A typical reinforced concrete floor system is shown in the sketches below.

Size: px
Start display at page:

Download "A typical reinforced concrete floor system is shown in the sketches below."

Transcription

1 CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho (tone). Two conequence of monolithic contruction are "T-haped" beam and reinforcing teel in the compreion zone (compreion reinforcement). A tpical reinforced concrete floor tem i hown in the ketche below. Exterior Span Interior Span Exterior Span A Span lab pan A L beam L beam L beam Plan View of Floor Stem L beam L beam L beam +'ve M teel -'ve M teel M Elevation View & Moment Diagram

2 CE 433, Fall 2006 Flexure Anali for T- 2 / 7 beam pacing /2 beam pacing /2 t lab max flange width h b w beam beam pacing Section A-A: Slab Elevation and X-Section We need four quantitie to decribe the dimenion of a T-beam: width of web b w flange width b f (derived from beam pacing, beam pan length, lab thickne) lab thickne t beam depth h The flange width (b f ) i not alwa equal to the beam pacing becaue the compreive tree in the flange are not evenl ditributed. Due to a phenomenon called "hear lag", the compreive tre in the flange decreae toward the flange end (ee figure below). For deign, the total compreive force in the flange i aumed to be ditributed uniforml over a flange width called the "effective" flange width. We will ue the mbol b f for effective flange width in deign; (actual flange width i not ued for deign). beam pacing beam pacing Total Compreive Force C Iometric view Actual Compreive Stre Ditribution Top view effective flange width b f effective flange width b f Total Compreive Force C Iometric view Top view Equivalent Compreive Stre Ditribution

3 CE 433, Fall 2006 Flexure Anali for T- 3 / 7 The compreion zone in a T-beam i divided into two region: the web, which we will analze jut a we did for a rectangular beam, and the flange overhang, of width b f b w. Important: The depth of the tre block in the flange overhang cannot be > the lab thickne, t. Or: a flange min(a web, t) b f ε f'c t a web C f t C w d b w ε f T Example. Analze two ection of a continuou beam: 1) at midpan of an interior pan, and 2) at the upport of an interior pan pan 27 ft w SD 10 pf w LL 40 pf f'c 5000 pi f 60,000 pi midpan reinforcement: 4 #6 bar in 2 laer at bottom A 1.76 in 2 Reinforcement at upport: 2 #6 bar in bottom #5 bar in top in one laer t_tab 5 in beam_pacing 12 ft h 16 in b_w in Midpan of interior pan: T-beam from preadheet: t 0.3 in Calc. M u w w unit_wt [ (b_w)(h) + (beam_pacing b_w)(t_lab)] w w (0.150kcf) [ (")(16") + (12' x 12"/' ")(5") ](1ft 2 /144in 2 ) 0.42 klf w SD (w SD )(beam pacing) (0.010kf)(12') klf w L (w L )(beam pacing) (0.040kf)(12') 0.40 klf

4 CE 433, Fall 2006 Flexure Anali for T- 4 / 7 w u 1.2 (w w + w SD ) w L w u 1.2 (0.42 klf klf) (0.40 klf) klf M u w u L 2 / 16 (ACI moment coefficient for +'ve M in interior pan, ACI.3) (1.922 klf) (27 ft) 2 / 16 M u 7.6 k-ft Calc. effective flange width, b_f: (ACI.10.2) b_f minimum of: pan / 4 16 t_lab + b_w beam pacing 27' (12"/') / 4 1" 16(5") + " " 12' x 12'/" 144" b_f 1" Calc. tre reultant a β 1 t 0.0 (0.3 in) in < 5 in t (therefore compreion block doe not extend below flange) C_w 0.5 f'c a b_w 0.5 (5000pi)(0.307")(") 10.4 k C_f 0.5 f'c a (b_f b_w) 0.5 (5000pi)(0.307")(1" ") 95.2 k T A f (1.76 in 2 )(60 ki) k (Aume teel ield) ΣF H : C T?, 10.4 k k k, OK Calc. train in bottom laer of teel (needed to check aumption that teel ield and to calculate φ) ε t dbottom laer 3" dbottom laer 16" [1.5" "] " " ε, 13.75" ε teel ha eilded ( ε > ε & φ 0.90 ( ε > 0.005) 0.002) Calc. φ M n Sum moment about neutral axi φ M n φ [C_w (_C_w) + C_f (_C_f) + T (_T_)] _C_w _t a/2 0.3" 0.307" / "

5 CE 433, Fall 2006 Flexure Anali for T- 5 / 7 _C_f _t a/2 0.3" 0.307" / " _T_ d _t 15.0" 6.02".9" 3" cover tirrup diam lowet laer where d 16 " [1.5" + + " + 1"] 12.", ue d 12.75"(round to nearet 1/4" ) φ M n 0.90 [ 10.4 k (0.23") k (0.23") k (12.37") ](1' / 12"), φ M n 99. k-ft > 7.6 k-ft M u, OK min. pace between laer (ACI 7.6.1) At Interior Side of Interior Support: Compreion Steel from preadheet: t 4.17" φ M n 99. k-ft The bottom of the web i in compreion, everthing above the neutral axi ( t from extreme compreion fiber) i cracked. The top teel i pread laterall acro the flange (therefore it i alwa in one laer). b f t ε T d b w d' ε '.003 t 0.5f'c a f C c C Calc. M u M u w u L 2 / 11 (ACI moment coefficient for -'ve M in interior pan, ACI.3) (1.922 klf) (27 ft) 2 / 11 M u 127 k-ft Calc. tre reultant a β 1 t 0.0 (4.17 in) 3.34 in C_c 0.5 f'c a b_w 0.5 (5000pi)(3.34")(") 114 k (compreive force in concrete)

6 CE 433, Fall 2006 Flexure Anali for T- 6 / 7 Strain in compreion teel ε'.003 ε d' ' " ε, 4.17" 2.25" ' ε where d' cover + diam_tirrup + ' diam_bar " " 2 (note: round d up to the nearet ¼ if necear) f' ε' x 29,000 ki x 29,000 ki 40.0 ki (< f 60 ki, o ue f' 40 ki) C_ A' x f' (0. in 2 ) (40 ki) 35.3 k T A f (2.4 in 2 )(60 ki) 14. k (Aume teel ield) ΣF H : C T?, C_c + C_ T?, 114 k + 35 k 149 k, OK Calc. train in tenion teel (needed to check aumption that teel ield and to calculate φ) ε t d 3" d 16" [1.5" "] ", ue d 13.75" " ε, 13.75" ε teel ha eilded ( ε > ε 0.002) & φ 0.90 ( ε > 0.005) Calc. φ M n Sum moment about neutral axi φ M n φ [C_c (_C_c) + C_ (_C_) + T (_T_)] _C_c _t a/2 4.17" 3.34" / " _C t d' 4.17" 2.25" 1.92" _T_ d _t 13.75" 4.17" 9.5" φ M n 0.90 [ 114 k (2.50") + 35 k (1.92") k (9.5") ](1' / 12"), φ M n 133 k-ft > 127 k-ft M u, OK φ M n 133 k-ft

7 CE 433, Fall 2006 Flexure Anali for T- 7 / 7

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span. CE 331, Fall 009 Analyi of Reforce Concrete 1 / 6 Typical Reforce Concrete Builg Cat place reforce concrete tructure have monolithic lab to beam an beam to column connection. Monolithic come from the Greek

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi P POBLM 2.5.5 ft 18 in. 1 The.5-ft concrete pot i reinforced with ix teel bar, each with a 1 -in. diameter. 8 Knowing that 2 10 pi and c =.2 10 pi, determine the normal tree in the teel and in the concrete

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

Residual Strength of Concrete-encased Steel Angle Columns after Spalling of Cover Concrete

Residual Strength of Concrete-encased Steel Angle Columns after Spalling of Cover Concrete Reidual Strength of Concrete-encaed Steel Angle Column after Spalling of Cover Concrete *Chang-Soo Kim 1) and Hyeon-Jong Hwang ) 1) School of Civil Engineering, Shandong Jianzhu Univ., Jinan 50101, China

More information

Stresses near a plate vertex due to a shear force on one of the edges

Stresses near a plate vertex due to a shear force on one of the edges Stree near a plate vertex due to a hear force on one of the edge P.C.J. Hoogenboom Delft Univerity of Technology, Faculty of Civil Engineering and Geocience, Delft, the Netherland A cloed form olution

More information

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS Xue Jianyang, Chen Zongping, Zhao Hongtie 3 Proeor, College o Civil Engineering, Xi an Univerity o Architecture

More information

Software Verification

Software Verification Sotware Veriiation EXAMPLE CSA A23.3-04 RC-BM-00 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veri lab lexural deign in. The load level i adjuted or the ae orreponding

More information

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual Software Package Deign Expert verion.0 RC Expert Uer Manual All right reerved 011 TABLE OF CONTENTS ABOUT THE PROGRAM... 3 ENTERING DATA... 3 FILES... 3 INPUT DATA... 3 Deign code... 3 Load... 3 Cro Section...

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

Consideration of Slenderness Effect in Columns

Consideration of Slenderness Effect in Columns Conideration of Slenderne Effect in Column Read Ainment Text: Section 9.1; Code and Commentary: 10.10, 10.11 General Short Column - Slender Column - Strenth can be computed by coniderin only the column

More information

Size effect in behavior of lightly reinforced concrete beams

Size effect in behavior of lightly reinforced concrete beams Size effect in behavior of lightly reinforced concrete beam M.L.Zak Ariel Univerity Ariel 47 Irael Abtract The aim of thi work i to ae the effect of ize (depth of ection in the behavior of reinforced concrete

More information

Research Article Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

Research Article Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement International olymer Science Volume 215, Article ID 213583, 8 page http://dx.doi.org/1.1155/215/213583 Reearch Article Shear Behavior of Concrete Beam Reinforced with GFR Shear Reinforcement Heecheul Kim,

More information

THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS

THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS - Technical Paper - THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS Patarapol TANTIPIDOK *1, Koji MATSUMOTO *2 an Junichiro NIWA *3 ABSTRACT To promote

More information

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS.

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS. Title DEFORMATION-BASED APPROACH FOR DETERMINATION OF THE IN R/C MEMBERS Author()TUE, N. V.; TUNG, N. Đ. Iue Date 13-9-11 Doc URL http://hdl.handle.net/115/546 Type proceeding Note The Thirteenth Eat Aia-Paciic

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

Two Way Beam Supported Slab

Two Way Beam Supported Slab Two Way Beam Supported Slab Part 2 The following example was done by Mr. Naim Hassan, 3 rd Year 2 nd Semester Student of CE Dept., AUST 16 The following Example was done by Md. Mahmudun Nobe, ID -.01.03.078,

More information

Lecture 7 Two-Way Slabs

Lecture 7 Two-Way Slabs Lecture 7 Two-Way Slabs Two-way slabs have tension reinforcing spanning in BOTH directions, and may take the general form of one of the following: Types of Two-Way Slab Systems Lecture 7 Page 1 of 13 The

More information

Copyright. Regan Mechelle Bramblett

Copyright. Regan Mechelle Bramblett Copyright by Regan Mechelle Bramblett 2000 Flexural Strengthening of Reinforced Concrete Beam Uing Carbon Fiber Reinforced Compoite by Regan Mechelle Bramblett, B.S.Arch.E. Thei Preented to the Faculty

More information

SIMPLIFIED SHAKING TABLE TEST METHODOLOGY USING EXTREMELY SMALL SCALED MODELS

SIMPLIFIED SHAKING TABLE TEST METHODOLOGY USING EXTREMELY SMALL SCALED MODELS 13 th World Conference on Earthquake Engineering Vancouver,.C., Canada Augut 1-6, 2004 Paper No. 662 SIMPLIFIED SHAKING TALE TEST METHODOLOGY USING EXTREMELY SMALL SCALED MODELS Noriko TOKUI 1, Yuki SAKAI

More information

MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS

MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS Aleandro P. Fantilli 1, Hirozo Mihahi 2 and Paolo Vallini 1 (1) Politecnico di Torino, Torino, Italy (2) Tohoku Univerity, Sendai, Japan Abtract The

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM Reinfored Conrete Deign Shear in Beam 2 Shear deign mmary More detail hear deign Shear pan Deep beam Mongkol JIRAACHARADET S U R A N A R E E UNIERSITY OF TECHNOLOGY INSTITUTE OF ENGINEERING SCHOOL OF CIIL

More information

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s 2. Analyzing tre: Definition and Concept 2.1 Introduction Stre and train - The fundamental and paramount ubject in mechanic of material - Chapter 2: Stre - Chapter 3: Strain 2.2 Normal tre under aial loading

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

Design 1 Calculations

Design 1 Calculations Design 1 Calculations The following calculations are based on the method employed by Java Module A and are consistent with ACI318-99. The values in Fig. 1 below were taken from the Design 1 Example found

More information

Preferred practice on semi-integral abutment layout falls in the following order:

Preferred practice on semi-integral abutment layout falls in the following order: GENERAL INFORMATION: This section of the chapter establishes the practices and requirements necessary for the design and detailing of semi-integral abutments. For general requirements and guidelines on

More information

Studies on Serviceability of Concrete Structures under Static and Dynamic Loads

Studies on Serviceability of Concrete Structures under Static and Dynamic Loads ctbuh.org/paper Title: Author: Subject: Keyword: Studie on Serviceability of Concrete Structure under Static and Dynamic Load An Lin, Nanjing Intitute of Technology Ding Dajun, Nanjing Intitute of Technology

More information

Euler-Bernoulli Beams

Euler-Bernoulli Beams Euler-Bernoulli Beam The Euler-Bernoulli beam theory wa etablihed around 750 with contribution from Leonard Euler and Daniel Bernoulli. Bernoulli provided an expreion for the train energy in beam bending,

More information

3.5b Stress Boundary Conditions: Continued

3.5b Stress Boundary Conditions: Continued 3.5b Stre Boundar Condition: Continued Conider now in more detail a urface between two different material Fig. 3.5.16. One a that the normal and hear tree are continuou acro the urface a illutrated. 2

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

Chapter 2. State of the art

Chapter 2. State of the art Chapter 2 State of the art Thi chapter trie to contribute to our undertanding of the mechanim of hear trength in reinforced concrete beam with or without hear reinforcement. Conceptual model howing the

More information

Fiber Reinforced Concrete, Chalmers research - an exposé

Fiber Reinforced Concrete, Chalmers research - an exposé Seminar Fibre reinforced concrete and durability: Fiber Reinforced Concrete, Chalmer reearch - an expoé From micro to macro - or mall-cale to large-cale Chalmer reearch (PhD & licentiate): Carlo Gil Berrocal.

More information

Design Beam Flexural Reinforcement

Design Beam Flexural Reinforcement COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design 1.054/1.541 echanic an Deign of Concrete Strctre Spring 2004 Prof. Oral Bykoztrk aachett Intitte of Technology Otline 7 1.054/1.541 echanic an Deign of Concrete Strctre (3-0-9) Otline 7 Shear Failre, Shear

More information

Buckling Analysis of Corrugated Core Sandwich Panels

Buckling Analysis of Corrugated Core Sandwich Panels Buckling Anali of Corrugated Core Sandwich Panel Toma Nordtrand SCA Reearch, Bo 3054, 850 03 Sundvall, SWEEN Leif A. Carlon epartment of Mechanical Engineering, Florida Atlantic Univerit, Boca Raton FL

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

A Simple Higher Order Theory for Bending Analysis of Steel Beams

A Simple Higher Order Theory for Bending Analysis of Steel Beams SSRG International Journal of Civil Engineering (SSRG-IJCE) volume Iue April 15 A Simple Higher Order Theory for Bending Analyi of Steel Beam T.K. Meghare 1, P.D. Jadhao 1 Department of Civil Engineering,

More information

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O.

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O. SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION S. J. E. Dia 1 and J. A. O. Barro 2 1 Aitant Pro., ISISE, Dep. o Civil Eng., Univ. o Minho, Azurém,

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 117 FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS Wu-Wei Kuo

More information

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram - Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular

More information

Reinforced Concrete Structures

Reinforced Concrete Structures School of Engineering Department of Civil and Bioytem Engineering Reinforced Concrete Structure Formula and Tale for SABS 0100:199 John. Roert Septemer 004 Although care ha een taken to enure that all

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM 3.1 The Simplified Procedure for Liquefaction Evaluation The Simplified Procedure wa firt propoed by Seed and Idri (1971).

More information

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS ASIAN JOURNA OF CII ENGINEERING (BUIDING AND HOUSING) O. 8, NO. 3 (7) PAGES 3-34 A PROCEDURE FOR THE EAUATION OF COUPING BEAM CHARACTERISTICS OF COUPED SHEAR WAS D. Bhunia,. Prakah and A.D. Pandey Department

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Experimental and Numerical Study on Bar-Reinforced Concrete Filled Steel Tubular Columns Under Axial Compression

Experimental and Numerical Study on Bar-Reinforced Concrete Filled Steel Tubular Columns Under Axial Compression The Open Civil Engineering Journal, 211, 5, 19-115 19 Open Acce Experimental and Numerical Study on Bar-Reinforced Concrete Filled Steel Tubular Column Under Axial Compreion Jinheng Han * and Shuping Cong

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY VOLUME 2, O. 2, EDISI XXIX JULI 24 IDEALIZED STRESS-STRAI RELATIOSHIP I TESIO OF REIFORCE COCRETE MEMBER FOR FIITE ELEMET MODEL BASED O HASWILLE S THEORY Hardi Wibowo ABSTRACT Untuk penganaliaan kontrol

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Predicting the Shear Capacity of Reinforced Concrete Slabs subjected to Concentrated Loads close to Supports with the Modified Bond Model

Predicting the Shear Capacity of Reinforced Concrete Slabs subjected to Concentrated Loads close to Supports with the Modified Bond Model Predicting the Shear Capacity of Reinforced Concrete Slab ubjected to Concentrated Load cloe to Support ith the Modified Bond Model Eva O.L. LANTSOGHT Aitant Profeor Univeridad San Francico de Quito elantoght@ufq.edu.ec

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector

Position. If the particle is at point (x, y, z) on the curved path s shown in Fig a,then its location is defined by the position vector 34 C HAPTER 1 KINEMATICS OF A PARTICLE 1 1.5 Curvilinear Motion: Rectangular Component Occaionall the motion of a particle can bet be decribed along a path that can be epreed in term of it,, coordinate.

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0 kn OK Design shear force, V d 4223 kn

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Effects From Structural Analysis Design axial force, F (tension -ve and compression +ve) (ensure < 0.1f cu b w h 0

More information

CAPACITY OF STIFFENED STEEL SHEAR PANELS AS A STRUCTURAL CONTROL DAMPER

CAPACITY OF STIFFENED STEEL SHEAR PANELS AS A STRUCTURAL CONTROL DAMPER CAPACITY OF STIFFENED STEEL SHEAR PANELS AS A STRUCTURAL CONTROL DAMPER H.B. Ge 1, K. Kaneko and T. Uami 3 1,3 Profeor, Department of Civil Engineering, Meijo Univerity, Nagoya 458-85, Japan Graduate Student,

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS

STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS 13 th World Conerence on Earthquake Engineering Vancouver, B.C., Canada Augut 1-6, 004 Paper No. 589 STRAIN LIMITS FOR PLASTIC HINGE REGIONS OF CONCRETE REINFORCED COLUMNS Rebeccah RUSSELL 1, Adolo MATAMOROS,

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN Chapter Solution P. w = 5 0. 0. =.5k/m (or.5/) US load =.5 g k +.5 q k =.5k/m = / =.5 / =.k.m (d) V = / =.5 / =.k P. w =.5g k +.5q k =.5 +.5 =.5k/m = / =.5 / =.k.m V = / =.5 / = 7.k 5 5( ) 000 0,0005000.

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

1/29/2010 Page 2 of 65 1/29/2010 Page 3 of 65 1/29/2010 Page 4 of 65 Project Information 1/29/2010 Page 5 of 65 Muckleshoot Indian Tribe Project Number 09-118 West Detention Vault West Vault City of Auburn

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Cyclic Response of R/C Jacketed Columns Including Modelling of the Interface Behaviour

Cyclic Response of R/C Jacketed Columns Including Modelling of the Interface Behaviour Cyclic Repone of R/C Jacketed Column Including Modelling of the Interface Behaviour G.E. Thermou, V.K. Papanikolaou & A.J. Kappo Laboratory of R/C and Maonry Structure, Aritotle Univerity of Thealoniki,

More information

Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Effects of soil structure interaction on behavior of reinforced concrete structures

Effects of soil structure interaction on behavior of reinforced concrete structures Journal of Structural Engineering & Applied Mechanic 18 Volume 1 Iue 1 Page 8-33 http://doi.org/1.3146/jeam.18.1833 www.goldenlightpublih.com RESEARCH ARTICLE Effect of oil tructure interaction on behavior

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

Behavior Factor of Flat double-layer Space Structures Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan

Behavior Factor of Flat double-layer Space Structures Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan Abtract Flat double-laer grid i from categor of pace tructure that are formed from two flat laer connected together with diagonal member. Increaed tiffne and better eimic reitance in relation to other

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus.

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. 1 Abtract Rubble Mound Breakwater Chritian Linde Olen Griffith Univerity, Faculty of Engineering and Information Technology, Gold Coat Campu. 1. Abtract The paper deal with the deign of a rubble mound

More information

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Known)

Confidence Intervals and Hypothesis Testing of a Population Mean (Variance Known) Confidence Interval and Hypothei Teting of a Population Mean (Variance Known) Confidence Interval One-ided confidence level for lower bound, X l = X Z α One ided confidence interval for upper bound, X

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

PHYSICS 151 Notes for Online Lecture 2.3

PHYSICS 151 Notes for Online Lecture 2.3 PHYSICS 151 Note for Online Lecture.3 riction: The baic fact of acrocopic (everda) friction are: 1) rictional force depend on the two aterial that are liding pat each other. bo liding over a waed floor

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT

PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT Structural Concrete Software System TN191_PT7_punching_shear_aci_4 011505 PUNCHING SHEAR CALCULATIONS 1 ACI 318; ADAPT-PT 1. OVERVIEW Punching shear calculation applies to column-supported slabs, classified

More information

An assessment of the geometry effect of geosynthetics for base course reinforcements

An assessment of the geometry effect of geosynthetics for base course reinforcements International Journal of Tranportation Science and Technology vol. 1 no. 3 2012 page 247 257 247 An aement of the geometry effect of geoynthetic for bae coure reinforcement Xiaoming Yang, Ph.D. School

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

RETROFIT OF LARGE BRIDGE PIERS WITH RECTANGULAR-HOLLOW CROSS-SECTION

RETROFIT OF LARGE BRIDGE PIERS WITH RECTANGULAR-HOLLOW CROSS-SECTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada Augut 1-6, 2004 Paper o. 2925 RETROFIT OF LARGE BRIDGE PIERS WITH RECTAGULAR-HOLLOW CROSS-SECTIO Georgio TSIOIS 1 and Artur V. PITO

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2 Pot-Tenioning Expertie and Deign May 7, 2015 TN465_EC2_erviceability_050715 EC2 SERVICEBILITY CHECK OF POST-TENSIONED ELEMENTS 1 Bijan O alami 2 Thi Technical te explain the erviceability check o pot-tenioned

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information