4 The dynamical FRW universe

Size: px
Start display at page:

Download "4 The dynamical FRW universe"

Transcription

1 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which cn be determined from the metric, nd is defined s G µν = R µν 1 Rg µν. (7) where R µν nd R re the Ricci tensor nd Ricci sclr respectively. On the right side of the eqution is Newton s constnt G N nd the energy momentum tensor of mtter, T µν. The component T 00 tells us bout the energy density, while T ij is relted to the flow of mteril in the j direction with nonzero momentum pointing in the i direction. For the FRW metric one finds R 00 = ä, R ij = [ ä + ) ] + k g ij, R 0i = 0, (74) where g ij is the sptil prt of the FRW metric. Noting tht gj i = δ ij, it is esy to construct the Einstein tensor with one upper nd one lower index, [ ) ] G 0 0 = + k [ ) ] G i j = ä + + k δ ij. (75) Our isotropy nd homogeneity ssumptions for the metric re justified if the energymomentum tensor T ν µ hs similr structure: independent of sptil coordintes, nd with Tj i δ ij with Ti 0 = T0 i = 0. Throughout this course we will be treting mtter to be close to n idel fluid with energy density ρ nd pressure p, for which ρ T µ ν = p p (76) p Einstein s equtions then red: ä + ) + k = ρ, (77) ) + k = p. (78) It is useful to mnipulte the equtions to simplify the second one. By subtrcting eq. (77) from eq. (78) we get n expression fro the cosmic ccelertion: ä = 4πG N (ρ + p). (79) 0

2 It my seem little disturbing to find two differentil equtions to solve for one function, (t). However, we cn mnipulte our equtions gin to show tht one combintion of the two Einstein equtions is simply equivlent to energy conservtion. If we differentite eq. (77) with respect to time, nd then mke use of both equtions we find or ) [ ρ = ä = ) k ] ) (ρ + p), (80) ) ρ = (ρ + p). (81) Note tht this eqution hs no fctor of G N, nd so is not telling us bout grvity. In fct it cn be rewritten s d ( ρ ) = p d (8) dt dt which is the energy conservtion eqution de = p dv (8) since smll cube of co-moving spce hs proper volume dv = (r sin θ/ 1 kr )drdθdφ. For most pplictions it is convenient to use the Friedmnn eqution eq. (77) s our first eqution, nd then either the eqution for the ccelertion eq. (79) or for energy conservtion eq. (81) s our second independent eqution Summry If we define then our two equtions to solve re: ) H =, (84) H + k = ρ, Friedmnn eqution ρ = H(ρ + p), Energy conservtion (85) 4. Solutions for the eqution of stte p = wρ To proceed, we need to know the eqution of stte which reltes ρ nd p. We will ssume for now tht the mtter of the universe is single mteril which stisfies Vrious cses of prticulr interest re: p = wρ. (86) Non-reltivistic, pressureless mtter: w = 0. If the universe is dominted by dilute gs of non-reltivistic prticles, or less dilute gs of wekly intercting prticles, then its pressure is negligible, nd we hve w = 0. 1

3 Highly reltivistic prticles: w = 1/. When the universe is dominted by prticles whose energy is so much greter thn their mss tht they cn be treted s mssless, then one finds w = 1/. Note tht for this specil vlue, the energy momentum tensor eq. (76) is trceless, T µ µ = 0. There is reson for this: if ll your prticles re mssless, then they move t the speed of light nd there is no specil frme (unlike for mssive prticles, where there is rest frme). But T µ µ hs dimensions of mss, nd is invrint under Lorentz trnsformtions. The only dimensionful quntity round is the energy of the prticles, but tht is not Lorentz invrint, so T µ µ must vnish. Cosmologicl constnt (vcuum energy): w = 1. In non-grvittionl physics one cn lwys dd constnt to the Lgrngin without consequence. It shifts the vlue of the energy, but since only energy differences re mesured, there is no innte definition of zero energy. However, grvity couples to energy, nd shifting the Lgrngin by constnt shifts T µ ν. The constnt term is clled the cosmologicl constnt; it is divergent quntity in quntum field theory, nd so nively one would think it should be very big, but s we will see, observtions of our cosmos tell us it is very smll. Since dding constnt to the Lgrngin is Lorentz invrint, it follows tht the chnge in T µ ν must be proportionl to g µ ν δ µν. Thus it must be tht such form of mtter must hve p = ρ, or w = 1. Note tht when w < 0, the pressure is negtive, which implies tension...the mteril would wnt to contrct in the bsence of grvity. Mtter with w = 1/. Although there is no reson to expect mtter with w = 1/, it is interesting to note from eq. (79) tht for w < 1/, the expnsion of the universe is ccelerting (ä > 0) while for w > 1/, it is decelerting (ä < 0). From the eqution for energy conservtion eq. (85) we find ρ = H(1 + w)ρ or dρ ρ = (1 + w)d (87) with solution ρ (1+w). (88) Note tht non-reltivistic mtter hs ρ, which ccounts for dilution of the prticles dues to the expnsion of the volume they re in; for reltivistic mtter, ρ 4, where the extr fctor of 1 ccounts for the redshift of the energy; nd cosmologicl constnt hs n energy density tht remins constnt s the universe expnds, where the increse of energy comes from the universe expnding ginst the negtive pressure. Next we look t the Friedmnn eqution, eq. (85). A sttic solution is possible with H = 0 provided tht k 0 nd k = ρ. (89) This solution ppeled to Einstein on philosophicl grounds before he lerned of Hubble s discovery of cosmologicl expnsion. It is not stble configurtion smll perturbtions bout this solution cuse it to collpse or expnd. If H 0 then we cn rewrite the Friedmnn eqution s k = H (Ω 1), (90)

4 where Ω(t) = ρ(t) ρ crit (t), ρ crit(t) H (t) (91) ρ c ρ crit (t 0 ) = H 0 = 1.88h 10 9 gm cm = h GeV cm. In principle then we see how to tell wht k is: we mesure the totl energy density ρ of the universe, we determine ρ c by mesuring the Hubble constnt nd then by constructing the rtio we find Ω. If Ω > 1 we hve k = 1, nd if Ω < 1 then k = 1, while if Ω = 1, k = 0. Of course, if 1, the right hnd side my be close to zero, even if k 0; this is the ide behind the theory of infltion. As we will see lter, we hve evidence tht Ω is very close or equl to one. Tht mens tht the curvture term in our universe is negligible. Now suppose the universe contins ll three types of energy: reltivistic (ρ R ), nonreltivistic (ρ M, M is for mtter ), nd cosmologicl constnt (ρ Λ ); we hve seen tht these scle s 4,, nd 0 respectively. Then the totl energy density, s function of the scle fctor, is given by ρ = ρ R + ρ M + ρ Λ ( ( 0 ) 4 ( 0 ) ) = ρ c Ω R + ΩM + ΩΛ. (9) We see tht the erly universe (smll ) will be rdition dominted, while the lte universe is dominted by the cosmologicl constnt, if nonzero, or mtter if it is. Everything with the subscript 0 on ρ nd H refers to tody s vlue; the terms Ω M, Ω R nd Ω Λ lwys refer to tody s vlues. Using this formul we cn find useful formul for the evolution of Ω. From eq. (89) we hve We cn rewrite H H0 Plugging the bove result into the previous one, we get Ω 1 = (Ω 0 1) H0. (9) 0H = ρ crit(t) = ρ crit(t) ρ ρ c ρ ρ c = 1 ( ( 0 ) 4 ( 0 ) ) Ω R + ΩM + ΩΛ. (94) Ω Ω 0 1 Ω 1 = ( 1 Ω 0 + Ω 0 ) ( R + 0 ) ( ). (95) ΩM + ΩΛ 0 We see tht in the erly universe (Ω 1) (Ω 0 1)(/ 0 ), so tht if Ω 0 1 then Ω must hve stisfied Ω = 1 to high ccurcy in the erly universe, nd will evolve to Ω = 0 in the fr future if Ω Λ = 0. In contrst, if Ω 0 > 1, then we must lso hve hd Ω = 1 to high ccurcy in the erly universe, but in the future Ω will grow nd eventully diverge. If we set k = 0, it is simple to solve for for the evolution of the universe for simple eqution of stte p = wρ. By tking the time derivtive of the Friedmnn eqution we get HḢ = ρ = [ H(1 + w)ρ] = H (1 + w). (96)

5 Thus with solution dh + w) = (1 dt, (97) H H = (1 + w)t. (98) I hve chosen the integrtion constnt such tht H = t t = 0. Writing H = ȧ/ nd integrting gin, we find { 0 e ±λt w = 1, (t) = 0 (t/t 0 ) /(1+w) (99) w 1 4

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0 Notes for Cosmology course, fll 2005 Cosmic Dynmics Prelude [ ds 2 = c 2 dt 2 +(t) 2 dx 2 ] + x 2 dω 2 = c 2 dt 2 +(t) [ 2 dr 2 + S 1 κx 2 /R0 2 κ (r) 2 dω 2] nd x = S κ (r) = r, R 0 sin(r/r 0 ), R 0 sinh(r/r

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

A Vectors and Tensors in General Relativity

A Vectors and Tensors in General Relativity 1 A Vectors nd Tensors in Generl Reltivity A.1 Vectors, tensors, nd the volume element The metric of spcetime cn lwys be written s ds 2 = g µν dx µ dx ν µ=0 ν=0 g µν dx µ dx ν. (1) We introduce Einstein

More information

Today in Astronomy 142: general relativity and the Universe

Today in Astronomy 142: general relativity and the Universe Tody in Astronomy 14: generl reltivity nd the Universe The Robertson- Wlker metric nd its use. The Friedmnn eqution nd its solutions. The ges nd ftes of flt universes The cosmologicl constnt. Glxy cluster

More information

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 4- Cosmology - II introduc)on to Astrophysics, C. Bertulni, Texs A&M-Commerce 1 4.1 - Solutions of Friedmnn Eqution As shown in Lecture 3, Friedmnn eqution is given by! H 2 = # " & % 2 = 8πG 3 ρ k 2 +

More information

Homework # 4 Solution Key

Homework # 4 Solution Key PHYSICS 631: Generl Reltivity 1. 6.30 Homework # 4 Solution Key The metric for the surfce of cylindr of rdius, R (fixed), for coordintes z, φ ( ) 1 0 g µν = 0 R 2 In these coordintes ll derivtives with

More information

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won Infltion Cosmology Ch 02 - The smooth, expnding universe Kore University Eunil Won From now on, we use = c = k B = The metric Generl Reltivity - in 2-dimensionl plne, the invrint distnce squred is (dx)

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG Outline I. The Why nd Wht of Infltion II. Guge fields nd infltion, generic setup III. Models within Isotropic BG Guge-fltion model Chromo-nturl model IV. Model within Anisotropic BG Infltion with nisotropic

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Prt III Mondy 12 June, 2006 9 to 11 PAPER 55 ADVANCED COSMOLOGY Attempt TWO questions. There re THREE questions in totl. The questions crry equl weight. STATIONERY REQUIREMENTS Cover

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

WMAP satellite. 16 Feb Feb Feb 2012

WMAP satellite. 16 Feb Feb Feb 2012 16 Feb 2012 21 Feb 2012 23 Feb 2012 è Announcements è Problem 5 (Hrtle 18.3). Assume V * is nonreltivistic. The reltivistic cse requires more complicted functions. è Outline è WMAP stellite è Dipole nisotropy

More information

arxiv:astro-ph/ v4 7 Jul 2006

arxiv:astro-ph/ v4 7 Jul 2006 Cosmologicl models with Gurzdyn-Xue drk energy rxiv:stro-ph/0601073v4 7 Jul 2006 G. V. Vereshchgin nd G. Yegorin ICRANet P.le dell Repubblic 10 I65100 Pescr Itly nd ICRA Dip. Fisic Univ. L Spienz P.le

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Inflation Cosmology. Ch 06 - Initial Conditions. Korea University Eunil Won. Korea U/Dept. Physics, Prof. Eunil Won (All rights are reserved)

Inflation Cosmology. Ch 06 - Initial Conditions. Korea University Eunil Won. Korea U/Dept. Physics, Prof. Eunil Won (All rights are reserved) Infltion Cosmology Ch 6 - Initil Conditions Kore University Eunil Won 1 The Einstein-Boltzmnn Equtions t Erly Times For nine first-order differentil equtions for the nine perturbtion vribles, we need initil

More information

Some basic concepts of fluid dynamics derived from ECE theory

Some basic concepts of fluid dynamics derived from ECE theory Some sic concepts of fluid dynmics 363 Journl of Foundtions of Physics nd Chemistry, 2, vol. (4) 363 374 Some sic concepts of fluid dynmics derived from ECE theory M.W. Evns Alph Institute for Advnced

More information

Nonlocal Gravity and Structure in the Universe

Nonlocal Gravity and Structure in the Universe Nonlocl rvity nd Structure in the Universe Sohyun Prk Penn Stte University Co-uthor: Scott Dodelson Bsed on PRD 87 (013) 04003, 109.0836, PRD 90 (014) 000000, 1310.439 August 5, 014 Chicgo, IL Cosmo 014

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Cosmology: Part II. Asaf Pe er Asymptotic behavior of the universe. (t) 1 kr 2 +r2 (dθ 2 +sin 2 θdφ 2 )

Cosmology: Part II. Asaf Pe er Asymptotic behavior of the universe. (t) 1 kr 2 +r2 (dθ 2 +sin 2 θdφ 2 ) Cosmology: Prt II Asf Pe er 1 Mrch 18, 2014 This prt of the course is bsed on Refs. [1] - [4]. 1. Asymptotic behvior of the universe The Robertson-Wlker metric, [ ] dr ds 2 = dt 2 + 2 2 (t) 1 kr 2 +r2

More information

Thermodynamics of the early universe, v.4

Thermodynamics of the early universe, v.4 Thermodynmics of the erly universe, v.4 A physicl description of the universe is possible when it is ssumed to be filled with mtter nd rdition which follows the known lws of physics. So fr there is no

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Imperial College QFFF, Cosmology Lecture notes. Toby Wiseman

Imperial College QFFF, Cosmology Lecture notes. Toby Wiseman Imperil College QFFF, 07-8 Cosmology Lecture notes Toby Wisemn Toby Wisemn; Huxley 507, emil: t.wisemn@imperil.c.uk Books This course is not bsed directly on ny one book. Approprite reding for the course

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Energy creation in a moving solenoid? Abstract

Energy creation in a moving solenoid? Abstract Energy cretion in moving solenoid? Nelson R. F. Brg nd Rnieri V. Nery Instituto de Físic, Universidde Federl do Rio de Jneiro, Cix Postl 68528, RJ 21941-972 Brzil Abstrct The electromgnetic energy U em

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS Prctive Derivtions for MT GSI: Goni Hlevi SOLUTIONS Note: These solutions re perhps excessively detiled, but I wnted to ddress nd explin every step nd every pproximtion in cse you forgot where some of

More information

-S634- Journl of the Koren Physicl Society, Vol. 35, August 999 structure with two degrees of freedom. The three types of structures re relted to the

-S634- Journl of the Koren Physicl Society, Vol. 35, August 999 structure with two degrees of freedom. The three types of structures re relted to the Journl of the Koren Physicl Society, Vol. 35, August 999, pp. S633S637 Conserved Quntities in the Perturbed riedmnn World Model Ji-chn Hwng Deprtment of Astronomy nd Atmospheric Sciences, Kyungpook Ntionl

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

Bypassing no-go theorems for consistent interactions in gauge theories

Bypassing no-go theorems for consistent interactions in gauge theories Bypssing no-go theorems for consistent interctions in guge theories Simon Lykhovich Tomsk Stte University Suzdl, 4 June 2014 The tlk is bsed on the rticles D.S. Kprulin, S.L.Lykhovich nd A.A.Shrpov, Consistent

More information

The Active Universe. 1 Active Motion

The Active Universe. 1 Active Motion The Active Universe Alexnder Glück, Helmuth Hüffel, Sš Ilijić, Gerld Kelnhofer Fculty of Physics, University of Vienn helmuth.hueffel@univie.c.t Deprtment of Physics, FER, University of Zgreb ss.ilijic@fer.hr

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

Wave Phenomena Physics 15c. Lecture 12 Multi-Dimensional Waves

Wave Phenomena Physics 15c. Lecture 12 Multi-Dimensional Waves Wve Phenomen Physics 15c Lecture 12 Multi-Dimensionl Wves Gols For Tody Wves in 2- nd 3-dimensions Extend 1-D wve eqution into 2- nd 3-D Norml mode solutions come esily Plne wves Boundry conditions Rectngulr

More information

GAUGE THEORY ON A SPACE-TIME WITH TORSION

GAUGE THEORY ON A SPACE-TIME WITH TORSION GAUGE THEORY ON A SPACE-TIME WITH TORSION C. D. OPRISAN, G. ZET Fculty of Physics, Al. I. Cuz University, Isi, Romni Deprtment of Physics, Gh. Aschi Technicl University, Isi 700050, Romni Received September

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES 1. TRANSLATION Figure shows rigid body trnslting in three-dimensionl spce. Any two points in the body, such s A nd B, will move long prllel stright lines if

More information

Conservation Law. Chapter Goal. 6.2 Theory

Conservation Law. Chapter Goal. 6.2 Theory Chpter 6 Conservtion Lw 6.1 Gol Our long term gol is to unerstn how mthemticl moels re erive. Here, we will stuy how certin quntity chnges with time in given region (sptil omin). We then first erive the

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

The Periodically Forced Harmonic Oscillator

The Periodically Forced Harmonic Oscillator The Periodiclly Forced Hrmonic Oscilltor S. F. Ellermeyer Kennesw Stte University July 15, 003 Abstrct We study the differentil eqution dt + pdy + qy = A cos (t θ) dt which models periodiclly forced hrmonic

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

MatFys. Week 2, Nov , 2005, revised Nov. 23

MatFys. Week 2, Nov , 2005, revised Nov. 23 MtFys Week 2, Nov. 21-27, 2005, revised Nov. 23 Lectures This week s lectures will be bsed on Ch.3 of the text book, VIA. Mondy Nov. 21 The fundmentls of the clculus of vritions in Eucliden spce nd its

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

The Cosmology of the Nonsymmetric Theory of Gravitation (NGT)

The Cosmology of the Nonsymmetric Theory of Gravitation (NGT) The Cosmology of the Nonsymmetric Theory of Grvittion () By Tomislv Proopec Bsed on stro-ph/050389 nd on unpublished wor with Wessel Vlenburg (mster s student) Bonn, 8 Aug 005 Introduction: Historicl remrs

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6 Msschusetts Institute of Technology Quntum Mechnics I (8.) Spring 5 Solutions to Problem Set 6 By Kit Mtn. Prctice with delt functions ( points) The Dirc delt function my be defined s such tht () (b) 3

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Sufficient condition on noise correlations for scalable quantum computing

Sufficient condition on noise correlations for scalable quantum computing Sufficient condition on noise correltions for sclble quntum computing John Presill, 2 Februry 202 Is quntum computing sclble? The ccurcy threshold theorem for quntum computtion estblishes tht sclbility

More information

Astro 4PT Lecture Notes Set 1. Wayne Hu

Astro 4PT Lecture Notes Set 1. Wayne Hu Astro 4PT Lecture Notes Set 1 Wyne Hu References Reltivistic Cosmologicl Perturbtion Theory Infltion Drk Energy Modified Grvity Cosmic Microwve Bckground Lrge Scle Structure Brdeen (1980), PRD 22 1882

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

7.6 The Riemann curvature tensor

7.6 The Riemann curvature tensor 7.6. The Riemnn curvture tensor 53 7.6 The Riemnn curvture tensor Before we egin with the derivtion of the Riemnn curvture tensor, rief discussion of the concept of curvture ppers pproprite. Mthemticins

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Quantum Physics I (8.04) Spring 2016 Assignment 8

Quantum Physics I (8.04) Spring 2016 Assignment 8 Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 73-76, 8-82 (on scttering sttes). Ohnin, Chpter

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Some Methods in the Calculus of Variations

Some Methods in the Calculus of Variations CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

Covariant Energy-Momentum Conservation in General Relativity with Cosmological Constant

Covariant Energy-Momentum Conservation in General Relativity with Cosmological Constant Energy Momentum in GR with Cosmologicl Constnt Covrint Energy-Momentum Conservtion in Generl Reltivity with Cosmologicl Constnt by Philip E. Gibbs Abstrct A covrint formul for conserved currents of energy,

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Set up Invariable Axiom of Force Equilibrium and Solve Problems about Transformation of Force and Gravitational Mass

Set up Invariable Axiom of Force Equilibrium and Solve Problems about Transformation of Force and Gravitational Mass Applied Physics Reserch; Vol. 5, No. 1; 013 ISSN 1916-9639 E-ISSN 1916-9647 Published by Cndin Center of Science nd Eduction Set up Invrible Axiom of orce Equilibrium nd Solve Problems bout Trnsformtion

More information

arxiv: v1 [gr-qc] 8 Apr 2009

arxiv: v1 [gr-qc] 8 Apr 2009 On the Stbility of Sttic Ghost Cosmologies rxiv:0904.1340v1 [gr-qc] 8 Apr 2009 John D. Brrow 1 nd Christos G. Tsgs 2 1 DAMTP, Centre for Mthemticl Sciences University of Cmbridge, Wilberforce Rod, Cmbridge

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2 Physics 319 Clssicl Mechnics G. A. Krfft Old Dominion University Jefferson Lb Lecture Undergrdute Clssicl Mechnics Spring 017 Sclr Vector or Dot Product Tkes two vectors s inputs nd yields number (sclr)

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information