2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s

Size: px
Start display at page:

Download "2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s"

Transcription

1 2. Analyzing tre: Definition and Concept

2 2.1 Introduction Stre and train - The fundamental and paramount ubject in mechanic of material - Chapter 2: Stre - Chapter 3: Strain

3 2.2 Normal tre under aial loading - (Magnitude of) tre = force intenity: Force Stre = Area - Aial loading: tenion or compreion load acting along the long ai of a traight tructural member - Normal tre: tre normal to a plane (σ) F F avg =, lim A = D D A 0 DA - Sign convention of normal tre of the tetbook: tenile - poitive, compreive - negative

4 2.3 Shearing tre in connection - Shear tre: tre tangential to a plane (σ) t avg V =, t = lim A D A 0 DV DA - Punching hear: e) an action of a punch in forming rivet hole in a metal plate

5 2.4 Bearing tre - Bearing tre: compreive normal tre occurring on the urface of contact between two interacting member e) tre on the urface of contact between a bolt head and a top plate

6 2.5 Unit of tre - In SI unit (newton and meter): N/m 2 = Pa (pacal), kpa, MPa - In US unit: lb/in. 2 = pi, ki (= 1,000 pi = kip per quare inch) e) 1 lb 4.45 N, 1 inch = 2.54 cm = 1/12 feet, 1 pi 6.89 kpa Eample Problem Normal tre (ki) on mid-point between A-B, B-C, and C-D A cro-ectional area i 3.0 in. 2

7 2.5 Unit of tre Eample Problem Diameter required for each of the ection when the allowable aial tree are 125 MPa in the teel, 70MPa in the bra, and 85MPa in the aluminum.

8 2.5 Unit of tre Eample Problem Rigid: The minimum collar diameter when the bearing tre of collar i 10 ki and force on the bearing plate i 50 kip - Fleible: Calculate and plot σ ma v. collar diameter (2.5 in. d c 5.0 in.)

9 2.6 Stree on an inclined plane in an aially loaded member - Equilibrium of force: r r r P = F, F = N -V N = P co q, V = -Pinq A n = A/ coq P 2 P n = N / A n = co q = ( 1 + co 2 q ) A 2A P P t n = V / An = - inq coq = - in 2q A 2A Stre depend on force and area: tre i not a vector quantity and therefore, the law of vector addition cannot be applied to tree on different plane.

10 2.6 Stree on an inclined plane in an aially loaded member - Maimum hear tre i a half of the maimum normal tre: t - Shear tre i zero on the plane of ma. or min. normal tre: t = 0 when =, q q - Maimum hear tre i 45 apart from ma. or min. normal tre. - Magnitude of hear tre at θ i the ame a that at 90+ θ. ma min ma = ma 2

11 2.6 Stree on an inclined plane in an aially loaded member - Equality of hearing tre on orthogonal plane: å ( d dz) dy t ( ) Moment equilibrium ( Mz = 0): t y = y t = t y y dy dz d

12 2.6 Stree on an inclined plane in an aially loaded member Eample Problem Normal and hear tree on ection a-a.

13 2.6 Stree on an inclined plane in an aially loaded member Eample Problem 2-7 When A = mm, normal tre on ection a-a = 12 Mpa, - Load P - Shear tre on ection a-a - Maimum normal and hear tree in the block

14 2.7 Stre at a general point in an arbitrarily loaded member - Stre (force) at a point in an arbitrary plane can be reolved into a normal and hear component. - When an ai i et to be normal to the plane the hear component can be reolved into two hear tree coinciding with y- or z-ai. - It i cutomary to how the tree on poitive and negative urface through a point uing a mall element. (tenile/compreive i poitive/negative)

15 2.8 Two-dimenional or plane tre - A tate of plane tre occur where force can be reolved into only two component: within thin plate where z-dimenion of the body i mall and the z-component of force are zero. e) = t ( t ) = t ( t ) = 0. z z z zy yz

16 2.9 The tre tranformation equation for plane tre - Normal and hear tree on a plane can be calculated by uing the force equilibrium of a free-body diagram. å å F F + y - y = 0 : = + co 2q + t in 2q y = 0 : t = - in 2q + t co 2q 2 n n y t nt y

17 2.9 The tre tranformation equation for plane tre Eample Problem Normal and hear tree on ection a-b. - Normal and hear tree on ection c-d. - Stree on ection a-b and c-d uing a mall element.

18 2.9 The tre tranformation equation for plane tre Eample Problem Normal and hear tree on ection b-b.

19 2.10 Principal tree and maimum hearing tre plane tre - Tranformation equation for plane tre: + y - y n = + co 2q + t y in 2 q (2-12b) y t nt = - in 2q + t y co 2q 2 - Ma. and min. value of σ n : n n = p when = -( - y ) in 2q + 2t y co 2q = 0 q 2t y tan 2 q p =, t nt = 0 (2-14) - y + æ - ö ç 2 è 2 ø 2 y y 2 p1, p2 = ± + t y from (2-12b) and (2-14)

20 2.10 Principal tree and maimum hearing tre plane tre - Ma. value of τ nt : t nt t nt = t p when = -( - y ) co 2q - 2t y in 2q = 0 q - æ - ö = - = ± + 2 è ø y y 2 tan 2 qt, t p ç t y (2-17) 2t y t p = 2 t = ma p1 p2 ma - 2 from (2-15) and (2-17) min in 3D cae - The direction of the maimum hear tre mut oppoe the larger of the two principal tree.

21 2.10 Principal tree and maimum hearing tre plane tre - Invariant of tre + æ - ö = ± ç + t 2 è 2 ø y y 2 p1, p2 y + = + p1 p2 y 2 - In engineering problem, maimum will alway refer to the larget abolute value (larget magnitude).

22 2.10 Principal tree and maimum hearing tre plane tre Eample Problem Principal tree and the maimum hear tre - Locate the plane on which thee tree act and how the tree

23 2.11 Mohr circle for plane tre - Equation of Mohr circle + y - y n = + co 2q + t y in 2 q y t nt = - in 2q + t y co 2q æ + ö æ - ö ç - + t = ç + t è 2 ø è 2 ø y 2 y 2 n nt y æ - y ö R = ç + t è 2 ø 2 2 y - Horizontal coordinate: normal tre (V,F..) - Vertical coordinate: hear tre (F F, V V..) (CW - above; CCW below)

24 2.11 Mohr circle for plane tre - Line CV, CH : plane - Angle on the circle: twice the angle for an actual body (CW - above; CCW below) - Procedure for drawing Mohr circle:

25 2.11 Mohr circle for plane tre Eample Problem Principal tree and the maimum hear tre - Normal and hear tre on plane a-a

26 2.12 General tate of tre at a point - Force equilibrium on an oblique face F = S da = da l + t da m + t da n y z F = S da = t da l + da m + t da n y y y y zy F = S da = t da l + t da m + da n z z z yz z - Traction component on the oblique face S = S + S + S y z S = l + t m + t n y z S = t l + m + t n y y y yz S = t l + t m + n z z zy z - Normal/hear tre on r the oblique face = + t = g ˆ = g ( ) ( ) S, S n S, S, S l, m, n n nt n y z \ n = l + ym + zn + 2t ylm + 2t yzmn + 2t znl r r r 2 2 t = S -, t = S - nt n nt n

27 2.12 General tate of tre at a point - Principal tre when the oblique face i a principal plane S =, S = l, S = m, S = n p p y p z p p ( p ) t y t z y p t y ( y p ) t yz z p t z t zy ( z p ) ( - p ) t y t z t y ( y p ) t yz t z t zy ( z - p ) S - l = - l + m + n = 0 S - m = l + - m + n = 0 S - n = l + m + - n = 0 - = ( ) ( ) ( y z t yz yt z zt y 2t yt yzt z ) t -t -t p y z p y y z z y yz z p =

28 2.12 General tate of tre at a point - Maimum hear tre when σ, σ y, and σ z are principal tree S = l, S = m, S = n y y z z S = l + m + n y z ( l m n ) = n y z 2 ( ) 2 t = l + m + n - l + m + n nt y z y z - - t ç t 2 2 è 2 2 ø æ 1 1 ö p1 p2 ma min ma = p1 + p2 - p1 + p2 = ma =

29 2.12 General tate of tre at a point Eample Problem 2-15 = 14 ki = 12ki = 10ki y t = 8ki t = - 10ki t = 6 y yz z - Normal/hear tree on a plane whoe outward normal i oriented at angle of 61.3, 53.1, and 50.2 with -, y-, and z-ae, repectively. - Principal tree and the maimum hearing tre at the point Home work problem: 2-1, 10, 22, 35, 46, 57, 70, 81, 90, 99

30

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

3.5b Stress Boundary Conditions: Continued

3.5b Stress Boundary Conditions: Continued 3.5b Stre Boundar Condition: Continued Conider now in more detail a urface between two different material Fig. 3.5.16. One a that the normal and hear tree are continuou acro the urface a illutrated. 2

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

Macromechanical Analysis of a Lamina

Macromechanical Analysis of a Lamina 3, P. Joyce Macromechanical Analyi of a Lamina Generalized Hooke Law ij Cijklε ij C ijkl i a 9 9 matri! 3, P. Joyce Hooke Law Aume linear elatic behavior mall deformation ε Uniaial loading 3, P. Joyce

More information

A P P L I E D M E C H A N I C S I I 1. 1 I N T R O D U C T I O N

A P P L I E D M E C H A N I C S I I 1. 1 I N T R O D U C T I O N A PPLIED MECHANICS II 1. 1 INTRODUCTION T h e second aspect of the course on A pplied Mechanics deals with the internal stress and strain g e n e r a t e d by eternally applied forces. 1. STRESS AND STRAIN

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain 006 The McGraw-Hill Companies,

More information

9. Stress Transformation

9. Stress Transformation 9.7 ABSOLUTE MAXIMUM SHEAR STRESS A pt in a body subjected to a general 3-D state of stress will have a normal stress and shear-stress components acting on each of its faces. We can develop stress-transformation

More information

both an analytical approach and the pole method, determine: (a) the direction of the

both an analytical approach and the pole method, determine: (a) the direction of the Quantitative Problems Problem 4-3 Figure 4-45 shows the state of stress at a point within a soil deposit. Using both an analytical approach and the pole method, determine: (a) the direction of the principal

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

Physics 101 Lecture 12 Equilibrium

Physics 101 Lecture 12 Equilibrium Physics 101 Lecture 12 Equilibrium Assist. Prof. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net eternal

More information

Mohr s Circle of Stress

Mohr s Circle of Stress Department of Civil Engineering Mohr s Circle of Stress by David Nash Department of Civil Engineering University of Bristol David.Nash@bristol.ac.uk 1 Principal planes and principal stresses Within any

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

Pressure distribution in a fluid:

Pressure distribution in a fluid: 18/01/2016 LECTURE 5 Preure ditribution in a fluid: There are many intance where the fluid i in tationary condition. That i the movement of liquid (or ga) i not involved. Yet, we have to olve ome engineering

More information

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Review Lecture AE1108-II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1 MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

More information

Stresses near a plate vertex due to a shear force on one of the edges

Stresses near a plate vertex due to a shear force on one of the edges Stree near a plate vertex due to a hear force on one of the edge P.C.J. Hoogenboom Delft Univerity of Technology, Faculty of Civil Engineering and Geocience, Delft, the Netherland A cloed form olution

More information

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13 ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

CH.4. STRESS. Continuum Mechanics Course (MMC)

CH.4. STRESS. Continuum Mechanics Course (MMC) CH.4. STRESS Continuum Mechanics Course (MMC) Overview Forces Acting on a Continuum Body Cauchy s Postulates Stress Tensor Stress Tensor Components Scientific Notation Engineering Notation Sign Criterion

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ APPLIED MECHANICS Study Support Leo Václavek Ostrava 2015 Title:Applied Mechanics Code: Author: doc. Ing.

More information

Period #8: Axial Load/Deformation in Indeterminate Members

Period #8: Axial Load/Deformation in Indeterminate Members ENGR:75 Meh. Def. odie Period #8: ial oad/deformation in Indeterminate Member. Review We are onidering aial member in tenion or ompreion in the linear, elati regime of behavior. Thu the magnitude of aial

More information

A typical reinforced concrete floor system is shown in the sketches below.

A typical reinforced concrete floor system is shown in the sketches below. CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 51 Module 4: Lecture 2 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-coulomb failure

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please review the followg statement: I certify that I have not given unauthorized aid nor have I received aid the completion of this eam. Signature: INSTRUCTIONS Beg each problem the space provided on

More information

Chapter 3: Stress and Equilibrium of Deformable Bodies

Chapter 3: Stress and Equilibrium of Deformable Bodies Ch3-Stress-Equilibrium Page 1 Chapter 3: Stress and Equilibrium of Deformable Bodies When structures / deformable bodies are acted upon by loads, they build up internal forces (stresses) within them to

More information

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46

Module #4. Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST. DIETER: Ch. 2, Pages 38-46 HOMEWORK From Dieter 2-7 Module #4 Fundamentals of strain The strain deviator Mohr s circle for strain READING LIST DIETER: Ch. 2, Pages 38-46 Pages 11-12 in Hosford Ch. 6 in Ne Strain When a solid is

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Constitutive models. Part 2 Elastoplastic

Constitutive models. Part 2 Elastoplastic Contitutive model art latoplatic latoplatic material model latoplatic material are aumed to behave elatically up to a certain tre limit after which combined elatic and platic behaviour occur. laticity

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

GG303 Lab 10 10/26/09 1. Stresses

GG303 Lab 10 10/26/09 1. Stresses GG303 Lab 10 10/26/09 1 Stresses Eercise 1 (38 pts total) 1a Write down the epressions for all the stress components in the ' coordinate sstem in terms of the stress components in the reference frame.

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Equilibrium of Deformable Body

Equilibrium of Deformable Body Equilibrium of Deformable Body Review Static Equilibrium If a body is in static equilibrium under the action applied external forces, the Newton s Second Law provides us six scalar equations of equilibrium

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NME: ES30 STRENGTH OF MTERILS FINL EXM: FRIDY, MY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULE: Law of Cosines:

More information

Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi PROBLEM 7.1 For the given state of stress, determine the normal and shearing stresses exerted on the oblique face of the shaded triangular element shon. Use a method of analysis based on the equilibrium

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

ME 323 Examination #2

ME 323 Examination #2 ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

LECTURE 4 Stresses in Elastic Solid. 1 Concept of Stress

LECTURE 4 Stresses in Elastic Solid. 1 Concept of Stress V. DEMENKO MECHANICS OF MATERIALS 2015 1 LECTURE 4 Stresses in Elastic Solid 1 Concept of Stress In order to characterize the law of internal forces distribution over the section a measure of their intensity

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 1 Introduction MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Concept of Stress Contents Concept of Stress

More information

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN Introduction This chapter is concerned with finding normal and shear stresses acting on inclined sections cut through a member, because these stresses may

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

Module 2 Stresses in machine elements

Module 2 Stresses in machine elements Module 2 Stresses in machine elements Lesson 3 Strain analysis Instructional Objectives At the end of this lesson, the student should learn Normal and shear strains. 3-D strain matri. Constitutive equation;

More information

Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem

Solution: The moment of inertia for the cross-section is: ANS: ANS: Problem 15.6 The material of the beam in Problem Problem 15.4 The beam consists of material with modulus of elasticity E 14x10 6 psi and is subjected to couples M 150, 000 in lb at its ends. (a) What is the resulting radius of curvature of the neutral

More information

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NAME: ES30 STRENGTH OF MATERIALS FINAL EXAM: FRIDAY, MAY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULAE: Law

More information

PROBLEM 8.3. S F = 0: N -(250 lb)cos 30 -(50 lb)sin 30 = SOLUTION

PROBLEM 8.3. S F = 0: N -(250 lb)cos 30 -(50 lb)sin 30 = SOLUTION PROLEM 8. Determine whether the block shown is in equilibrium and find the magnitude and direction of the friction force when θ = and P = 5 lb. ssume equilibrium: S F = : F-(5 lb)sin + (5 lb)cos = S F

More information

CHAPTER 6 TORSION. its inner diameter d d / 2. = mm = = mm. π (122.16) = mm 2

CHAPTER 6 TORSION. its inner diameter d d / 2. = mm = = mm. π (122.16) = mm 2 CHAPTER 6 TORSION Prolem. A olid circular haft i to tranmit 00 kw at 00 r.p.m. If the hear tre i not to exceed 80 N/mm, find the diameter of the haft. What percentage in aving would e otained if thi haft

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is: Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

More information

MATH140 Exam 2 - Sample Test 1 Detailed Solutions

MATH140 Exam 2 - Sample Test 1 Detailed Solutions www.liontutors.com 1. D. reate a first derivative number line MATH140 Eam - Sample Test 1 Detailed Solutions cos -1 0 cos -1 cos 1 cos 1/ p + æp ö p æp ö ç è 4 ø ç è ø.. reate a second derivative number

More information

MCB4UW Handout 4.11 Related Rates of Change

MCB4UW Handout 4.11 Related Rates of Change MCB4UW Handout 4. Related Rate of Change. Water flow into a rectangular pool whoe dimenion are m long, 8 m wide, and 0 m deep. If water i entering the pool at the rate of cubic metre per econd (hint: thi

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

The hitch in all of this is figuring out the two principal angles and which principal stress goes with which principal angle.

The hitch in all of this is figuring out the two principal angles and which principal stress goes with which principal angle. Mohr s Circle The stress basic transformation equations that we developed allowed us to determine the stresses acting on an element regardless of its orientation as long as we know the basic stresses σx,

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

ENR202 Mechanics of Materials Lecture 12B Slides and Notes

ENR202 Mechanics of Materials Lecture 12B Slides and Notes ENR0 Mechanics of Materials Lecture 1B Slides and Notes Slide 1 Copright Notice Do not remove this notice. COMMMONWEALTH OF AUSTRALIA Copright Regulations 1969 WARNING This material has been produced and

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6. Worksheet Da All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. Indefinite Integrals: Remember the first step to evaluating an integral is to

More information

Unit IV State of stress in Three Dimensions

Unit IV State of stress in Three Dimensions Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength

More information

STRESS-STRAIN DIAGRAM

STRESS-STRAIN DIAGRAM CHAPTER 7 STRESS-STRAIN DIAGRAM AND STRENGTH PARAMETERS 7.1 STRESS-STRAIN BEHAVIOUR OF MATERIA All engineering material do not how ame ort of behaviour when ubjected to tenion a well a compreion. There

More information

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 5 Stress Mechanical Behavior of Materials Sec. 6.1-6.5 Jiangyu Li Jiangyu Li, orce Vectors A force,, is a vector (also called a "1 st -order tensor") The description

More information

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information