FBR Neutronics: Breeding potential, Breeding Ratio, Breeding Gain and Doubling time

Size: px
Start display at page:

Download "FBR Neutronics: Breeding potential, Breeding Ratio, Breeding Gain and Doubling time"

Transcription

1 FBR eutronics: Breeding potentil, Breeding Rtio, Breeding Gin nd Doubling time K.S. Rjn Proessor, School o Chemicl & Biotechnology SASTRA University Joint Inititive o IITs nd IISc Funded by MHRD Pge 1 o 7

2 Tble o Contents 1 BREEDIG BREEDIG RATIO BREEDIG GAI DOUBLIG TIME (DT) REFEREES/ADDITIOAL READIG... 7 Joint Inititive o IITs nd IISc Funded by MHRD Pge 2 o 7

3 In this lecture, we shll discuss bout the clcultion o breeding rtio nd doubling time At the end o this lecture, the lerners will be ble to (i) (ii) (iii) deine conversion or breeding rtio determine breeding potentil nd breeding gin determine the time required or doubling the uel inventory (doubling time) 1 Breeding Breeding in nucler rectors reers to the process in which signiicntly mount o ertile mterils re converted to issile mterils by nucler trnsmuttion. This requires the ertile isotope to hve lrge cross section or neutron cpture. Since the min purpose o nucler rector is to produce electricity, breeding is considered s n o-shoot o excess neutrons produced during ission bove the ones required or sustennce o chin rection. The possibility o breeding in nucler rector, tking into ccount o the type o issile mteril used, depends on the number o neutrons produced or every neutron bsorbed in the uel. This is denoted by reproduction ctor η. This is relted to the cross sections s ollows: σ η ν (1) σ The probbility o breeding is enhnced when the vlue o η exceeds two by lrge rction. For exmple, the vlue o η or U-235, Pu-239 nd U-233 when bombrded by therml neutrons is 2.07, 2.11 nd 2.30 respectively. Breeding with therml neutrons using U-235 nd Pu-239 uels is virtully impossible due to neutron bsorption in structurl mterils nd modertor. However, with U-233 uel, it is possible to chieve breeding using therml neutrons. The scenrio is dierent or the cse o bombrdment with st neutron. The vlue o η or U-235, Pu-239 nd U-233 when bombrded by st neutrons is 2.3, 2.7 nd 2.45 respectively. Hence, breeding is possible with ll the bove issile nuclei due to bombrdment with st neutron. Conversion rtio is widely used term to denote the bility o rector to convert ertile to issile mteril. Conversion rtio is deined s the rtio o number o issile nuclei produced to the number o issile nuclei consumed. When rector is operted without ny ertile mteril, the conversion rtio is zero. In this cse, the rector is reerred to s burner s it burns ll the uel without producing ny issile mteril. Joint Inititive o IITs nd IISc Funded by MHRD Pge 3 o 7

4 It my be reclled tht the urnium uelled therml rectors either use nturl urnium or enriched urnium. In both these cses, isotopic bundnce o U-238, ertile mteril, is very high. It is possible to chieve higher conversion rtio by cilitting higher neutron cpture in U-238 reltive to neutron bsorption in U-235. This must be crried out without the loss o criticlity. To ensure tht suicient neutrons re vilble or chin rection, the neutron losses in structurl elements nd modertor must be reduced. Also, the use o modertors like hevy wter nd crbon require more collisions or neutron thermliztion nd hence require lrger core. This improves the contct between neutron nd U-238 contct, thereby improving the conversion rtio. The conversion rtio cn be predicted pproximtely s ollows: Conversion Rtio (CR) η 235 ε-1-l (2) η 235 corresponds to reproduction ctor o pure U-235. Hence to improve the conversion rtio, lekge o neutrons (l) must be reduced. For most therml rectors, CR is between 0.4 nd 0.7 nd these rectors re clled converters (0<CR<1). ε is the st ission ctor tht indictes the contribution due to st neutrons in therml rector. 1.1 Breeding Rtio The rector with conversion rtio greter thn 1 is clled breeder rector. This is the rector tht produces more uel thn tht it consumes. For breeder rectors, the term breeding rtio (BR) is used. The breeding rtio is mximum when the lekge o neutrons (l) is zero. This is clled mximum breeding rtio (BR mx ) nd is lso clled Breeding Potentil o the uel. Breeding Potentil BR mx η-1 (3) Plese note tht in Eq. (3), ε the st ission ctor is tken s unity s most o the breeders re st breeders. The reproduction ctor is to be clculted or Pu-239, the predominnt issile isotope in st rectors. 1.2 Breeding Gin Another term widely used in breeder rector is Breeding Gin (BG). reltionship between BG nd BR is The BG BR 1 (3) This represents the extr issile mteril produced or every tom o uel (issile isotope) consumed. For Pu-239 uelled st rector, BR η l (4) Joint Inititive o IITs nd IISc Funded by MHRD Pge 4 o 7

5 CR σ BR ν 1 l σ 239 (5) Exmple -1: Determine Breeding Rtio or Pu-239 uelled st rector. Tke ν 2.975; σ 1.850; σ 2.11 nd l Using Eq. (5), BR BR Exmple 2: Consider st breeder rector operting with Breeding Rtio o 1.3. I it is desired to ccumulte n dditionl 1500 kg o issile mteril, determine the mount o pure Plutonium uel to be burnt. By deinition o Breeding Rtio, BR number o issile nuclei produced/number o issile nuclei consumed BR mss o issile nuclei produced/mss o issile nuclei consumed Let x be the mss o issile nuclei consumed, then BR (x+1500)/x1.3 Solving the bove or x gives x 5000 kg Hence 5000 kg o Plutonium must be burnt to produce n dditionl 1500 kg o issile mteril. 1.3 Doubling time (DT) It is deined s the time required to ccumulte mss o uel equl to tht loded initilly in rector system. When the initil inventory o issile mteril is low, doubling time is reduced. In other words, doubling is chieved in shorter period o time with initil lower loding o issile mteril. Let us derive n expression or clcultion o Doubling Time (DT). The rector power per unit mss o uel (P ) my be relted to the number o uel nuclei per unit mss o the uel ( ) s P E φ - σ (6) The bove eqution my be rewritten s: Power per unit mss o uel (W/kg) Energy relesed per ission (J) * umber issions per unit time per unit mss o uel (s -1 kg -1 ) The number o issions per unit time per unit mss o uel represents the rte o consumption o unit mss o uel. Joint Inititive o IITs nd IISc Funded by MHRD Pge 5 o 7

6 Thereore, I M F is the mss o uel loded, then the rte o consumption (R C ) o uel o mss M F is given by R C M F φ - σ (toms/s) (7) I BR is the Breeding Rtio, then the rte o production (R P ) o issile mss is given by R P BR*M F φ σ (toms/s) (8) The net increse in uel Rte o Production Rte o consumption et increse R net (BR-1)*M F φ σ (toms/s) (9) I DT is the Doubling Time, then DT*R net M F (10) Thereore, DT M F R net M F ( BR 1) M F φ σ ( BR ) φ σ 1 1 (11) An expression my be obtined or DT In terms o rector power (P ) s ollows: Recll, P E φ - σ φ - P / ( E σ ) (12) Substituting the bove in the eqution or Doubling Time, we get DT E σ (13) ' ( BR 1) σ P ow let s discuss the ctors tht inluence Doubling Time. (i) Breeding Rtio: Higher the Breeding Rtio, greter is the mount o issile mteril produced. Hence, the time required or doubling the mss is reduced t higher Breeding Rtios. We hve seen erlier tht Breeding Rtio depends on the reproduction ctor η, which inturn is inluenced by bsorption cross section, ission cross sections nd ν'. As the cross sections re unctions o neutron energies, pproprite choice o neutron energy nd steps to minimize neutron lekge will result in incresed Breeding Rtio (BR). (ii) Power per unit mss o the uel: When this quntity is high, the verge neutron lux is lso high mong other vribles. As evident rom Eq. (11), with incresed neutron lux, the Doubling Time is reduced. Hence the Doubling time decreses with incresed rector Power per unit mss o the uel. Joint Inititive o IITs nd IISc Funded by MHRD Pge 6 o 7

7 Exmple 4: Determine the doubling time o Pu-239 st breeder rector. The rector is operted t 400 MW/tonne Pu-239 with Breeding Rtio o 1.2. The bsorption nd ission cross section re 2.16 nd 1.81 b respectively. The number o Pu-239 per unit mss is 2.52x10 21 (toms/g). Dt: E 3.2x10-11 J; 2.52x10 21 ; P 400 MW/tonne 400 J/gs; σ 2.16 b; σ 1.81 b Substituting the bove in Eq. (13), DT E σ 2.52x10 *3.2x10 11 ' ( BR 1) σ P ( 1.2 1) 2.16 * *1.81 DT 9776 dys ~ 27 yers 2 Reerenes/Additionl Reding 1. ucler Energy: An Introduction to the Concepts, Systems, nd Applictions o ucler Processes, 5/e, R.L. Murry, Butterworth Heinemnn, 2000 (Chpter 13). Joint Inititive o IITs nd IISc Funded by MHRD Pge 7 o 7

ANALYSIS OF FAST REACTORS SYSTEMS

ANALYSIS OF FAST REACTORS SYSTEMS ANALYSIS OF FAST REACTORS SYSTEMS M. Rghe 4/7/006 INTRODUCTION Fst rectors differ from therml rectors in severl spects nd require specil tretment. The prsitic cpture cross sections in the fuel, coolnt

More information

Fast Feedback Reactivity Effects

Fast Feedback Reactivity Effects SUPPLEMENT TO CHAPTER 12 OF REACTOR PHYSICS FUNDAMENTALS This supplement summrizes some key physics principles in the text nd expnds on the mthemticl tretment. You should be milir with the text mteril

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA Hrris: Quntittive Chemicl Anlysis, Eight Edition CHAPTER 08: MONOPROTIC ACIDBASE EQUILIBRIA CHAPTER 08: Opener A CHAPTER 08: Opener B CHAPTER 08: Opener C CHAPTER 08: Opener D CHAPTER 08: Opener E Chpter

More information

CHEMICAL KINETICS

CHEMICAL KINETICS CHEMICAL KINETICS Long Answer Questions: 1. Explin the following terms with suitble exmples ) Averge rte of Rection b) Slow nd Fst Rections c) Order of Rection d) Moleculrity of Rection e) Activtion Energy

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. Answer question ONE (Compulsory) and TWO other questions.

Data Provided: A formula sheet and table of physical constants is attached to this paper. Answer question ONE (Compulsory) and TWO other questions. Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2014-2015) NUCLEAR PHYSICS 2 HOURS Answer question ONE (Compulsory)

More information

Feedback Reactivity Effects due to Fission Product Poisons

Feedback Reactivity Effects due to Fission Product Poisons SUPPLEMENT TO CHAPTER 11 OF REACTOR PHYSCS FUNDAMENTALS This supplement reviews the text mteril rom slightly dierent point o view. t lso extends the mthemticl description outlined in the text. You should

More information

PROBLEM SET 8 ECE 4130: Introduction to Nuclear Science

PROBLEM SET 8 ECE 4130: Introduction to Nuclear Science PROBLEM SET 8 ECE 4: Introduction to Nucler Science Chirg Bhrdwj 6 October 6. Problem 6-. Let us denote by F the fuel nd by S the coolnt in the mixture. Then, Σ F nd Σ S represent the bsorption crosssection

More information

CHAPTER 4a. ROOTS OF EQUATIONS

CHAPTER 4a. ROOTS OF EQUATIONS CHAPTER 4. ROOTS OF EQUATIONS A. J. Clrk School o Engineering Deprtment o Civil nd Environmentl Engineering by Dr. Ibrhim A. Asskk Spring 00 ENCE 03 - Computtion Methods in Civil Engineering II Deprtment

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

MATH SS124 Sec 39 Concepts summary with examples

MATH SS124 Sec 39 Concepts summary with examples This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Prt I: Bsic Concepts o Thermodynmics Lecture 4: Kinetic Theory o Gses Kinetic Theory or rel gses 4-1 Kinetic Theory or rel gses Recll tht or rel gses: (i The volume occupied by the molecules under ordinry

More information

Psychrometric Applications

Psychrometric Applications Psychrometric Applictions The reminder of this presenttion centers on systems involving moist ir. A condensed wter phse my lso be present in such systems. The term moist irrefers to mixture of dry ir nd

More information

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs MATHS NOTES The Institute of Eduction 06 SUBJECT: Mths LEVEL: Higher TEACHER: Aidn Rontree Topics Covered: Powers nd Logs About Aidn: Aidn is our senior Mths techer t the Institute, where he hs been teching

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 36 Dr Jen M Stndrd Problem Set 3 Solutions 1 Verify for the prticle in one-dimensionl box by explicit integrtion tht the wvefunction ψ ( x) π x is normlized To verify tht ψ ( x) is normlized,

More information

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is:

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is: th 9 Homework: Reding, M&F, ch. 15, pp. 584-598, 602-605 (clcultions of ph, etc., for wek cids, wek bses, polyprotic cids, nd slts; fctors ffecting cid strength). Problems: Nkon, ch. 18, #1-10, 16-18,

More information

Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University

Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Breeding K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7 Table of Contents 1 NEED FOR BREEDING... 3 1.1 COMPARISON

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Emission of K -, L - and M - Auger Electrons from Cu Atoms. Abstract

Emission of K -, L - and M - Auger Electrons from Cu Atoms. Abstract Emission of K -, L - nd M - uger Electrons from Cu toms Mohmed ssd bdel-rouf Physics Deprtment, Science College, UEU, l in 17551, United rb Emirtes ssd@ueu.c.e bstrct The emission of uger electrons from

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

AB Calculus Review Sheet

AB Calculus Review Sheet AB Clculus Review Sheet Legend: A Preclculus, B Limits, C Differentil Clculus, D Applictions of Differentil Clculus, E Integrl Clculus, F Applictions of Integrl Clculus, G Prticle Motion nd Rtes This is

More information

( ) as a fraction. Determine location of the highest

( ) as a fraction. Determine location of the highest AB Clculus Exm Review Sheet - Solutions A. Preclculus Type prolems A1 A2 A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f ( x). Set function equl to 0. Fctor or use qudrtic eqution if

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x).

( ) where f ( x ) is a. AB Calculus Exam Review Sheet. A. Precalculus Type problems. Find the zeros of f ( x). AB Clculus Exm Review Sheet A. Preclculus Type prolems A1 Find the zeros of f ( x). This is wht you think of doing A2 A3 Find the intersection of f ( x) nd g( x). Show tht f ( x) is even. A4 Show tht f

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

Math 42 Chapter 7 Practice Problems Set B

Math 42 Chapter 7 Practice Problems Set B Mth 42 Chpter 7 Prctice Problems Set B 1. Which of the following functions is solution of the differentil eqution dy dx = 4xy? () y = e 4x (c) y = e 2x2 (e) y = e 2x (g) y = 4e2x2 (b) y = 4x (d) y = 4x

More information

5 Accumulated Change: The Definite Integral

5 Accumulated Change: The Definite Integral 5 Accumulted Chnge: The Definite Integrl 5.1 Distnce nd Accumulted Chnge * How To Mesure Distnce Trveled nd Visulize Distnce on the Velocity Grph Distnce = Velocity Time Exmple 1 Suppose tht you trvel

More information

Chapters 4 & 5 Integrals & Applications

Chapters 4 & 5 Integrals & Applications Contents Chpters 4 & 5 Integrls & Applictions Motivtion to Chpters 4 & 5 2 Chpter 4 3 Ares nd Distnces 3. VIDEO - Ares Under Functions............................................ 3.2 VIDEO - Applictions

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

CONVERSION AND REACTOR SIZING (2) Marcel Lacroix Université de Sherbrooke

CONVERSION AND REACTOR SIZING (2) Marcel Lacroix Université de Sherbrooke CONVERSION ND RECTOR SIZING (2) Marcel Lacroix Université de Sherbrooke CONVERSION ND RECTOR SIZING: OBJECTIVES 1. TO DEINE CONVERSION j. 2. TO REWRITE THE DESIGN EQUTIONS IN TERMS O CONVERSION j. 3. TO

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Vyacheslav Telnin. Search for New Numbers.

Vyacheslav Telnin. Search for New Numbers. Vycheslv Telnin Serch for New Numbers. 1 CHAPTER I 2 I.1 Introduction. In 1984, in the first issue for tht yer of the Science nd Life mgzine, I red the rticle "Non-Stndrd Anlysis" by V. Uspensky, in which

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

Student Session Topic: Particle Motion

Student Session Topic: Particle Motion Student Session Topic: Prticle Motion Prticle motion nd similr problems re on the AP Clculus exms lmost every yer. The prticle my be prticle, person, cr, etc. The position, velocity or ccelertion my be

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Math 116 Final Exam April 26, 2013

Math 116 Final Exam April 26, 2013 Mth 6 Finl Exm April 26, 23 Nme: EXAM SOLUTIONS Instructor: Section:. Do not open this exm until you re told to do so. 2. This exm hs 5 pges including this cover. There re problems. Note tht the problems

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

CHAPTER 20: Second Law of Thermodynamics

CHAPTER 20: Second Law of Thermodynamics CHAER 0: Second Lw of hermodynmics Responses to Questions 3. kg of liquid iron will hve greter entropy, since it is less ordered thn solid iron nd its molecules hve more therml motion. In ddition, het

More information

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE

DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING MOMENT INTERACTION AT MICROSCALE Determintion RevAdvMterSci of mechnicl 0(009) -7 properties of nnostructures with complex crystl lttice using DETERMINATION OF MECHANICAL PROPERTIES OF NANOSTRUCTURES WITH COMPLEX CRYSTAL LATTICE USING

More information

1 Module for Year 10 Secondary School Student Logarithm

1 Module for Year 10 Secondary School Student Logarithm 1 Erthquke Intensity Mesurement (The Richter Scle) Dr Chrles Richter showed tht the lrger the energy of n erthquke hs, the lrger mplitude of ground motion t given distnce. The simple model of Richter

More information

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O IAPWS R-7 The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Chapter 10: Symmetrical Components and Unbalanced Faults, Part II

Chapter 10: Symmetrical Components and Unbalanced Faults, Part II Chpter : Symmetricl Components nd Unblnced Fults, Prt.4 Sequence Networks o Loded Genertor n the igure to the right is genertor supplying threephse lod with neutrl connected through impednce n to ground.

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below. Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

More information

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions ENGI 44 Engineering Mthemtics Five Tutoril Exmples o Prtil Frctions 1. Express x in prtil rctions: x 4 x 4 x 4 b x x x x Both denomintors re liner non-repeted ctors. The cover-up rule my be used: 4 4 4

More information

DERIVATIVES NOTES HARRIS MATH CAMP Introduction

DERIVATIVES NOTES HARRIS MATH CAMP Introduction f DERIVATIVES NOTES HARRIS MATH CAMP 208. Introduction Reding: Section 2. The derivtive of function t point is the slope of the tngent line to the function t tht point. Wht does this men, nd how do we

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction Ch. 4 Moleculr Rection Dynmics 1. Collision Theory. Diffusion-Controlle Rection Lecture 17 3. The Mteril Blnce Eqution 4. Trnsition Stte Theory: The Eyring Eqution 5. Trnsition Stte Theory: Thermoynmic

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop.

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop. Tody s gend: Potentil Chnges Around Circuit. You must e le to clculte potentil chnges round closed loop. Electromotive force (EMF), Terminl Voltge, nd Internl Resistnce. You must e le to incorporte ll

More information

Fundamentals of Analytical Chemistry

Fundamentals of Analytical Chemistry Homework Fundmentls of nlyticl hemistry hpter 9 0, 1, 5, 7, 9 cids, Bses, nd hpter 9(b) Definitions cid Releses H ions in wter (rrhenius) Proton donor (Bronsted( Lowry) Electron-pir cceptor (Lewis) hrcteristic

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16)

pivot F 2 F 3 F 1 AP Physics 1 Practice Exam #3 (2/11/16) AP Physics 1 Prctice Exm #3 (/11/16) Directions: Ech questions or incomplete sttements below is followed by four suggested nswers or completions. Select one tht is best in ech cse nd n enter pproprite

More information

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is Newtons Lws 1 Newton s Lws There re three lws which ber Newton s nme nd they re the fundmentls lws upon which the study of dynmics is bsed. The lws re set of sttements tht we believe to be true in most

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Prep Session Topic: Particle Motion

Prep Session Topic: Particle Motion Student Notes Prep Session Topic: Prticle Motion Number Line for AB Prticle motion nd similr problems re on the AP Clculus exms lmost every yer. The prticle my be prticle, person, cr, etc. The position,

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

ibest: A Program for Burnup History Estimation of Spent Fuels Based on ORIGEN-S

ibest: A Program for Burnup History Estimation of Spent Fuels Based on ORIGEN-S Accepted Mnuscript ibes: A Progrm or Burnup History Estimtion o Spent Fuels Bsed on ORIGE-S Do-Yeon Kim, Ser Gi Hong, Gil Hoon Ahn PII: S1738-573315117-5 DOI: 1.116/j.net.215.5.2 Reerence: E 6 o pper in:

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once.

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once. Exercises 341 Flow of Chrge (pge 681) potentil difference 1 Chrge flows when there is between the ends of conductor 2 Explin wht would hppen if Vn de Grff genertor chrged to high potentil ws connected

More information

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED Mth 43 Section 4839 M TH 4: PM 6: PM Susn Wheeler swheeler@mth.uh.edu Office Hours: Wed 6: 7: PM Online ***NOTE LABS ARE MON AND WED t :3 PM to 3: pm ONLINE Approimting the re under curve given the type

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present? University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

More information

POLYPHASE CIRCUITS. Introduction:

POLYPHASE CIRCUITS. Introduction: POLYPHASE CIRCUITS Introduction: Three-phse systems re commonly used in genertion, trnsmission nd distribution of electric power. Power in three-phse system is constnt rther thn pulsting nd three-phse

More information

The Fundamental Theorem of Calculus, Particle Motion, and Average Value

The Fundamental Theorem of Calculus, Particle Motion, and Average Value The Fundmentl Theorem of Clculus, Prticle Motion, nd Averge Vlue b Three Things to Alwys Keep In Mind: (1) v( dt p( b) p( ), where v( represents the velocity nd p( represents the position. b (2) v ( dt

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

) (m + M B. )]c 2 (2.1) (T + T A ) (2.2) 2π 2 dn. = de

) (m + M B. )]c 2 (2.1) (T + T A ) (2.2) 2π 2 dn. = de References --.54 Neutron Interctions nd Applictions (Spring 003) Lecture (/11/03) Neutron Rection Systemtics -- Energy Vritions of Cross Sections, Nucler Dt Enrico Fermi, Nucler Physics, Lecture Notes

More information