Software Verification

Size: px
Start display at page:

Download "Software Verification"

Transcription

1 BS Examle-001 STEEL DESIGNES MANUAL SIXTH EDITION - DESIGN OF SIMPLY SUPPOTED COMPOSITE BEAM EXAMPLE DESCIPTION Deign a omoite floor ith beam at 3-m enter anning 12 m. The omoite lab i 130 mm dee. The floor i to reit an imoed load of 5.0 kn/m 2, artition loading of 1.0 kn/m 2 and a eiling load of 0.5 kn/m 2. The floor i to be un-roed during ontrution. GEOMETY, POPETIES AND LOADING Member Proertie UKB57x191x67 E = 205,000 MPa Fy = 355 MPa Loading = 6.67kN/m (Dead Load) = 1.5kN/m (Contrution) = 1.5kN/m (Suerimoed Load) = 18.00kN/m (Live Load) Geometry San, L = 12 m TECHNICAL FEATUES OF ETABS TESTED Comoite beam deign, inluding: Seletion of teel etion, amber and hear tud ditribution Member bending aaitie, at ontrution and in ervie Member defletion, at ontrution and in ervie BS Examle-001-1

2 ESULTS COMPAISON Indeendent reult are referened from the firt examle, Deign of Simly Suorted Comoite Beam, in Chater 21 of the Steel Contrution Intitute Steel Deigner Manual, Sixth Edition. Outut Parameter ETABS Indeendent Perent Differene Contrution Deign Moment (kn-m) % Contrution M (kn-m) % Contrution Defletion (mm) % Deign Moment (kn-m) % Full Comoite M (kn-m) % Partial Comoite M (kn-m) % Shear Stud Caaity Qn (kn) % Live Load Defletion (mm) % Alied Shear Fore Fv (kn) % Shear eitane Pv (kn) % COMPUTE FILE: BS EXAMPLE 001.EDB CONCLUSION The ETABS reult ho an exellent omarion ith the indeendent reult. BS Examle-001-2

3 HAND CALCULATION Proertie: Material: S355 Steel: E = 205,000 MPa, y = 355 MPa, γ = 7850 kg/m 3 Light-eight onrete: E = 2,855 MPa, fu = 30 MPa, γ = 1800 kg/m 3 Setion: UKB57x191x67 D = 53.6 mm, bf = mm, tf = 12.7 mm, t = 8.5 mm Ateel = 8,550 mm 2, Iteel = 29,380 m Dek: D =130 mm, D = 50 mm, r = 300 mm, br = 150 mm Shear Connetor: d = 19 mm, h = 95 mm, Fu = 50 MPa Loading: Self eight lab = 2.0 kn/m 2 Self eight beam = 0.67 kn/m Contrution load = 0.5 kn/m 2 Ceiling = 0.5 kn/m 2 Partition (live load) = 1.0 kn/m 2 Ouany (live load) = 5.0 kn/m 2 Deign for Pre-Comoite Condition: Contrution equired Flexural Strength: ult ontrution = ( ) 3.0 = 11.7 kn/m BS Examle-001-3

4 M L ult ontrution ult ontrution M = S P = = z y Pre-Comoite Defletion: kn-m 3 6 1, kn-m ontrution = = 6.67 kn/m 5 L , E I , , ontrution δ 29.9 mm Camber = 0.8 δ= 2 mm, hih i rounded don to 20 mm Deign for Comoite Flexural Strength: equired Flexural Strength: ult = ( ) 3.0 = 0.2 kn/m 2 2 ult L M ult 72.3 kn-m 8 8 Full Comoite Ation Available Flexural Strength: Effetive idth of lab: L 12,000 B e 3, 000 mm 3,000 mmm eitane of lab in omreion: = 0.5 f B ( D D ) = , = 3, 20 kn u e eitane of teel in tenion: P A = y = y = 8, = 3,035 kn ontrol Moment reitane of omoite beam for full omoite ation: ( D D) D M = + D for , = + = 2 3, , kn-m BS Examle-001 -

5 Partial Comoite Ation Available Flexural Strength: Aume 72% omoite ation the 75% aumed in the examle require more hear tud than an fit on the beam given it atual lear length. q = 0.72 = 2,189 kn Tenile eitane of eb: y = t D 2 t = = 1, 292 kn f A q >, the lati axi i in the teel flange, and ( D D) 2 D q ( q) tf M = + q D 2 2 f Shear Stud Strength: 2 ( 3,035 2,189) , = 3, , , ,035 1, 292 = kn-m Charateriti reitane of 19 mm-diameter tud in normal eight 30 MPa onrete: Qk = 100 kn from BS 5950: Part 3 Table 5 Adjuting for light-eight onrete: Q = 90 kn k edution fator for rofile hae ith rib erendiular to the beam and to tud er rib: ( h D ) 150 ( 95 50) br k = 0.6 = 0.6 = 1.62 but k 0.8 D D Deign trength: Q = k 0.8 Q = = 57.6 kn Shear Stud Ditribution: k The examle lae to ro of hear tud and omute the number of dek rib available for laing hear tud baed on the beam enter to enter an and the dek rib aing: 12 m / 300 mm = 0 BS Examle-001-5

6 Hoever, the number of dek rib available for laing hear tud mut be baed on the beam lear an, and ine the lear beam an i omehat le than the 12 m enter to enter an there are only 39 dek rib available. ETABS elet 72% omoite ation, hih i the highet ahievable and uffiient to meet the live load defletion riteria. ETABS atifie thi 72% omoite ation by laing one tud er dek rib along the entire length of the beam, lu a eond tud er rib in all the dek rib exet the mid-an rib ine thi i the loation of the beam zero moment and a tud in that rib ould not ontribute anything to the total reitane of the hear onnetor. The total reitane of the hear onnetor i: q = 2 19 Q = = 2,189 kn Live Load Defletion: The eond moment of area of the omoite etion, baed on elati roertie, I i given by: I r ( D ) ( r) 2 3 eff Ateel + D + D b D D = + + I 1+α 12 α A e 8,550 teel beff ( D D) 3,000 ( ) For light-eight onrete: α =10 α =25 l Proortion of total loading hih i long term: e teel dl dl live ρ l dl + dl + live α =α +ρ α α = = 18.1 I e l l , , = = = mm Live load defletion auming full omoite ation: 6 BS Examle-001-6

7 5 L ,000 live δ 6 38 E I , Adjut for artial omoite ation: live δ = = E I 5 L , , = 80.7 mm non-omoite referene defletion ( K ) δ artial =δ δ δ mm = = 33.2 mm Deign for Shear Strength: equired Shear Strength: ult L Fv 21. kn 2 2 Shear eitane of Steel Setion: P = y D t = = kn V BS Examle-001-7

Software Verification

Software Verification EC-4-004 Example-001 STEEL DESIGNERS MANUAL SEVENTH EDITION - DESIGN OF SIMPLY SUPPORTED COMPOSITE BEAM EXAMPLE DESCRIPTION Consider an internal seondary omposite beam of 1-m span between olumns and subjet

More information

Software Verification

Software Verification Sotare Veriiation EXAMPLE NZS 3101-06 RC-BM-001 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veriy lab lexural deign in. The load level i adjuted or the ae orreponding

More information

Software Verification

Software Verification AISC-360-10 Example 001 COMPOSITE GIRDER DESIGN EXAMPLE DESCRIPTION A typial bay of a omposite floor system is illstrated below. Selet an appropriate ASTM A992 W-shaped beam and determine the reqired nmber

More information

Introduction. ENCE 710 Design of Steel Structures IV. COMPOSITE STEEL-CONCRET CONSTRUCTION. Effective Width. Composite Action

Introduction. ENCE 710 Design of Steel Structures IV. COMPOSITE STEEL-CONCRET CONSTRUCTION. Effective Width. Composite Action ENCE 710 Design of Steel Strutures V. COMPOSTE STEEL-CONCRET CONSTRUCTON C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland ntrodution Following subjets are overed:

More information

Software Verification

Software Verification Sotware Veriiation EXAMPLE CSA A23.3-04 RC-BM-00 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veri lab lexural deign in. The load level i adjuted or the ae orreponding

More information

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN Chapter Solution P. w = 5 0. 0. =.5k/m (or.5/) US load =.5 g k +.5 q k =.5k/m = / =.5 / =.k.m (d) V = / =.5 / =.k P. w =.5g k +.5q k =.5 +.5 =.5k/m = / =.5 / =.k.m V = / =.5 / = 7.k 5 5( ) 000 0,0005000.

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F015abn Case Study in Reinfored Conrete adapted from Simplified Design of Conrete Strutures, James Ambrose, 7 th ed. Building desription The building is a three-story offie building

More information

European Technical Assessment. ETA Option 1-16/0276. Min. thick. of base material. thick. of part to be fixed. min.

European Technical Assessment. ETA Option 1-16/0276. Min. thick. of base material. thick. of part to be fixed. min. TAPCO XTREM zin oated & tainle teel verion 1/ Conrete rew anhor for ue in raked and non-raked onrete ETA European Tehnial Aement ETA Option 1-16/0276 T int d f h 0 Tehnial data t fix APPLICATIO Channel,

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

Location: 229 T y S n - Hμ Néi Code: Eurocode 4 Member: Beams Category: Podium

Location: 229 T y S n - Hμ Néi Code: Eurocode 4 Member: Beams Category: Podium Projet: ipe Toer Lotion: 9 T S n - Hμ Néi Code: Euroode 4 ember: Bem Ctegor: Podium I - DESIGN DT 1. teril: 1.1 Conrete Compoite bem Conrete grde: 400 (TCVN 5574-1991 C5/30 (Euroode 4) Chrteriti ompreion

More information

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span. CE 331, Fall 009 Analyi of Reforce Concrete 1 / 6 Typical Reforce Concrete Builg Cat place reforce concrete tructure have monolithic lab to beam an beam to column connection. Monolithic come from the Greek

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM

Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM Reinfored Conrete Deign Shear in Beam 2 Shear deign mmary More detail hear deign Shear pan Deep beam Mongkol JIRAACHARADET S U R A N A R E E UNIERSITY OF TECHNOLOGY INSTITUTE OF ENGINEERING SCHOOL OF CIIL

More information

Masonry Beams. Ultimate Limit States: Flexure and Shear

Masonry Beams. Ultimate Limit States: Flexure and Shear Masonry Beams 4:30 PM 6:30 PM Bennett Banting Ultimate Limit States: Flexure and Shear Leture Outline 1. Overview (5) 2. Design for Flexure a) Tension Reinforement (40) b) Compression Reinforement (20)

More information

Design Manual to EC2. LinkStudPSR. Version 3.1 BS EN : Specialists in Punching Shear Reinforcement.

Design Manual to EC2. LinkStudPSR. Version 3.1 BS EN : Specialists in Punching Shear Reinforcement. LinkStudPSR Speialit in Punhing Shear Reinforement Deign Manual to EC BS EN 199-1-1:004 Verion 3.1 January 018 LinkStud PSR Limited /o Brook Forging Ltd Doulton Road Cradley Heath Wet Midland B64 5QJ Tel:

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

Min. thick. of base material. Max. thick. of part to be fixed. Min. anchor depth. t fix. h min. Anchor mechanical properties

Min. thick. of base material. Max. thick. of part to be fixed. Min. anchor depth. t fix. h min. Anchor mechanical properties 104 inyleter rein - For ue in raked & non-raked onrete and eimi performane 1 ategory d T int d f t fix h ef = h 0 ISTALLATIO * L h min APPLIATIO Steel profile Fixing mahinery (reitant to vibration) Storage

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

COMPOSITE. This article was first published at the Pacific Structural Steel Conference 2007.

COMPOSITE. This article was first published at the Pacific Structural Steel Conference 2007. COMOSITE FIRE DESIN AND SERVICEABILITY ISSUES METAL DECK SLABS SUBJECT TO CONCENTRATED LOADIN Author: Aitair Fue ; Chare Cifton and Cark Hyand 3 Affiiation: Stee Contrution New Zeaand In ; Univerity of

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Beam Stresses Bending and Shear

Beam Stresses Bending and Shear Beam Stresses Bending and Shear Notation: A = name or area A web = area o the web o a wide lange setion b = width o a retangle = total width o material at a horizontal setion = largest distane rom the

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Analysis of Feedback Control Systems

Analysis of Feedback Control Systems Colorado Shool of Mine CHEN403 Feedbak Control Sytem Analyi of Feedbak Control Sytem ntrodution to Feedbak Control Sytem 1 Cloed oo Reone 3 Breaking Aart the Problem to Calulate the Overall Tranfer Funtion

More information

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13 APPENDIX A APPENDIX A Due to its extension, the dissertation ould not inlude all the alulations and graphi explanantions whih, being not essential, are neessary to omplete the researh. This appendix inludes

More information

Design of AAC floor slabs according to EN 12602

Design of AAC floor slabs according to EN 12602 Design of AAC floor slabs aording to EN 160 Example 1: Floor slab with uniform load 1.1 Issue Design of a floor slab under a living room Materials Component with a ompressive strength lass AAC 4,5, densit

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

Wood Design. = theoretical allowed buckling stress

Wood Design. = theoretical allowed buckling stress Wood Design Notation: a = name for width dimension A = name for area A req d-adj = area required at allowable stress when shear is adjusted to inlude self weight b = width of a retangle = name for height

More information

Period #8: Axial Load/Deformation in Indeterminate Members

Period #8: Axial Load/Deformation in Indeterminate Members ENGR:75 Meh. Def. odie Period #8: ial oad/deformation in Indeterminate Member. Review We are onidering aial member in tenion or ompreion in the linear, elati regime of behavior. Thu the magnitude of aial

More information

CAC Concrete Design Handbook, 3 rd Edition, Errata

CAC Concrete Design Handbook, 3 rd Edition, Errata February 8, 008 CAC Conrete Deign Handbook, rd Edition, Errata To date three printing o the rd Edition o the CAC Conrete Deign Handbook have been run. Sot Cover, Hard Cover 1 t Printing, and Hard Cover

More information

Dr. Hazim Dwairi 10/16/2008

Dr. Hazim Dwairi 10/16/2008 10/16/2008 Department o Civil Engineering Flexural Design o R.C. Beams Tpes (Modes) o Failure Tension Failure (Dutile Failure): Reinorement ields eore onrete ruses. Su a eam is alled under- reinored eam.

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

3.6 Flexural, Design Example of Negative Moment Region

3.6 Flexural, Design Example of Negative Moment Region 3.0 CONCRETE STRUCTURES 3.1 Material Propertie 3.2 Fatigue Limit State 3.3 Strength Limit State 3.4 Flexure 3.5 Flexure Deign Example 3.6 Flexural, Deign Example o Negative Moment Region 3.7 Shear 3.8

More information

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames IL 32 /9 ppling the virtual work equations to a frame struture is as simple as separating the frame into a series of beams and summing the virtual work for eah setion. In addition, when evaluating the

More information

Appendix XI Detailing Requirements of the Prestressed Concrete Girder Bridge

Appendix XI Detailing Requirements of the Prestressed Concrete Girder Bridge endix XI Detailing Reqirement o the Pretreed Conrete Girder Bridge 1.a. Tranere Reinorement in otential lati hinge zone ing the imliit hear detailing aroah. bh ro etional area o the iral reinorement 0.1

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics eture 5 Bukingham PI Theorem Reall dynami imilarity beteen a model and a rototye require that all dimenionle variable mut math. Ho do e determine the '? Ue the method of reeating variable 6 te Ste : Parameter

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

3.6 Flexural, Design Example of Negative Moment Region

3.6 Flexural, Design Example of Negative Moment Region 3.0 CONCRETE STRUCTURES 3.1 Material Propertie 3.2 Fatigue Limit State 3.3 Strength Limit State 3.4 Flexure 3.5 Flexure Deign Example 3.6 Flexural, Deign Example o Negative Moment Region 3.7 Shear 3.8

More information

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS

CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS CHAPTER 4 COMPARISON OF PUSH-OUT TEST RESULTS WITH EXISTING STRENGTH PREDICTION METHODS 4.1 General Several tud trength rediction method have been develoed ince the 1970. Three o thee method are art o

More information

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual

Software Package. Design Expert version 2.0. RC Expert. Design of reinforced concrete elements. User Manual Software Package Deign Expert verion.0 RC Expert Uer Manual All right reerved 011 TABLE OF CONTENTS ABOUT THE PROGRAM... 3 ENTERING DATA... 3 FILES... 3 INPUT DATA... 3 Deign code... 3 Load... 3 Cro Section...

More information

STUDY ON EFFECTIVE PRESTRESS OF RC BEAM STRENGTHENING WITH PRESTRESSED FRP

STUDY ON EFFECTIVE PRESTRESS OF RC BEAM STRENGTHENING WITH PRESTRESSED FRP Aia-Paifi Conferene on FRP in Struture (APFIS 27) S.T. Smith (ed) 27 International Intitute for FRP in Contrution STUDY ON FFCTIV PRSTRSS OF RC BAM STRNGTHNING WITH PRSTRSSD FRP X.Y. Guo, P.Y. Huang and

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

Dr. Hazim Dwairi. Example: Continuous beam deflection

Dr. Hazim Dwairi. Example: Continuous beam deflection Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

More information

Creep and Shrinkage Analysis of Curved Composite Beams Including the Effects of Partial Interaction

Creep and Shrinkage Analysis of Curved Composite Beams Including the Effects of Partial Interaction Paper 154 Civil-Comp Pre, 212 Proeeding of the Eleventh International Conferene on Computational Struture Tehnology, B.H.V. Topping, (Editor), Civil-Comp Pre, Stirlinghire, Sotland Creep and Shrinkage

More information

Flexural Reinforced Concrete Elements Residual Stresses of Fibres with Limited Reinforcement Bond

Flexural Reinforced Concrete Elements Residual Stresses of Fibres with Limited Reinforcement Bond ISSN 09 9990 JOURNL O SUSTINBL RCHITCTUR ND CIVIL NGINRING DRNIOJI RCHITKTŪR IR STTYB 0 No leural Refored Conrete lement Reidual Stree ibre Limited Reforement Bond Goara ndriuši lgirda ugoni Mdauga ugoni

More information

5.2.6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS

5.2.6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS 5..6 COMPARISON OF QUALITY CONTROL AND VERIFICATION TESTS Thi proedure i arried out to ompare two different et of multiple tet reult for finding the ame parameter. Typial example would be omparing ontrator

More information

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams Unified Deign Method for Flexure and Debonding in FRP Retrofitted RC Beam G.X. Guan, Ph.D. 1 ; and C.J. Burgoyne 2 Abtract Flexural retrofitting of reinforced concrete (RC) beam uing fibre reinforced polymer

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

CHAPTER 5 CONCRETE DESIGN

CHAPTER 5 CONCRETE DESIGN BRIDGE DESIGN PRCTICE OCTOBER 2011 CHPTER 5 CONCRETE DESIGN TBEL OF CONTENTS 5.1 INTRODUCTION... 1 5.2 STRUCTURL MTERILS... 2 5.2.1 Conrete... 2 5.2.2 Reinoring Steel... 2 5.2.3 Pretreing Steel... 2 5.3

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach. hapter 6 ontrol Sytem Deign by Root-Lou Method Lag-Lead ompenation Lag lead ompenation ehnique Baed on the Root-Lou Approah. γ β K, ( γ >, β > ) In deigning lag lead ompenator, we onider two ae where γ

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

INVESTIGATION OF PRESTRESSED CONCRETE GIRDERS STRENGTHENED WITH EXTERNALLY BONDED CARBON FIBRE SHEETS

INVESTIGATION OF PRESTRESSED CONCRETE GIRDERS STRENGTHENED WITH EXTERNALLY BONDED CARBON FIBRE SHEETS 4 e Conérene éialiée en génie de truture de la Soiété anadienne de génie ivil 4 th Strutural Seialty Conerene o the Canadian Soiety or Civil Engineering Montréal, Québe, Canada 5-8 juin 2002 / June 5-8,

More information

Software Verification

Software Verification PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

Chapter 4. Simulations. 4.1 Introduction

Chapter 4. Simulations. 4.1 Introduction Chapter 4 Simulation 4.1 Introdution In the previou hapter, a methodology ha been developed that will be ued to perform the ontrol needed for atuator haraterization. A tudy uing thi methodology allowed

More information

Chapter 4.1: Shear and Moment Diagram

Chapter 4.1: Shear and Moment Diagram Chapter 4.1: Shear and Moment Diagram Chapter 5: Stresses in Beams Chapter 6: Classical Methods Beam Types Generally, beams are classified according to how the beam is supported and according to crosssection

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

A typical reinforced concrete floor system is shown in the sketches below.

A typical reinforced concrete floor system is shown in the sketches below. CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho

More information

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Design the onrete floor slab system shown below

More information

Lag-Lead Compensator Design

Lag-Lead Compensator Design Lag-Lead Compenator Deign ELEC 3 Spring 08 Lag or Lead Struture A bai ompenator onit of a gain, one real pole and one real zero Two type: phae-lead and phae-lag Phae-lead: provide poitive phae hift and

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

Compression Members Local Buckling and Section Classification

Compression Members Local Buckling and Section Classification Compression Memers Loal Bukling and Setion Classifiation Summary: Strutural setions may e onsidered as an assemly of individual plate elements. Plate elements may e internal (e.g. the wes of open eams

More information

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14.

PROBLEM 8.6 SOLUTION. FBD block (Impending motion up) = N. = tan (0.25) (a) (Note: For minimum P, P^ Then. = ( N)sin β = 14. PROBLEM 8.6 Knowing that the coefficient of friction between the 25-kg block and the incline i μ =.25, determine (a) the mallet value of P required to tart the block moving up the incline, (b) the correponding

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

NUMERICAL SIMULATION ON THE FIREPROOF BEHAVIOR OF RC BEAM STRENGTHENED WITH STRANDED MESH AND POLYMER MORTAR

NUMERICAL SIMULATION ON THE FIREPROOF BEHAVIOR OF RC BEAM STRENGTHENED WITH STRANDED MESH AND POLYMER MORTAR 1 NUMERIAL SIMULATION ON THE FIREPROOF BEHAVIOR OF R BEAM STRENGTHENED WITH STRANDED MESH AND POLYMER MORTAR M.G. Yue 1, Q.L. Yao, Y.Y. Wang and H.N. Li 1 State Key Laboratory of otal and Offhore Engineering,

More information

Available online at Procedia Engineering 57 (2013 ) Ipolitas Židonis

Available online at   Procedia Engineering 57 (2013 ) Ipolitas Židonis Available online at.ienediret.om Proedia Engineering 57 (013 ) 1309 1318 11th International Conferene on odern Building aterial, truture and Tehnique, BT 013 trength Calulation ethod for Cro-etion of Reinfored

More information

Appendix XXII Detailing Requirements of the Prestressed Concrete Girder Bridge

Appendix XXII Detailing Requirements of the Prestressed Concrete Girder Bridge endix XXII Detailing Reqirement o the Pretreed Conrete Girder Bridge Wet Bond Bridge 1.a. Tranere Reinorement in otential lati hinge zone bh ro etional area o the iral reinorement 0.11 in (# rebar enter-to-enter

More information

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy

See exam 1 and exam 2 study guides for previous materials covered in exam 1 and 2. Stress transformation. Positive τ xy : τ xy ME33: Mechanic of Material Final Eam Stud Guide 1 See eam 1 and eam tud guide for previou material covered in eam 1 and. Stre tranformation In ummar, the tre tranformation equation are: + ' + co θ + in

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sulpture By Rihard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Strutures of the Everyday) FALL 2018 leture

More information

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A )

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A ) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Design the slab system shown in Figure 1 for an intermediate

More information

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method The basis for the method comes from the similarity of eqn.1 &. to eqn 8. & 8. To show this similarity, we can write these eqn as shown dv dx w d θ M dx d M w dx d v M dx Here the shear V compares with

More information

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT FORCE DISTRIBUTION OF REINFORCED CONCRETE COULING BEAMS WITH DIAGONAL REINFORCEMENT Yenny Nurhasanah Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol os 1 abelan

More information

Seismic Loads Based on IBC 2015/ASCE 7-10

Seismic Loads Based on IBC 2015/ASCE 7-10 Seimic Load Baed on IBC 2015/ASCE 7-10 Baed on Section 1613.1 of IBC 2015, Every tructure, and portion thereof, including nontructural component that are permanently attached to tructure and their upport

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS

A PROCEDURE FOR THE EVALUATION OF COUPLING BEAM CHARACTERISTICS OF COUPLED SHEAR WALLS ASIAN JOURNA OF CII ENGINEERING (BUIDING AND HOUSING) O. 8, NO. 3 (7) PAGES 3-34 A PROCEDURE FOR THE EAUATION OF COUPING BEAM CHARACTERISTICS OF COUPED SHEAR WAS D. Bhunia,. Prakah and A.D. Pandey Department

More information

Design a reinforced concrete retaining wall for the following conditions. f'c = 3000 psi fy = 60 ksi

Design a reinforced concrete retaining wall for the following conditions. f'c = 3000 psi fy = 60 ksi CE 4 Fall 005 Retag all Deign Example / 8 Deign a reore onrete retag all or the ollog onition. 000 pi 0 i rharge q 400 p Fill: φ o Unit t 00 p H 8 t toe t tem Natral Soil: φ o alloable bearg prere 5000p

More information

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics

Chapter 2 Lecture 5 Longitudinal stick fixed static stability and control 2 Topics hapter 2 eture 5 ongitudinal stik fied stati stability and ontrol 2 Topis 2.2 mg and mα as sum of the ontributions of various omponent 2.3 ontributions of ing to mg and mα 2.3.1 orretion to mα for effets

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F013abn Case Stdy Refored Conrete adapted from Simplified Design of Conrete Strtres, James Ambrose, 7 th ed. Bildg desription The bildg is a three-story offie bildg tended for spelative

More information

The Hashemite University Department of Civil Engineering ( ) Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering ( ) Dr. Hazim Dwairi 1 Department of Civil Engineering Letre 8 Slender Colmns Definition of Slender Colmn When the eentri loads P are applied, the olmn deflets laterally by amont δ,, however the internal moment at midheight:

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of

More information

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, Kharagur Lesson 9 The Direct Stiffness Method: Beams (Continued) Version CE IIT, Kharagur Instructional

More information

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006 Job No. Sheet of 7 Rev A Design Example Design of a lipped channel in a Made by ER/EM Date Feb 006 Checked by HB Date March 006 DESIGN EXAMPLE DESIGN OF A LIPPED CHANNEL IN AN EXPOSED FLOOR Design a simply

More information

Assignment 1 - actions

Assignment 1 - actions Assignment 1 - actions b = 1,5 m a = 1 q kn/m 2 Determine action on the beam for verification of the ultimate limit state. Axial distance of the beams is 1 to 2 m, cross section dimensions 0,45 0,20 m

More information

STRUCTURAL ANALYSIS CHAPTER 2. Introduction

STRUCTURAL ANALYSIS CHAPTER 2. Introduction CHAPTER 2 STRUCTURAL ANALYSIS Introduction The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE F-DEK ROOF (ASD) 1-1/2" high x 6" pitch x 36" wide SECTION PROPERTIES GAGE Wd 22 1.63 20 1.98 18 2.62 16 3.30 I D (DEFLECTION) 0.142 0.173 0.228 fy = 40 ksi Sp Sn 0.122 0.135 708 815 905 1211 1329 2365

More information

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА 4 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА Савремена достигнућа у грађевинарству 4 април 05 Суботица СРБИЈА EXPERIENCES ON THE SHEAR MODEL OF fib MODEL CODE 00 Imre Ková УДК: 607:66698 DOI:0445/konferenijaGFS

More information

Torsional resistance of high-strength concrete beams

Torsional resistance of high-strength concrete beams Torional reitane of high-trength onrete beam T. Hoain & P. Mendi Univerity of Melbourne, Vitoria, Autralia T. Aravinthan & G. Baker Univerity of Southern Queenland, Queenland, Autralia ABSTRACT: Thi paper

More information

Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives. Design a beam to resist both bendingand shear loads Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

More information

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

Ch. 10 Design of Short Columns Subject to Axial Load and Bending Ch. 10 Design o Short Columns Subjet to Axial Load and Bending Axial Loading and Bending Development o Interation Diagram Column Design Using P-M Interation Diagram Shear in Columns Biaxial Bending Examples

More information

Developing Transfer Functions from Heat & Material Balances

Developing Transfer Functions from Heat & Material Balances Colorado Sool of Mine CHEN43 Stirred ank Heater Develoing ranfer untion from Heat & Material Balane Examle ranfer untion Stirred ank Heater,,, A,,,,, We will develo te tranfer funtion for a tirred tank

More information

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION RC DEEP BEAMS ANAYSIS CONSIDERING OCAIZATION IN COMPRESSION Manakan ERTSAMATTIYAKU* 1, Torsak ERTSRISAKURAT* 1, Tomohiro MIKI* 1 and Junihiro NIWA* ABSTRACT: It has been found that RC deep beams usually

More information

Software Verification

Software Verification EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced

More information