A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

Size: px
Start display at page:

Download "A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span."

Transcription

1 CE 331, Fall 009 Analyi of Reforce Concrete 1 / 6 Typical Reforce Concrete Builg Cat place reforce concrete tructure have monolithic lab to beam an beam to column connection. Monolithic come from the Greek wor mono (one) an litho (tone). Conequence of monolithic contruction clue: beam to column connection tranfer moment makg reforce concrete frame highly etermate, an the beam are "T hape" A typical reforce concrete floor ytem i hown the ketche below. Exterior Span Interior Span Exterior Span A Span lab pan A Plan View of Floor Sytem L n (clear pan) L n L n beam column Elevation View of Floor Sytem

2 CE 331, Fall 009 Analyi of Reforce Concrete / 6 beam pacg / beam pacg / t lab max flange with h b w beam beam pacg Section A A: Slab Elevation an X Section Placement of Reforcement Steel reforcement i place the tenion zone of reforce concrete beam, a icate by the crack pattern hown below. +'ve M teel -'ve M teel Reforcement Tenile Zone Factore Moment ue to Dea + Live Loa (M u ) The moment ue to factore ea an live loa mut be calculate with the ai of a computer program. Deigner oen ue the American Concrete Intitute (ACI) moment coefficient (hown below) which repreent the envelope of moment ue to ea loa plu variou live loa pan loa pattern. w u L n 14 M u w u L n 10 ACI Moment Coefficient

3 CE 331, Fall 009 Analyi of Reforce Concrete 3 / 6 The 3 Stage the Life of a Reforce Concrete Reforce concrete beam are analyze three ifferent way, epeng on whether the concrete ha cracke, whether the teel ha yiele, or whether the concrete i tree to it "non lear" range. 1. Uncracke compreion zone tenion zone reforcement neglecte. Service Loa ` flexure crack compreion zone concrete tenion zone cracke (neglecte) reforcement 3. Ultimate Strength concrete cruhe teel yiel compreion zone concrete tenion zone cracke (neglecte) Reforcement yiele

4 CE 331, Fall 009 Analyi of Reforce Concrete 4 / 6 Example Analyi of Ultimate Strength of a f c = 5000pi fy = 60ki Clear cover =.0 che aume tirrup are #4 bar w u = 1.50 klf b=1 h=0 30 Elevation View of A = 4 #7 bar =.40 Cro-Section of w u = 1.50 klf klf M u = C c T M u =.5 k (.5 k )(15 klf 15 ) (1.50 )(15 )( ) = Neutral Axi.003 c f'c 0.85f'c a=β 1 c a/ C c ε f f T Section A-A Stra Ditribution Actual Stre Ditribution Equivalent (Whitney Stre Block) Stre Ditribution Stre Reultant

5 CE 331, Fall 009 Analyi of Reforce Concrete 5 / 6 1. Calculate M n (nomal moment capacity) a M n = T ( ) T = A f (aume teel yeil, check later) y 1.1 Calculate effective epth () b φ bar / h =0 clear cover φ tirrup φ 4 7 / 8 = effective epth = h clear cover -φ bar tirrup = 0" " = Calculate of epth of tre block (a) from F 0.85 f 0.85(5 ' c H a b = A ki = 0, C ) a (1 c = T f y ) = (.40 )(60 ki ) a =.8 a ki.8 1 M n = A f y ( ) = (.40 )(60 )(17.06 )( ) M n = 188 k 1. Calculate φ (trength reuction factor) φ i a function of the tra the teel. If the tra the teel (ε ) i at leat.5 time the yiel tra (ε y ~= 0.00 = 60 ki / 9,000 ki = f y / E ), then the max. value of φ = 0.90 can be ue. If the tra the teel i le than 0.005, then the equation hown the figure below mut be ue. For beam, ACI require that ε be >= φ ε m for beam = ε

6 CE 331, Fall 009 Analyi of Reforce Concrete 6 / 6 Calculate the tra the teel (ε ) The tra the teel can be calculate ug imilar triangle an the tra itribution hown on pg ε = c an a = β c (from pg 4) ε = a β 1 f'c, pi β 1 <= 4, , , , >=8, For thi example, ε = ε = Therefore, (a) φ = 0.90 (ce ε > 0.005) (b) teel ha yiele (ε > 0.00 = ε y ) a aume at top of pg 5. Check flexure trength We want: φ M n M reuce nomal moment u factore moment φ M n = ( 0.9)(188 ) = 169. > = M u, OK

A typical reinforced concrete floor system is shown in the sketches below.

A typical reinforced concrete floor system is shown in the sketches below. CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho

More information

ANALYSIS OF SECTION. Behaviour of Beam in Bending

ANALYSIS OF SECTION. Behaviour of Beam in Bending ANALYSIS OF SECTION Behaviour o Beam in Bening Conier a imply upporte eam ujecte to graually increaing loa. The loa caue the eam to en an eert a ening moment a hown in igure elow. The top urace o the eam

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

Size effect in behavior of lightly reinforced concrete beams

Size effect in behavior of lightly reinforced concrete beams Size effect in behavior of lightly reinforced concrete beam M.L.Zak Ariel Univerity Ariel 47 Irael Abtract The aim of thi work i to ae the effect of ize (depth of ection in the behavior of reinforced concrete

More information

THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS

THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS - Technical Paper - THE EFFECT OF WIDE STIRRUP SPACING ON DIAGONAL COMPRESSIVE CAPACITY OF HIGH STRENGTH CONCRETE BEAMS Patarapol TANTIPIDOK *1, Koji MATSUMOTO *2 an Junichiro NIWA *3 ABSTRACT To promote

More information

MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS

MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS MAXIMUM BENDING MOMENT AND DUCTILITY OF R/HPFRCC BEAMS Aleandro P. Fantilli 1, Hirozo Mihahi 2 and Paolo Vallini 1 (1) Politecnico di Torino, Torino, Italy (2) Tohoku Univerity, Sendai, Japan Abtract The

More information

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS

SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS SHEAR MECHANISM AND CAPACITY CALCULATION OF STEEL REINFORCED CONCRETE SPECIAL-SHAPED COLUMNS Xue Jianyang, Chen Zongping, Zhao Hongtie 3 Proeor, College o Civil Engineering, Xi an Univerity o Architecture

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design 1.054/1.541 echanic an Deign of Concrete Strctre Spring 2004 Prof. Oral Bykoztrk aachett Intitte of Technology Otline 7 1.054/1.541 echanic an Deign of Concrete Strctre (3-0-9) Otline 7 Shear Failre, Shear

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

University Courses on Svalbard. AT-204 Thermo-Mechanical Properties of Materials, 3 vt, 9 ECTS EXAMINATION SUGGESTED SOLUTION (PROBLEM SETS 2 AND 3)

University Courses on Svalbard. AT-204 Thermo-Mechanical Properties of Materials, 3 vt, 9 ECTS EXAMINATION SUGGESTED SOLUTION (PROBLEM SETS 2 AND 3) Page 1 of 7 Univerity Coure on Svalbar AT-204 Thermo-Mechanical Propertie of Material, 3 vt, 9 ECTS EXAMINATION SUGGESTED SOLUTION (PROBLEM SETS 2 AND 3) May 29, 2001, hour: 09.00-13.00 Reponible: Sveinung

More information

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS.

Title. Author(s)TUE, N. V.; TUNG, N. Đ. Issue Date Doc URL. Type. Note. File Information IN R/C MEMBERS. Title DEFORMATION-BASED APPROACH FOR DETERMINATION OF THE IN R/C MEMBERS Author()TUE, N. V.; TUNG, N. Đ. Iue Date 13-9-11 Doc URL http://hdl.handle.net/115/546 Type proceeding Note The Thirteenth Eat Aia-Paciic

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

Residual Strength of Concrete-encased Steel Angle Columns after Spalling of Cover Concrete

Residual Strength of Concrete-encased Steel Angle Columns after Spalling of Cover Concrete Reidual Strength of Concrete-encaed Steel Angle Column after Spalling of Cover Concrete *Chang-Soo Kim 1) and Hyeon-Jong Hwang ) 1) School of Civil Engineering, Shandong Jianzhu Univ., Jinan 50101, China

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS

FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 117 FORCE TRANSFER MECHANISMS AND SHEAR STRENGTH OF REINFORCED CONCRETE BEAM-COLUMN ELEMENTS Wu-Wei Kuo

More information

Software Verification

Software Verification BS-5950-90 Examle-001 STEEL DESIGNES MANUAL SIXTH EDITION - DESIGN OF SIMPLY SUPPOTED COMPOSITE BEAM EXAMPLE DESCIPTION Deign a omoite floor ith beam at 3-m enter anning 12 m. The omoite lab i 130 mm dee.

More information

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi P POBLM 2.5.5 ft 18 in. 1 The.5-ft concrete pot i reinforced with ix teel bar, each with a 1 -in. diameter. 8 Knowing that 2 10 pi and c =.2 10 pi, determine the normal tree in the teel and in the concrete

More information

Consideration of Slenderness Effect in Columns

Consideration of Slenderness Effect in Columns Conideration of Slenderne Effect in Column Read Ainment Text: Section 9.1; Code and Commentary: 10.10, 10.11 General Short Column - Slender Column - Strenth can be computed by coniderin only the column

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

Copyright. Regan Mechelle Bramblett

Copyright. Regan Mechelle Bramblett Copyright by Regan Mechelle Bramblett 2000 Flexural Strengthening of Reinforced Concrete Beam Uing Carbon Fiber Reinforced Compoite by Regan Mechelle Bramblett, B.S.Arch.E. Thei Preented to the Faculty

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS ASIAN JOURNA OF CII ENGINEERING (BUIDING AND HOUSING) O. 8, NO. 3 (7) PAGES 3-34 A PROCEDURE FOR THE EAUATION OF COUPING BEAM CHARACTERISTICS OF COUPED SHEAR WAS D. Bhunia,. Prakah and A.D. Pandey Department

More information

Research Article Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement

Research Article Shear Behavior of Concrete Beams Reinforced with GFRP Shear Reinforcement International olymer Science Volume 215, Article ID 213583, 8 page http://dx.doi.org/1.1155/215/213583 Reearch Article Shear Behavior of Concrete Beam Reinforced with GFR Shear Reinforcement Heecheul Kim,

More information

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM Reinfored Conrete Deign Shear in Beam 2 Shear deign mmary More detail hear deign Shear pan Deep beam Mongkol JIRAACHARADET S U R A N A R E E UNIERSITY OF TECHNOLOGY INSTITUTE OF ENGINEERING SCHOOL OF CIIL

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

Two Way Beam Supported Slab

Two Way Beam Supported Slab Two Way Beam Supported Slab Part 2 The following example was done by Mr. Naim Hassan, 3 rd Year 2 nd Semester Student of CE Dept., AUST 16 The following Example was done by Md. Mahmudun Nobe, ID -.01.03.078,

More information

Studies on Serviceability of Concrete Structures under Static and Dynamic Loads

Studies on Serviceability of Concrete Structures under Static and Dynamic Loads ctbuh.org/paper Title: Author: Subject: Keyword: Studie on Serviceability of Concrete Structure under Static and Dynamic Load An Lin, Nanjing Intitute of Technology Ding Dajun, Nanjing Intitute of Technology

More information

Chapter 2. State of the art

Chapter 2. State of the art Chapter 2 State of the art Thi chapter trie to contribute to our undertanding of the mechanim of hear trength in reinforced concrete beam with or without hear reinforcement. Conceptual model howing the

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

Lecture 7 Two-Way Slabs

Lecture 7 Two-Way Slabs Lecture 7 Two-Way Slabs Two-way slabs have tension reinforcing spanning in BOTH directions, and may take the general form of one of the following: Types of Two-Way Slab Systems Lecture 7 Page 1 of 13 The

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY

IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL BASED ON HANSWILLE S THEORY VOLUME 2, O. 2, EDISI XXIX JULI 24 IDEALIZED STRESS-STRAI RELATIOSHIP I TESIO OF REIFORCE COCRETE MEMBER FOR FIITE ELEMET MODEL BASED O HASWILLE S THEORY Hardi Wibowo ABSTRACT Untuk penganaliaan kontrol

More information

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2

Technical Notes EC2 SERVICEABILITY CHECK OF POST-TENSIONED ELEMENTS 1. Bijan O Aalami 2 Pot-Tenioning Expertie and Deign May 7, 2015 TN465_EC2_erviceability_050715 EC2 SERVICEBILITY CHECK OF POST-TENSIONED ELEMENTS 1 Bijan O alami 2 Thi Technical te explain the erviceability check o pot-tenioned

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by:

Therefore, for all members designed according to ACI 318 Code, f s =f y at failure, and the nominal strength is given by: 5.11. Under-reinforced Beams (Read Sect. 3.4b oour text) We want the reinforced concrete beams to fail in tension because is not a sudden failure. Therefore, following Figure 5.3, you have to make sure

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Design 1 Calculations

Design 1 Calculations Design 1 Calculations The following calculations are based on the method employed by Java Module A and are consistent with ACI318-99. The values in Fig. 1 below were taken from the Design 1 Example found

More information

Euler-Bernoulli Beams

Euler-Bernoulli Beams Euler-Bernoulli Beam The Euler-Bernoulli beam theory wa etablihed around 750 with contribution from Leonard Euler and Daniel Bernoulli. Bernoulli provided an expreion for the train energy in beam bending,

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Plastic design of continuous beams

Plastic design of continuous beams Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 4: Plastic design of continuous

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Fiber Reinforced Concrete, Chalmers research - an exposé

Fiber Reinforced Concrete, Chalmers research - an exposé Seminar Fibre reinforced concrete and durability: Fiber Reinforced Concrete, Chalmer reearch - an expoé From micro to macro - or mall-cale to large-cale Chalmer reearch (PhD & licentiate): Carlo Gil Berrocal.

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

Shear Capacity of Circular Concrete Sections

Shear Capacity of Circular Concrete Sections Shear Capacity of Circular Concrete Section Final Year Diertation Department of Architecture an Civil Engineering Supervior: Dr S. Denton John Orr MEng Civil Engineering Univerity of Bath 2th April 9 Accompanying

More information

Reinforced Concrete Structures

Reinforced Concrete Structures School of Engineering Department of Civil and Bioytem Engineering Reinforced Concrete Structure Formula and Tale for SABS 0100:199 John. Roert Septemer 004 Although care ha een taken to enure that all

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s

2. Analyzing stress: Defini n ti t ons n a nd n C onc n e c pt p s 2. Analyzing tre: Definition and Concept 2.1 Introduction Stre and train - The fundamental and paramount ubject in mechanic of material - Chapter 2: Stre - Chapter 3: Strain 2.2 Normal tre under aial loading

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Software Verification

Software Verification Sotware Veriiation EXAMPLE CSA A23.3-04 RC-BM-00 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veri lab lexural deign in. The load level i adjuted or the ae orreponding

More information

Control Systems. Root locus.

Control Systems. Root locus. Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in -lane How

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting acce to White Roe reearch paper Univeritie o Leed, Sheield and York http://eprint.whiteroe.ac.uk/ Thi i an author produced verion o a paper publihed in Cement and Concrete Compoite. White Roe

More information

Chapter 12 Simple Linear Regression

Chapter 12 Simple Linear Regression Chapter 1 Simple Linear Regreion Introduction Exam Score v. Hour Studied Scenario Regreion Analyi ued to quantify the relation between (or more) variable o you can predict the value of one variable baed

More information

Fuzzy Stochastic Finite Element Method FSFEM

Fuzzy Stochastic Finite Element Method FSFEM Intitute for Static und Dynamic of Structure Fuzzy Stochatic Finite Element Method - FSFEM Bernd Möller Fuzzy Stochatic Analyi from fuzzy tochatic ampling to fuzzy tochatic analyi Slide 2 Fuzzy Stochatic

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

Moment Redistribution

Moment Redistribution TIME SAVING DESIGN AID Page 1 of 23 A 3-span continuous beam has center-to-center span lengths of 30 ft-0 in. The beam is 20 in. by 28 in. and all columns are 20 in. by 20 in. In this example, the beam

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

An Investigation of Degradation of Mechanical Behaviour of Prestressing Strands Subjected to Chloride Attacking

An Investigation of Degradation of Mechanical Behaviour of Prestressing Strands Subjected to Chloride Attacking 5th International Conference on Durability of Concrete Structure Jun 3 Jul, 6 Shenzhen Univerity, Shenzhen, Guangong Province, P.R.China n Invetigation of Degraation of Mechanical Behaviour of Pretreing

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-0 Linear Control Sytem Spring 04, Exam No calculator or computer allowed, you may leave your anwer a fraction. All problem are worth point unle noted otherwie. Total /00 Problem - refer to the unit

More information

A Simple Higher Order Theory for Bending Analysis of Steel Beams

A Simple Higher Order Theory for Bending Analysis of Steel Beams SSRG International Journal of Civil Engineering (SSRG-IJCE) volume Iue April 15 A Simple Higher Order Theory for Bending Analyi of Steel Beam T.K. Meghare 1, P.D. Jadhao 1 Department of Civil Engineering,

More information

Control Systems. Root locus.

Control Systems. Root locus. Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in -lane How

More information

Module: 8 Lecture: 1

Module: 8 Lecture: 1 Moule: 8 Lecture: 1 Energy iipate by amping Uually amping i preent in all ocillatory ytem. It effect i to remove energy from the ytem. Energy in a vibrating ytem i either iipate into heat oun or raiate

More information

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual Software Package Deign Expert verion.0 RC Expert Uer Manual All right reerved 011 TABLE OF CONTENTS ABOUT THE PROGRAM... 3 ENTERING DATA... 3 FILES... 3 INPUT DATA... 3 Deign code... 3 Load... 3 Cro Section...

More information

Article publié par le Laboratoire de Construction en Béton de l'epfl. Paper published by the Structural Concrete Laboratory of EPFL

Article publié par le Laboratoire de Construction en Béton de l'epfl. Paper published by the Structural Concrete Laboratory of EPFL Article publié par le Laboratoire de Contruction en Béton de l'epfl Paper publihed by the Structural Concrete Laboratory of EPFL Title: The level-of-approximation approach in MC 2010: application to punching

More information

Cyclic Response of R/C Jacketed Columns Including Modelling of the Interface Behaviour

Cyclic Response of R/C Jacketed Columns Including Modelling of the Interface Behaviour Cyclic Repone of R/C Jacketed Column Including Modelling of the Interface Behaviour G.E. Thermou, V.K. Papanikolaou & A.J. Kappo Laboratory of R/C and Maonry Structure, Aritotle Univerity of Thealoniki,

More information

Software Verification

Software Verification Sotare Veriiation EXAMPLE NZS 3101-06 RC-BM-001 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veriy lab lexural deign in. The load level i adjuted or the ae orreponding

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

Dr. Hazim Dwairi. Example: Continuous beam deflection

Dr. Hazim Dwairi. Example: Continuous beam deflection Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

More information

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14.

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14. PROBLEM 8.6 Knowing that the coefficient of friction between the 25-kg block and the incline i μ =.25, determine (a) the mallet value of P required to tart the block moving up the incline, (b) the correponding

More information

Macromechanical Analysis of a Lamina

Macromechanical Analysis of a Lamina 3, P. Joyce Macromechanical Analyi of a Lamina Generalized Hooke Law ij Cijklε ij C ijkl i a 9 9 matri! 3, P. Joyce Hooke Law Aume linear elatic behavior mall deformation ε Uniaial loading 3, P. Joyce

More information

3.5b Stress Boundary Conditions: Continued

3.5b Stress Boundary Conditions: Continued 3.5b Stre Boundar Condition: Continued Conider now in more detail a urface between two different material Fig. 3.5.16. One a that the normal and hear tree are continuou acro the urface a illutrated. 2

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O.

SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION. S. J. E. Dias 1 and J. A. O. SHEAR STRENGTHENING OF RC BEAMS WITH NSM CFRP LAMINATES: EXPERIMENTAL RESEARCH AND ANALYTICAL FORMULATION S. J. E. Dia 1 and J. A. O. Barro 2 1 Aitant Pro., ISISE, Dep. o Civil Eng., Univ. o Minho, Azurém,

More information

Example 1. Examples for walls are available on our Web page: Columns

Example 1. Examples for walls are available on our Web page:   Columns Portlan Cement Association Page 1 o 9 Te ollowing examples illustrate te esign metos presente in te article Timesaving Design Ais or Reinorce Concrete, Part 3: an Walls, by Davi A. Fanella, wic appeare

More information

Theory and Practice Making use of the Barkhausen Effect

Theory and Practice Making use of the Barkhausen Effect Theory and Practice aking ue of the Barkhauen Effect David C. Jile Anon arton Ditinguihed Profeor Palmer Endowed Chair Department of Electrical & Computer Engineering Iowa State Univerity Workhop on Large

More information

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f

Masonry Design. = calculated compressive stress in masonry f. = masonry design compressive stress f ARCH 614 Note Set 7.1 S014bn Monry Deign Nottion: A = ne or re A n = net re, equl to the gro re ubtrcting ny reinorceent A nv = net her re o onry A = re o teel reinorceent in onry deign A t = re o teel

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren

UC Berkeley CE 123 Fall 2017 Instructor: Alan Kren CE 123 - Reinforced Concrete Midterm Examination No. 2 Instructions: Read these instructions. Do not turn the exam over until instructed to do so. Work all problems. Pace yourself so that you have time

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Design Beam Flexural Reinforcement

Design Beam Flexural Reinforcement COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEBER 2001 CONCRETE FRAE DESIGN ACI-318-99 Technical Note This Technical Note describes how this program completes beam design when the ACI 318-99

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

Stability Criterion Routh Hurwitz

Stability Criterion Routh Hurwitz EES404 Fundamental of Control Sytem Stability Criterion Routh Hurwitz DR. Ir. Wahidin Wahab M.Sc. Ir. Arie Subiantoro M.Sc. Stability A ytem i table if for a finite input the output i imilarly finite A

More information

CONSISTENT INSERTION OF BOND-SLIP INTO BEAM FIBER ELEMENTS FOR BIAXIAL BENDING

CONSISTENT INSERTION OF BOND-SLIP INTO BEAM FIBER ELEMENTS FOR BIAXIAL BENDING CONSISEN INSERION OF BOND-S INO BEAM FIBER EEMENS FOR BIAXIA BENDING GIORIGO MONI AND ENRICO SPACONE 2 SMMARY In thi paper a new reinforced concrete beam finite element that explicitly account for the

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

TENSILE LAP SPLICES PART I: RETAINING WALL TYPE. VARYING MOMENT ZONE. Phil M. Ferguson. and. Eduardo A. Briceno. Research Report No.

TENSILE LAP SPLICES PART I: RETAINING WALL TYPE. VARYING MOMENT ZONE. Phil M. Ferguson. and. Eduardo A. Briceno. Research Report No. TENSLE LAP SPLCES PART : RETANNG WALL TYPE. VARYNG MOMENT ZONE by Phil M. Ferguon and Eduardo A. Briceno Reearch Report No. 113-2 Reearch Project Number 3-5-68-113 Splice and Anchorage of Reinforcing Bar

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A ) Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-94) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a

More information

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN Chapter Solution P. w = 5 0. 0. =.5k/m (or.5/) US load =.5 g k +.5 q k =.5k/m = / =.5 / =.k.m (d) V = / =.5 / =.k P. w =.5g k +.5q k =.5 +.5 =.5k/m = / =.5 / =.k.m V = / =.5 / = 7.k 5 5( ) 000 0,0005000.

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information