attachment for full query as it included diagrams and equations.

Sniped stiffeners, requirement to buckling capacity - please see attachment for full query as it included diagrams and equations. IACS Common Structurl Rules Knowledge Centre Bulker Q&As nd CIs on the IACS CSR Knowledge Centre KCID No. Ref. Type Topic Dte completed Question/CI Answer Attch ment 161 6/3.4.. Question Stiffeners 007/6/11

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

Design Data 1M. Highway Live Loads on Concrete Pipe

Design Data 1M. Highway Live Loads on Concrete Pipe Design Dt 1M Highwy Live Lods on Concrete Pipe Foreword Thick, high-strength pvements designed for hevy truck trffic substntilly reduce the pressure trnsmitted through wheel to the subgrde nd consequently,

More information

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006 Job o. Sheet 1 of 8 Rev B 10, Route de Limours -78471 St Rémy Lès Chevreuse Cedex rnce Tel : 33 (0)1 30 85 5 00 x : 33 (0)1 30 5 75 38 CLCULTO SHEET Stinless Steel Vloristion Project Design Exmple 5 Welded

More information

Shear and torsion interaction of hollow core slabs

Shear and torsion interaction of hollow core slabs Competitive nd Sustinble Growth Contrct Nº G6RD-CT--6 Sher nd torsion interction of hollow core slbs HOLCOTORS Technicl Report, Rev. Anlyses of hollow core floors December The content of the present publiction

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 9 The cgrw-hill Compnies, Inc. All rights reserved. Fifth SI Edition CHAPTER 5 ECHANICS OF ATERIALS Ferdinnd P. Beer E. Russell Johnston, Jr. John T. DeWolf Dvid F. zurek Lecture Notes: J. Wlt Oler Texs

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Longitudinal Strength Standard. S11 (cont) S11

Longitudinal Strength Standard. S11 (cont) S11 (1989) (Rev.1 199) (Rev. Nov 001) (Rev. June 00) (Rev.4 July 004) (Rev.5 Jn 006) (Rev.6 My 0) Longiudinl Srengh Sndrd.1 Applicion This requiremen pplies only o seel ships of lengh 90 m nd greer in unresriced

More information

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin Solution Mnul for Frcture Mechnics by C.T. Sun nd Z.-H. Jin Chpter rob.: ) 4 No lod is crried by rt nd rt 4. There is no strin energy stored in them. Constnt Force Boundry Condition The totl strin energy

More information

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus 7.1 Integrl s Net Chnge nd 7. Ares in the Plne Clculus 7.1 INTEGRAL AS NET CHANGE Notecrds from 7.1: Displcement vs Totl Distnce, Integrl s Net Chnge We hve lredy seen how the position of n oject cn e

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

Ans. Ans. Ans. Ans. Ans. Ans.

Ans. Ans. Ans. Ans. Ans. Ans. 08 Solutions 46060 5/28/10 8:34 M Pge 532 8 1. sphericl gs tnk hs n inner rdius of r = 1.5 m. If it is subjected to n internl pressure of p = 300 kp, determine its required thickness if the mximum norml

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

BME 207 Introduction to Biomechanics Spring 2018

BME 207 Introduction to Biomechanics Spring 2018 April 6, 28 UNIVERSITY O RHODE ISAND Deprtment of Electricl, Computer nd Biomedicl Engineering BME 27 Introduction to Biomechnics Spring 28 Homework 8 Prolem 14.6 in the textook. In ddition to prts -e,

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Chapter 5 Bending Moments and Shear Force Diagrams for Beams

Chapter 5 Bending Moments and Shear Force Diagrams for Beams Chpter 5 ending Moments nd Sher Force Digrms for ems n ddition to illy loded brs/rods (e.g. truss) nd torsionl shfts, the structurl members my eperience some lods perpendiculr to the is of the bem nd will

More information

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct:

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Design of T and L Beams in Flexure

Design of T and L Beams in Flexure Lecture 04 Design of T nd L Bems in Flexure By: Prof. Dr. Qisr Ali Civil Engineering Deprtment UET Peshwr drqisrli@uetpeshwr.edu.pk Prof. Dr. Qisr Ali CE 320 Reinforced Concrete Design Topics Addressed

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 8 The Force Method of Anlysis: Bems Version CE IIT, Khrgpur Instructionl Objectives After reding

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

This UR does not apply to CSR Bulk Carriers and Oil Tankers or to container ships to which UR S11A is applicable.

This UR does not apply to CSR Bulk Carriers and Oil Tankers or to container ships to which UR S11A is applicable. (1989) (Rev.1 199) (Rev. Nov 001) (Rev. June 00) (Rev.4 July 004) (Rev.5 Jn 006) (Rev.6 My 0) (Rev.7 Nov 0) (Rev.8 June 015) Longiudinl Srengh Sndrd.1 Applicion This requiremen pplies only o seel ships

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Finite Element Determination of Critical Zones in Composite Structures

Finite Element Determination of Critical Zones in Composite Structures Finite Element Determintion of Criticl Zones in Composite Structures Alexey I. Borovkov Dmitriy V. Klimshin Denis V. Shevchenko Computtionl Mechnics Lb., St. Petersburg Stte Polytechnicl University, Russi

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS Prctive Derivtions for MT GSI: Goni Hlevi SOLUTIONS Note: These solutions re perhps excessively detiled, but I wnted to ddress nd explin every step nd every pproximtion in cse you forgot where some of

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Mth Clculus Lectures Chpter 7 Applictions of Integrtion Numertion of sections corresponds to the text Jmes Stewrt, Essentil Clculus, Erly Trnscendentls, Second edition. Section 7. Ares Between Curves Two

More information

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued) V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 6 Plne ending Deformtion. Digrms of nternl Forces (Continued) 1 Construction of ending Moment nd Shering Force Digrms for Two Supported ems n this mode of loding,

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi 8 3. The thin-wlled cylinder cn be supported in one of two wys s shown. Determine the stte of stress in the wll of the cylinder for both cses if the piston P cuses the internl pressure to be 65 psi. The

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE Determintion RevAdvMterSci of mechnicl 0(009) -7 properties of nnostructures with complex crystl lttice using DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING

More information

6.2 The Pythagorean Theorems

6.2 The Pythagorean Theorems PythgorenTheorems20052006.nb 1 6.2 The Pythgoren Theorems One of the best known theorems in geometry (nd ll of mthemtics for tht mtter) is the Pythgoren Theorem. You hve probbly lredy worked with this

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

The Mechanics of Tractor Implement Performance

The Mechanics of Tractor Implement Performance The Mechnics of Trctor Implement Performnce Theory nd Worked Emples R.H. Mcmilln CHAPTER 6 HITCHING AND MECHANICS OF THE TRACTOR CHASSIS Printed from: http://www.eprints.unimelb.edu.u CONTENTS 6.1 INTRODUCTION

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16)

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16) AP Physics 1 Prctice Exm #3 (/11/16) Directions: Ech questions or incomplete sttements below is followed by four suggested nswers or completions. Select one tht is best in ech cse nd n enter pproprite

More information

Calculus of Variations

Calculus of Variations Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function

More information

Ph2b Quiz - 1. Instructions

Ph2b Quiz - 1. Instructions Ph2b Winter 217-18 Quiz - 1 Due Dte: Mondy, Jn 29, 218 t 4pm Ph2b Quiz - 1 Instructions 1. Your solutions re due by Mondy, Jnury 29th, 218 t 4pm in the quiz box outside 21 E. Bridge. 2. Lte quizzes will

More information

l 2 p2 n 4n 2, the total surface area of the

l 2 p2 n 4n 2, the total surface area of the Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator.

Practice Final. Name: Problem 1. Show all of your work, label your answers clearly, and do not use a calculator. Nme: MATH 2250 Clculus Eric Perkerson Dte: December 11, 2015 Prctice Finl Show ll of your work, lbel your nswers clerly, nd do not use clcultor. Problem 1 Compute the following limits, showing pproprite

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Sect 10.2 Trigonometric Ratios

Sect 10.2 Trigonometric Ratios 86 Sect 0. Trigonometric Rtios Objective : Understnding djcent, Hypotenuse, nd Opposite sides of n cute ngle in right tringle. In right tringle, the otenuse is lwys the longest side; it is the side opposite

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

RELIABILITY ASSESSMENT OF WATERTIGHT SHIP DECKS AND BULKHEADS

RELIABILITY ASSESSMENT OF WATERTIGHT SHIP DECKS AND BULKHEADS 8 th ASCE Specilty Conference on Probbilistic Mechnics nd Structurl Relibility PMC2000-137 RELIABILITY ASSESSMENT OF WATERTIGHT SHIP DECKS AND BULKHEADS J. A. Pires, M. ASCE, R. H. Sues, M. ASCE, nd Mrk

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY The Atwood Mchine OBJECTIVE To derive the ening of Newton's second lw of otion s it pplies to the Atwood chine. To explin how ss iblnce cn led to the ccelertion of the syste. To deterine the ccelertion

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS

EFFECTIVE BUCKLING LENGTH OF COLUMNS IN SWAY FRAMEWORKS: COMPARISONS IV EFFETIVE BUING ENGTH OF OUMN IN WAY FRAMEWOR: OMARION Ojectives In the present context, two different pproches re eployed to deterine the vlue the effective uckling length eff n c of colun n c out the

More information

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( )

Date Lesson Text TOPIC Homework. Solving for Obtuse Angles QUIZ ( ) More Trig Word Problems QUIZ ( ) UNIT 5 TRIGONOMETRI RTIOS Dte Lesson Text TOPI Homework pr. 4 5.1 (48) Trigonometry Review WS 5.1 # 3 5, 9 11, (1, 13)doso pr. 6 5. (49) Relted ngles omplete lesson shell & WS 5. pr. 30 5.3 (50) 5.3 5.4

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

AP Physics C: Electricity & Magnetism 1999 Free-Response Questions

AP Physics C: Electricity & Magnetism 1999 Free-Response Questions AP Physics C: Electricity & Mgnetism 1999 Free-esponse Questions The mterils included in these files re intended for non-commercil use by AP techers for course nd exm preprtion; permission for ny other

More information

Solution to HW 4, Ma 1c Prac 2016

Solution to HW 4, Ma 1c Prac 2016 Solution to HW 4 M c Prc 6 Remrk: every function ppering in this homework set is sufficiently nice t lest C following the jrgon from the textbook we cn pply ll kinds of theorems from the textbook without

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5. Suggested Solution MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

The Moving Center of Mass of a Leaking Bob

The Moving Center of Mass of a Leaking Bob The Moving Center of Mss of Leking Bob rxiv:1002.956v1 [physics.pop-ph] 21 Feb 2010 P. Arun Deprtment of Electronics, S.G.T.B. Khls College University of Delhi, Delhi 110 007, Indi. Februry 2, 2010 Abstrct

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8. 8.1 Kick off with S 8. Similr ojects 8. Liner scle fctors 8Similrity 8. re nd volume scle fctors 8. Review U N O R R E TE D P G E PR O O FS 8.1 Kick off with S Plese refer to the Resources t in the Prelims

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information