ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

Size: px
Start display at page:

Download "ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS"

Transcription

1 ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS F. Tkeo 1 nd M. Sk 1 Hchinohe Ntionl College of Technology, Hchinohe, Jpn; Tohoku University, Sendi, Jpn Abstrct: DCPD technique is powerful tool for quntittive NDE of crcks. The technique using four probes which re in close proximity to ech other hs been proposed for NDE of surfce crcks; tht is the closely coupled probes potentil drop (CCPPD) technique. It hs been shown tht the sensitivity of the CCPPD technique is enhnced significntly in comprison with the usul method. The objective of this study ws to dvnce the CCPPD technique. An pproprite probes distnce to enhnce reproducibility ws found by experiment. The d-c potentil fields were nlyzed for mny cses of crck length, crck depth b nd mteril thickness t by using FEM. By using the numericl results, the clibrtion eqution which relte the potentil drop to, b, nd t ws obtined. Then the procedure to evlute crck depth more ccurtely in two steps ws proposed. Experiments vlidted the use of the technique for NDE of surfce crcks. Introduction: D-c potentil drop technique is suitble for quntittive NDE of crcks. It hs been pplied not only to single crck but lso multiple crcks [1]. The technique using four probes, which re in close proximity to ech other, hs been proposed [][3]; tht is the closely coupled probes potentil drop (CCPPD) technique. It hs been shown tht the sensitivity of the CCPPD technique is enhnced significntly in comprison with the usul method using uniform current flow in the region fr from the crck. In ddition, the CCPPD technique is suitble for fields which require smller equipment nd sensor being esy to del with. There re some cses where the reproducibility of potentil drop mesurement is required to be enhnced. An error in probes positioning is sometimes encountered in those cses. The potentil bruptly increses s closing the current input-output probes becuse current density tkes higher vlue in the vicinity of these points. So lrger error my be introduced in the mesured potentil drop due to smll error in probe positioning. The purpose of this study is to enhnce the reproducibility of evlution of the crck depth on the surfce by the CCPPD technique. At first, pproprite distnce between probes to enhnce reproducibility of mesurement is found by experiment. Next, the potentil drops for mny cses of crck length, crck depth b nd mteril thickness t re nlyzed by using the pproprite probe distnce by finite element method (FEM). By using the nlyzed results, the clibrtion eqution tht pproximtely reltes the potentil drop with, b nd t is obtined. Then the method to evlute crck depth with two steps is dopted. Through these two steps, more ccurte b cn be evluted. The reproducibility of crck depth evlution is scertined by experiment. I s 1 s V s s 1 I Crck I V I = 1A 5 Specimen 114 Dimensions in mm φ.4 s s 1 = 6mm s 5 mm 4 mm 3 mm () Specimen (b) Sensor Fig.1 Schemtic of experimentl pprtus

2 Approprite Distnce between Probes: The pproprite distnce between probes to enhnce reproducibility of mesurement ws exmined through n experiment. The specimen ws mde of ustenitic stinless steel AISI34, nd hd the width 114mm, the length mm nd the thickness 5mm s shown in Fig. 1(). The crck ws modeled by semi-ellipticl slit hving the width.1mm, which ws introduced by electric-dischrge mchining. The crck length ws 9.8mm nd the depth.7mm. Two probes for current input-output nd two probes for mesuring potentil drops were locted t ±s 1 nd ±s from the crck respectively, nd on perpendiculr bisector of the crck line s shown in Fig. 1(). Constnt d-c current in the mount of 1A ws pplied to the specimen through the current input nd output probes. The potentil drop V ws mesured between mesuring probes. All four probes were synthesized to build pen-like sensor. So the sensor is smll nd esy to del with. The contct of every probe to the specimen surfce ws mde constnt by using springs. At the top of the sensor, there re some holes to insert probes s shown in Fig. 1(b). So the probe distnces cn esily be chnged. In this experiment, the distnce between current input-output probes s 1 ws mde constnt s 6mm, nd the distnce between mesuring probes s ws chnged with 3, 4, nd 5mm. The vlues of potentil drop t uncrcked prt V nd tht t crcked prt V 1 were mesured for 5 times respectively, nd the effect of probe distnce on the reproducibility of mesurement ws exmined. Frequency V V V1V 1 Frequency VV V1V Potentil drop (µv) Fig. Frequency distribution of the mesured potentil drop (s = 5mm) Potentil drop (µv) Fig. 3 Frequency distribution of the mesured potentil drop (s = 4mm) 3 Frequency V V V1V 1 Potentil ( µv ) V 1 V s =3 s =4 s = Potentil drop (µv) Distnce from the center of the sensor (mm) Fig. 4 Frequency distribution of the mesured potentil drop (s = 3mm) Fig. 5 Distribution of the potentil

3 Figures, 3 nd 4 show the frequency distribution of mesured potentil drops. The potentil drop V nd V 1 become lrge s s. There re some vritions in ll cses. The rnge of vrition for the cse of s = 5mm is lrger thn tht for the cse of s = 3mm. As one of the reson for this, it my be possible to consider tht the probes distnces contin slight error cused by clernce between probe nd inserted hole. Figure 5 shows the distribution of potentil in the hlf region between current input-output probes. Potentil in Fig. 5 ws clculted by using FEM for the cse of resistivity of mterils ρ = Ωm. The positions of mesuring probe for the cses of s = 3, 4 nd 5mm re shown in Fig. 5. It ws found tht potentil bruptly increses s close to current inputoutput probe. When mesuring probes re locted in this region, lrger error my be introduced in the mesured potentil drop from slight error in probes positioning. For the cse of s = 3mm, mesuring probe is locted t the position where the distribution of potentil is not so steep nd rther lrge vlue of voltge cn be mesured. And lso the big chnge in potentil drop cn be obtined by crck. Then s = 3mm is decided to be suitble probe distnce to enhnce reproducibility of mesurement for s 1 = 6mm. Clibrtion Eqution: Let us consider the wy to evlute crck depth by using the probe distnce s 1 = 6mm nd s = 3mm tht obtined from the previous discussion. In this study, only n open crck on the surfce ws considered. Then crck length nd mteril thickness t cn be mesured, nd only crck depth b is unknown. The rnges of crck size nd mteril thickness treted in this study re s follows: 1.mm t mm nd t =.5mm mm nd =.5mm b mm (only the rnge b nd b < t ) At first, the reltions between potentil drop nd crck size for mny cses were clculted. The problem of d-c current flow in mteril is governed by the Lplce eqution s φ = (1) where φ is the electricl potentil nd is the three-dimensionl Lplce opertor. Eqution (1) cn esily be solved by using FEM. The potentil drops for vrious combintions of, b nd t were nlyzed by FEM. Next, the reltions between potentil drop nd, b nd t were pproximted with the following clibrtion eqution [3]: V b b = F D, + 1 C(, b, s, t) V s s 1 () where β b ln α b + 1 F = s ln + 1 ξ s γ D s b, = ex p δ s ζ b η + ϕ s (3) (4)

4 C(, b, s, t) = κ s b λ + 1 t s t s θ t χ 3 b + 1 t b (for mm) (for = ) (5) (5b) nd V is the potentil drop in n uncrcked prt. Coefficients of Eqs. (3) to (5) were obtined for the following four cses: Cse 1: mm, t = Cse : mm, t mm Cse 3: =, t = Cse 4: =, t mm Tble 1 Coefficients of the clibrtion eqution Cses Coefficients t Cse 1 Cse t = mm t mm b 1st step nd step nd step 1st step b 1.5 b 1 1.5< b < 1 b b 1 < b < 1 α β γ ξ δ ζ η ϕ λ κ Cses Coefficients t Cse 3 Cse 4 t = = t mm b 1st step nd step nd step 1st step b b 1 < b < 1 b b 1 < b < 1 α β γ ξ θ χ

5 The clibrtion eqution which ws obtined for the ll rnge of b,.5mm b mm, would contin the regions where the ccurcy of pproximtion is not enough. Then the evlution procedure with two steps ws dopted in this study. In the first step, n pproximte vlue of b ws evluted by using the clibrtion eqution for the ll rnge of b. In the second step, clibrtion eqution obtined for nrrow rnge of b ws selected bsed on the evluted vlue of b in the first step. At lst, the precise vlue of b ws evluted through the selected clibrtion eqution. The coefficients of the eqution obtined re shown in Tble 1. Results nd Discussions: Figure 6 shows n exmple of the reltionship between V 1 /V nd b. Plotted mrks nd lines show the numericl results of FEM nd clibrtion eqution, respectively. The clibrtion eqution shown in Fig. 6 is for the rnge of b 1mm. It cn be scertined tht the eqution pproximtes the potentil drop in tht rnge. From Fig. 6, it cn be found tht the grdient of the clibrtion eqution becomes smller s crck depth becomes lrger. This mens the sensitivity decreses with incresing crck depth. So the dequte rnge of crck depth to evlute sensitively seems to be b 5mm for the sensor with s 1 = 6mm nd s = 3mm V 1 /V =b, = b, t= t = by by FEM =b, = b, t= t = by by eq.() Eq.() =mm, = t= t = by FEM =mm, = t= t = by eq.() Eq.() b (mm) Fig.6 Exmple of the reltionship between V 1 /V nd b b Crck L W t Tble Size of the specimen Specimen No. 11-L 36 Mteril W (mm) AISI L (mm) 34 5 t (mm) (mm) b (mm).69.6 Fig.7 Shpe of the specimen

6 Evluted Actul b (mm) Evluted b (mm) 1 Actul Repetition number of evlution Repetition number of evlution Fig.8 Exmple of evluted result (No. 11-L) Fig.9 Exmple of evluted result (No. 36) The vlidity of the technique proposed in this pper ws verified by experiment. The specimens ws mde of ustenitic stinless steel AISI34, nd their width W, length L, thickness t, crck length nd crck depth b re shown in Fig. 7 nd Tble. The crck ws modeled by semi-ellipticl slit hving the width.1mm, which ws introduced by electric-dischrge mchining. Figures 8 nd 9 show the evluted depth which ws mesured continuously 1 times by hnd. Lines in Figs. 8 nd 9 show the ctul depth of crck. There ws tendency to evlute slightly deeper thn the ctul depth in both cses. The result generlly shows good reproducibility of this technique. Conclusions: In order to enhnce the reproducibility of evlution of the crck depth on the surfce by the CCPPD technique, pproprite distnce between probes ws found by experiment. The clibrtion eqution tht pproximtely reltes the potentil drop with, b nd t ws obtined bsed on FEM. The procedure to evlute crck depth with two steps ws dopted to enhnce the ccurcy of evlution. The reproducibility of crck depth evlution is scertined by experiment. References: [1] H. Liu, M. Sk, H. Abé, I. Komur nd H. Skmoto, Trns. ASME, J. Applied Mechnics, Vol. 66, 468 (1999). [] M. Sk, A. Oouchi nd H. Abé, Trns. ASME, J. Pressure Vessel Technology, Vol. 118, 198 (1996). [3] M. Sk, D. Hirot, H. Abé nd I. Komur, Trns. ASME, J. Pressure Vessel Technology, Vol. 1, 374 (1998).

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou On the Uncertinty of Sensors Bsed on Mgnetic Effects E. ristoforou, E. Kyfs, A. Kten, DM Kepptsoglou Ntionl Technicl University of Athens, Zogrfou Cmpus, Athens 1578, Greece Tel: +3177178, Fx: +3177119,

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

FEM ANALYSIS OF ROGOWSKI COILS COUPLED WITH BAR CONDUCTORS

FEM ANALYSIS OF ROGOWSKI COILS COUPLED WITH BAR CONDUCTORS XIX IMEKO orld Congress Fundmentl nd Applied Metrology September 6 11, 2009, Lisbon, Portugl FEM ANALYSIS OF ROGOSKI COILS COUPLED ITH BAR CONDUCTORS Mirko Mrrcci, Bernrdo Tellini, Crmine Zppcost University

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Designing Information Devices and Systems I Spring 2018 Homework 7

Designing Information Devices and Systems I Spring 2018 Homework 7 EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD Gökçen ERYILMAZ TÜRKKAN, Serdr KORKMAZ Uludg University, Civil Engineering Deprtment, Burs, Turkey geryilmz@uludg.edu.tr,

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Predict Global Earth Temperature using Linier Regression

Predict Global Earth Temperature using Linier Regression Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Rel Gses 1. Gses (N, CO ) which don t obey gs lws or gs eqution P=RT t ll pressure nd tempertures re clled rel gses.. Rel gses obey gs lws t extremely low pressure nd high temperture. Rel gses devited

More information

1 Module for Year 10 Secondary School Student Logarithm

1 Module for Year 10 Secondary School Student Logarithm 1 Erthquke Intensity Mesurement (The Richter Scle) Dr Chrles Richter showed tht the lrger the energy of n erthquke hs, the lrger mplitude of ground motion t given distnce. The simple model of Richter

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

CONTRIBUTION TO THE EXTENDED DYNAMIC PLANE SOURCE METHOD

CONTRIBUTION TO THE EXTENDED DYNAMIC PLANE SOURCE METHOD CONTRIBUTION TO THE EXTENDED DYNAMIC PLANE SOURCE METHOD Svetozár Mlinrič Deprtment of Physics, Fculty of Nturl Sciences, Constntine the Philosopher University, Tr. A. Hlinku, SK-949 74 Nitr, Slovki Emil:

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces Supplementry Informtion for Directionl Reflective Surfce Formed vi Grdient- Impeding Acoustic Met-surfces Kyungjun Song 1*, Jedo Kim 2, Hur Shin 1, Jun-Hyuk Kwk 1, Seong-Hyun Lee 3,Tesung Kim 4 1 Deprtment

More information

Some parameters of varicaps with gradient base area based on Shottky barrier

Some parameters of varicaps with gradient base area based on Shottky barrier ISSN: 35-38 Vol. 4, Issue, December 7 Some prmeters of vricps with grdient bse re bsed on Shottky brrier Mmtkrimov O.O., KuchkrovB.Kh. Rector, Nmngn engineering-technology institute, Kosonsoy str.,7, Nmngn,

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Stiffness Reduction Factor for Flat Slab Structures under Lateral Loads

Stiffness Reduction Factor for Flat Slab Structures under Lateral Loads TECHNICAL NOTES Stiffness Reduction Fctor for Flt Slb Structures under Lterl Lods Sng-Whn Hn, Ph.D., P.E. 1 ; Young-Mi Prk 2 ; nd Seong-Hoon Kee 3 Abstrct: Effective bem width model EBWM hs been widely

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Overview. Before beginning this module, you should be able to: After completing this module, you should be able to:

Overview. Before beginning this module, you should be able to: After completing this module, you should be able to: Module.: Differentil Equtions for First Order Electricl Circuits evision: My 26, 2007 Produced in coopertion with www.digilentinc.com Overview This module provides brief review of time domin nlysis of

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Entropy ISSN

Entropy ISSN Entropy 006, 8[], 50-6 50 Entropy ISSN 099-4300 www.mdpi.org/entropy/ ENTROPY GENERATION IN PRESSURE GRADIENT ASSISTED COUETTE FLOW WITH DIFFERENT THERMAL BOUNDARY CONDITIONS Abdul Aziz Deprtment of Mechnicl

More information

Effects of peripheral drilling moment on delamination using special drill bits

Effects of peripheral drilling moment on delamination using special drill bits journl of mterils processing technology 01 (008 471 476 journl homepge: www.elsevier.com/locte/jmtprotec Effects of peripherl illing moment on delmintion using specil ill bits C.C. Tso,, H. Hocheng b Deprtment

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

Sections 5.2: The Definite Integral

Sections 5.2: The Definite Integral Sections 5.2: The Definite Integrl In this section we shll formlize the ides from the lst section to functions in generl. We strt with forml definition.. The Definite Integrl Definition.. Suppose f(x)

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve Dte: 3/14/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: Use your clcultor to solve 4 7x =250; 5 3x =500; HW Requests: Properties of Log Equtions

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

2008 Mathematical Methods (CAS) GA 3: Examination 2

2008 Mathematical Methods (CAS) GA 3: Examination 2 Mthemticl Methods (CAS) GA : Exmintion GENERAL COMMENTS There were 406 students who st the Mthemticl Methods (CAS) exmintion in. Mrks rnged from to 79 out of possible score of 80. Student responses showed

More information

MIXED MODELS (Sections ) I) In the unrestricted model, interactions are treated as in the random effects model:

MIXED MODELS (Sections ) I) In the unrestricted model, interactions are treated as in the random effects model: 1 2 MIXED MODELS (Sections 17.7 17.8) Exmple: Suppose tht in the fiber breking strength exmple, the four mchines used were the only ones of interest, but the interest ws over wide rnge of opertors, nd

More information

LECTURE 14. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 14. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 14 Dr. Teres D. Golden University of North Texs Deprtment of Chemistry Quntittive Methods A. Quntittive Phse Anlysis Qulittive D phses by comprison with stndrd ptterns. Estimte of proportions of

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

Distance And Velocity

Distance And Velocity Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

Chapter Direct Method of Interpolation More Examples Electrical Engineering

Chapter Direct Method of Interpolation More Examples Electrical Engineering Chpter. Direct Method of Interpoltion More Emples Electricl Engineering Emple hermistors re used to mesure the temperture of bodies. hermistors re bsed on mterils chnge in resistnce with temperture. o

More information

Purpose of the experiment

Purpose of the experiment Newton s Lws II PES 6 Advnced Physics Lb I Purpose of the experiment Exmine two cses using Newton s Lws. Sttic ( = 0) Dynmic ( 0) fyi fyi Did you know tht the longest recorded flight of chicken is thirteen

More information

Vyacheslav Telnin. Search for New Numbers.

Vyacheslav Telnin. Search for New Numbers. Vycheslv Telnin Serch for New Numbers. 1 CHAPTER I 2 I.1 Introduction. In 1984, in the first issue for tht yer of the Science nd Life mgzine, I red the rticle "Non-Stndrd Anlysis" by V. Uspensky, in which

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Minimum Energy State of Plasmas with an Internal Transport Barrier

Minimum Energy State of Plasmas with an Internal Transport Barrier Minimum Energy Stte of Plsms with n Internl Trnsport Brrier T. Tmno ), I. Ktnum ), Y. Skmoto ) ) Formerly, Plsm Reserch Center, University of Tsukub, Tsukub, Ibrki, Jpn ) Plsm Reserch Center, University

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Estimation of the particle concentration in hydraulic liquid by the in-line automatic particle counter based on the CMOS image sensor

Estimation of the particle concentration in hydraulic liquid by the in-line automatic particle counter based on the CMOS image sensor Glyndŵr University Reserch Online Conference Presenttion Estimtion of the prticle concentrtion in hydrulic liquid by the in-line utomtic prticle counter bsed on the CMOS imge sensor Kornilin, D.V., Kudryvtsev,

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

Simulation of Eclipsing Binary Star Systems. Abstract

Simulation of Eclipsing Binary Star Systems. Abstract Simultion of Eclipsing Binry Str Systems Boris Yim 1, Kenny Chn 1, Rphel Hui 1 Wh Yn College Kowloon Diocesn Boys School Abstrct This report briefly introduces the informtion on eclipsing binry str systems.

More information

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE Determintion RevAdvMterSci of mechnicl 0(009) -7 properties of nnostructures with complex crystl lttice using DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind

A Modified ADM for Solving Systems of Linear Fredholm Integral Equations of the Second Kind Applied Mthemticl Sciences, Vol. 6, 2012, no. 26, 1267-1273 A Modified ADM for Solving Systems of Liner Fredholm Integrl Equtions of the Second Kind A. R. Vhidi nd T. Dmercheli Deprtment of Mthemtics,

More information