Software Verification

Size: px
Start display at page:

Download "Software Verification"

Transcription

1 EC Example-001 STEEL DESIGNERS MANUAL SEVENTH EDITION - DESIGN OF SIMPLY SUPPORTED COMPOSITE BEAM EXAMPLE DESCRIPTION Consider an internal seondary omposite beam of 1-m span between olumns and subjet to uniform loading. Choose a UKB457x191x74 in S 355 steel. GEOMETRY, PROPERTIES AND LOADING EC Example-001-1

2 Member Properties UKB457x191x74 E = 05,000 MPa fy = 355 MPa Loading w = 8.43kN/m (Dead Load) w =.5kN/m (Constrution) w = 1.5kN/m (Superimposed Load) w = 15.00kN/m (Live Load) Geometry Span, L = 1 m Beam spaing, b =3 m TECHNICAL FEATURES OF ETABS TESTED Composite beam design, inluding: Seletion of steel setion, amber and shear stud distribution Member bending apaities, at onstrution and in servie Member defletions, at onstrution and in servie RESULTS COMPARISON Independent results are referened from the first example, Design of Simply Supported Composite Beam, in Chapter of the Steel Constrution Institute Steel Designer s Manual, Seventh Edition. Output Parameter ETABS Independent Perent Differene Constrution MEd (kn-m) % Constrution Ma,pl,Rd (kn-m) % Constrution Defletion (mm) % Design Moment (kn-m) % Full Composite Mp (kn-m) % Partial Composite M (kn-m) % Shear Stud Capaity PRd Input 5.0 NA Shear Stud Distribution % Live Load Defletion (mm) % EC Example-001 -

3 Output Parameter ETABS Independent Perent Differene Required Strength VEd (kn) % Vpl,Rd (kn) % COMPUTER FILE: EC EXAMPLE 001.EDB CONCLUSION The ETABS results show an aeptable omparison with the independent results. The shear stud apaity Pr was entered as an overwrite, sine it is ontrolled by the dek profile geometry and the exat geometry of the example, whih assumes a dek profile with a rib depth of 60 mm, a depth above profile of 60 mm and a total depth of 130 mm, annot be modeled in ETABS, sine in ETABS, only the rib depth and depth above profile an be speified. EC Example-001-3

4 HAND CALCULATION Properties: Materials: Setion: Dek: S 355 Steel: E = 10,000 MPa, fy = 355 MPa, partial safety fator γa = 1.0 Normal weight onrete lass C5/30: Em = 30,500 MPa, fu = 30 MPa, density w = 4 kn/m 3 UKB457x191x74 ha = 457 mm, bf = mm, tf = 14.5 mm, tw = 9 mm, Aa = 9,460 mm, Iay = 33,319 m 4, Wpl = 1,653 m 3 Slab depth hs =130 mm, depth above profile h = 60 mm, Dek profile height hp = 60 mm, hd = hp + 10 mm for re-entrant stiffener, sr = 300 mm, b0 = 150 mm Shear Connetors: Loadings: d = 19 mm, h = 95 mm, Fu = 450 MPa Self weight slab, deking, reinforement =.567 kn/m Self weight beam = 0.73 kn/m Constrution load = 0.75 kn/m Ceiling = 0.5 kn/m Partitions (live load) = 1.0 kn/m Oupany (live load) = 4.0 kn/m EC Example-001-4

5 Design for Pre-Composite Condition: Constrution Required Flexural Strength: w fatored onstrution = 1.5 ( ) = kn/m M Ed Moment Capaity: wfatored onstrution L = = = 50.4 kn-m 8 8 M W f 3 6 a, pl, Rd = pl d = 1, = 587 kn-m Pre-Composite Defletion: w onstrution = = 8.43 kn/m 5 w L , onstrution δ= = = E Iay ,000 33, mm Camber = 0.8 δ= 6 mm, whih is rounded down to 5 mm Design for Composite Flexural Strength: Required Flexural Strength: w fatored = ( ) 3.0 = kn/m wfatored L M Ed = = = 68.4 kn-m 8 8 Full Composite Ation Available Flexural Strength: Effetive width of slab: L 1 b eff = = = 3 m 8 8 Resistane of slab in ompression: 0.85 fk 3 R = beff h = 0.85 (5 /1.5) 3, =,550 kn ontrols γ Resistane of steel setion in tension: R = f A = = s yd a , ,358 kn EC Example-001-5

6 Depth of ompression blok within steel setion flange: Rs R 3,358,50 x = = = 6 mm b f f yd d = x/ = 0.73 in. The plasti axis is in the steel flange and the moment resistane for full omposite ation is: h h h ( Rs R ) t f Ma, pl, RD = Rs d +R hs - R (3,358,550) 14.5 = 3, , = kn-m Partial Composite Ation Available Flexural Strength: Assume 77.5% omposite ation: R q = R = ,358 = 1,976 kn Tensile Resistane of web: s f R = t D t p = = 3 w w ( f ) y 8.5 ( ) , 9 kn As Rq > Rw, the plasti axis is in the steel flange, and h Rq h ( Rs Rq) t f M = Rs + Rq hs R Rf , (3,358 1,976) 14.5 = 3, , , = 971. kn-m Resistane of Shear Connetor: Resistane of shear onnetor in solid slab: d h 95 PRd = 0.9 α d fk Em γv 0.8 fu π γv with α =1.0 for = > 4 4 d α k m γ v = , = 73 kn d f E ontrols EC Example-001-6

7 d 19 v 0.8 f u π γ = π 1.5 = 81.7 kn 4 4 Redution fator for deking perpendiular to beam assuming two studs per rib: 0.7 k ( 0 ) ( ) 1 t = b hp hs hp 0.75 per EN Table 6. n r = ( ) 1 = P = = 5 kn Rd Total resistane with two studs per rib and 19 ribs from the support to the mid-span: R = 19 5 = 1,976 kn q Live Load Defletion: The seond moment of area of the omposite setion, based on elasti properties, I is given by: I 3 Aa ( h+ hp + h) beff h = + + I 4 (1 + n r) 1 n Aa 9, 460 r = = = 0.05 b h 3, eff n = modular ratio = 10 for normal weight onrete subjet to variable loads I 3 9, 460 ( ) 3, = , ( ) 1 10 = ( ) 10 = mm ay w L 5 15 (1, 000) δ = = = 19.1 mm 4 4 live live E I , EC Example-001-7

8 Design for Shear Strength: Required Shear Strength: V Ed wfatored L = = = 09.5 kn Shear Resistane of Steel Setion: = = 843 kn 3 10 V pl, Rd 3 EC Example-001-8

Software Verification

Software Verification AISC-360-10 Example 001 COMPOSITE GIRDER DESIGN EXAMPLE DESCRIPTION A typial bay of a omposite floor system is illstrated below. Selet an appropriate ASTM A992 W-shaped beam and determine the reqired nmber

More information

Software Verification

Software Verification BS-5950-90 Examle-001 STEEL DESIGNES MANUAL SIXTH EDITION - DESIGN OF SIMPLY SUPPOTED COMPOSITE BEAM EXAMPLE DESCIPTION Deign a omoite floor ith beam at 3-m enter anning 12 m. The omoite lab i 130 mm dee.

More information

Introduction. ENCE 710 Design of Steel Structures IV. COMPOSITE STEEL-CONCRET CONSTRUCTION. Effective Width. Composite Action

Introduction. ENCE 710 Design of Steel Structures IV. COMPOSITE STEEL-CONCRET CONSTRUCTION. Effective Width. Composite Action ENCE 710 Design of Steel Strutures V. COMPOSTE STEEL-CONCRET CONSTRUCTON C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland ntrodution Following subjets are overed:

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F015abn Case Study in Reinfored Conrete adapted from Simplified Design of Conrete Strutures, James Ambrose, 7 th ed. Building desription The building is a three-story offie building

More information

Masonry Beams. Ultimate Limit States: Flexure and Shear

Masonry Beams. Ultimate Limit States: Flexure and Shear Masonry Beams 4:30 PM 6:30 PM Bennett Banting Ultimate Limit States: Flexure and Shear Leture Outline 1. Overview (5) 2. Design for Flexure a) Tension Reinforement (40) b) Compression Reinforement (20)

More information

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures fib Model Code 2020 Shear and punhing provisions, needs for improvements with respet to new and existing strutures Aurelio Muttoni Workshop fib Sao Paulo, 29.9.2017 Éole Polytehnique Fédérale de Lausanne,

More information

Compression Members Local Buckling and Section Classification

Compression Members Local Buckling and Section Classification Compression Memers Loal Bukling and Setion Classifiation Summary: Strutural setions may e onsidered as an assemly of individual plate elements. Plate elements may e internal (e.g. the wes of open eams

More information

Design of AAC floor slabs according to EN 12602

Design of AAC floor slabs according to EN 12602 Design of AAC floor slabs aording to EN 160 Example 1: Floor slab with uniform load 1.1 Issue Design of a floor slab under a living room Materials Component with a ompressive strength lass AAC 4,5, densit

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Design the onrete floor slab system shown below

More information

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

Ch. 10 Design of Short Columns Subject to Axial Load and Bending Ch. 10 Design o Short Columns Subjet to Axial Load and Bending Axial Loading and Bending Development o Interation Diagram Column Design Using P-M Interation Diagram Shear in Columns Biaxial Bending Examples

More information

Wood Design. = theoretical allowed buckling stress

Wood Design. = theoretical allowed buckling stress Wood Design Notation: a = name for width dimension A = name for area A req d-adj = area required at allowable stress when shear is adjusted to inlude self weight b = width of a retangle = name for height

More information

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION RC DEEP BEAMS ANAYSIS CONSIDERING OCAIZATION IN COMPRESSION Manakan ERTSAMATTIYAKU* 1, Torsak ERTSRISAKURAT* 1, Tomohiro MIKI* 1 and Junihiro NIWA* ABSTRACT: It has been found that RC deep beams usually

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area A g = gross area, equal to the total area ignoring any reinforement A s = area of steel reinforement

More information

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties zin oated steel version 1/6 High seurity, high performane fixing for use in raked and non-raked onrete ETA European Tehnial Assessment ETA Option 1-05/0044 d T inst T inst d f t fix APPLICATIO Safety ritial

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting aess to White Rose researh papers Universities of Leeds, Sheffield and York http://eprints.whiterose.a.uk/ This is an author produed version of a paper published in Journal of Composites for

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area A g = gross area, equal to the total area ignoring any reinforement A s = area of steel reinforement

More information

Bending resistance of high performance concrete elements

Bending resistance of high performance concrete elements High Performane Strutures and Materials IV 89 Bending resistane of high performane onrete elements D. Mestrovi 1 & L. Miulini 1 Faulty of Civil Engineering, University of Zagreb, Croatia Faulty of Civil

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

The Hashemite University Department of Civil Engineering ( ) Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering ( ) Dr. Hazim Dwairi 1 Department of Civil Engineering Letre 8 Slender Colmns Definition of Slender Colmn When the eentri loads P are applied, the olmn deflets laterally by amont δ,, however the internal moment at midheight:

More information

EFFECTS OF STEEL FIBRE REINFORCEMENT ON THE BEHAVIOUR OF HEADED STUD SHEAR CONNECTORS FOR COMPOSITE STEEL-CONCRETE BEAMS

EFFECTS OF STEEL FIBRE REINFORCEMENT ON THE BEHAVIOUR OF HEADED STUD SHEAR CONNECTORS FOR COMPOSITE STEEL-CONCRETE BEAMS Effets of Steel Fibre Reinforement Advaned on the Steel Behaviour Constrution of Headed Vol. Stud 5, No. Shear 1, pp. Connetors 72-95 (2009) for Composite Steel-Conrete Beams 72 EFFECTS OF STEEL FIBRE

More information

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT FORCE DISTRIBUTION OF REINFORCED CONCRETE COULING BEAMS WITH DIAGONAL REINFORCEMENT Yenny Nurhasanah Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol os 1 abelan

More information

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS 13 th World Conferene on Earthquake Engineering anouver, B.C., Canada August 1-6, 24 Paper No. 58 STRUCTURAL BEHAIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS Soo-Yeon SEO 1, Seung-Joe YOON

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

Uniaxial Concrete Material Behavior

Uniaxial Concrete Material Behavior COMPUTERS AND STRUCTURES, INC., JULY 215 TECHNICAL NOTE MODIFIED DARWIN-PECKNOLD 2-D REINFORCED CONCRETE MATERIAL MODEL Overview This tehnial note desribes the Modified Darwin-Peknold reinfored onrete

More information

Dr. Hazim Dwairi. Example: Continuous beam deflection

Dr. Hazim Dwairi. Example: Continuous beam deflection Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

More information

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD 13 th World Conferene on Earthquake Engineering Vanouver, B.C., Canada August 1-6, 24 aper No. 356 NON-LINEAR BENDING CHARACTERISTICS OF HC ILES UNDER VARYING AXIAL LOAD Toshihiko ASO 1 Fusanori MIURA

More information

BEHAVIOR OF SQUARE CONCRETE-FILLED TUBULAR COLUMNS UNDER ECCENTRIC COMPRESSION WITH DOUBLE CURVATURE DEFLECTION

BEHAVIOR OF SQUARE CONCRETE-FILLED TUBULAR COLUMNS UNDER ECCENTRIC COMPRESSION WITH DOUBLE CURVATURE DEFLECTION Otober 2-7, 28, Beijing, China BEHAVIOR OF SQARE CONCRETE-FILLED TBLAR COLNS NDER ECCENTRIC COPRESSION WITH DOBLE CRVATRE DEFLECTION T. Fujinaga, H. Doi 2 and Y.P. Sun 3 Assoiate Professor, Researh Center

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinored Conrete Design Notation: a = depth o the eetive ompression blok in a onrete beam A g = gross area, equal to the total area ignoring any reinorement A s = area o steel reinorement in onrete beam

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinfored Conrete Design Notation: a = depth of the effetive ompression blok in a onrete beam A = name for area Ag = gross area, equal to the total area ignoring any reinforement As = area of steel reinforement

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending Amerian Journal of Applied Sienes 5 (9): 115-114, 8 ISSN 1546-99 8 Siene Publiations The Servieability Considerations of HSC Heavily Steel Reinfored Members under Bending 1 Ali Akbar ghsoudi and Yasser

More information

Purpose of reinforcement P/2 P/2 P/2 P/2

Purpose of reinforcement P/2 P/2 P/2 P/2 Department o Civil Engineering Purpose o reinorement Consider a simpl supported beam: P/2 P/2 3 1 2 P/2 P/2 3 2 1 1 Purpose o Reinorement Steel reinorement is primaril use beause o the nature o onrete

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sulpture By Rihard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Strutures of the Everyday) FALL 2018 leture

More information

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A )

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A ) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Two-Way Conrete Floor Slab with Beams Design and Detailing (CSA A.-14) Design the slab system shown in Figure 1 for an intermediate

More information

thirteen wood construction: column design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

thirteen wood construction: column design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 leture thirteen wood onstrution: olumn design Wood Columns 1 Compression Members (revisited) designed for strength & stresses

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

BEAMS: SHEARING STRESS

BEAMS: SHEARING STRESS LECTURE Third Edition BEAMS: SHEARNG STRESS A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 14 Chapter 6.1 6.4 b Dr. brahim A. Assakkaf SPRNG 200 ENES 220 Mehanis of

More information

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13 APPENDIX A APPENDIX A Due to its extension, the dissertation ould not inlude all the alulations and graphi explanantions whih, being not essential, are neessary to omplete the researh. This appendix inludes

More information

Software Verification

Software Verification PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,

More information

(SO/EC - 70-005 Certified) Model nswer: Summer 7 Code: 17 mportant nstrutions to examiners: 1) The answers should e examined y key words and not as word-to-word as given in the model answer sheme. ) The

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

Chapter 6. Compression Reinforcement - Flexural Members

Chapter 6. Compression Reinforcement - Flexural Members Chapter 6. Compression Reinforement - Flexural Members If a beam ross setion is limite beause of arhitetural or other onsierations, it may happen that the onrete annot evelop the ompression fore require

More information

Rectangular Filament-Wound GFRP Tubes Filled with Concrete under Flexural. and Axial Loading: Analytical Modeling ABSTRACT

Rectangular Filament-Wound GFRP Tubes Filled with Concrete under Flexural. and Axial Loading: Analytical Modeling ABSTRACT Retangular Filament-Wound GFRP Tubes Filled with Conrete under Flexural and Axial Loading: Analytial Modeling Amir Fam 1, Siddhwartha Mandal 2, and Sami Rizkalla 3 ABSTRACT This paper presents an analytial

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

A Time-Dependent Model For Predicting The Response Of A Horizontally Loaded Pile Embedded In A Layered Transversely Isotropic Saturated Soil

A Time-Dependent Model For Predicting The Response Of A Horizontally Loaded Pile Embedded In A Layered Transversely Isotropic Saturated Soil IOSR Journal of Mehanial and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 16, Issue 2 Ser. I (Mar. - Apr. 219), PP 48-53 www.iosrjournals.org A Time-Dependent Model For Prediting

More information

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis Mehanis of Solids I Torsion Torsional loads on Cirular Shafts Torsion is a moment that twists/deforms a member about its longitudinal axis 1 Shearing Stresses due to Torque o Net of the internal shearing

More information

Assignment 1 - actions

Assignment 1 - actions Assignment 1 - actions b = 1,5 m a = 1 q kn/m 2 Determine action on the beam for verification of the ultimate limit state. Axial distance of the beams is 1 to 2 m, cross section dimensions 0,45 0,20 m

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

Three Dimensional FE Model of Stud Connected Steel-Concrete Composite Girders Subjected to Monotonic Loading

Three Dimensional FE Model of Stud Connected Steel-Concrete Composite Girders Subjected to Monotonic Loading International Journal of Mehanis and Apiations. 2011; 1(1): 1-11 DOI: 10. 5923/j.mehanis.20110101.01 Three Dimensional FE Model of Stud Conneted Steel-Conrete Composite Girders Subjeted to Monotoni Loading

More information

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s Rapid Assessment of Seismi Safety of Elevated ater Tanks with FRAME Staging 1. NTRODUCTON 1.1 ntrodution ater tanks are lifeline items in the aftermath of earthquakes. The urrent pratie of designing elevated

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator STEEL BUILDINGS IN EUROPE Multi-Store Steel Buildings Part 8: Description of member resistance calculator Multi-Store Steel Buildings Part : Description of member resistance calculator 8 - ii FOREWORD

More information

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames IL 32 /9 ppling the virtual work equations to a frame struture is as simple as separating the frame into a series of beams and summing the virtual work for eah setion. In addition, when evaluating the

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

RESULTS OF PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOAD ON R.C. PANELS MADE WITH WOOD-CONCRETE CAISSON BLOCKS

RESULTS OF PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOAD ON R.C. PANELS MADE WITH WOOD-CONCRETE CAISSON BLOCKS RESULTS OF PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOAD ON R.C. PANELS MADE WITH WOOD-CONCRETE CAISSON BLOCKS G. Gasparini 2, T. Trombetti 1, S. Silvestri 2, C. Ceoli 3 and D. Malavolta 4 1 Assoiate

More information

PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES

PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES M.P.COLLINS; E.C.BENTZ; P.T.QUACH; A.W.FISHER; G.T. PROESTOS Department of Civil Engineering, University of Toronto, Canada SUMMARY Beause many shear

More information

Software Verification

Software Verification Sotware Veriiation EXAMPLE CSA A23.3-04 RC-BM-00 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veri lab lexural deign in. The load level i adjuted or the ae orreponding

More information

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment OUTLINE CHTER 7: Fleural embers -Tpes of beams, loads and reations -Shear fores and bending moments -Shear fore and bending - -The fleure formula -The elasti urve -Slope and defletion b diret integration

More information

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells Transations, SMiRT 19, Toronto, August 2007 Shear Strength of Squat Reinfored Conrete Walls with Flanges and Barbells Cevdet K. Gule 1), Andrew S. Whittaker 1), Bozidar Stojadinovi 2) 1) Dept. of Civil,

More information

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL Journal of Geongineering, Vol. Yi-Chuan 4, No. 1, Chou pp. 1-7, and April Yun-Mei 009 Hsiung: A Normalized quation of Axially Loaded Piles in lasto-plasti Soil 1 A NORMALIZD QUATION OF AXIALLY LOADD PILS

More information

- Rectangular Beam Design -

- Rectangular Beam Design - Semester 1 2016/2017 - Rectangular Beam Design - Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction The purposes

More information

Software Verification

Software Verification EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced

More information

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006 Job No. Sheet of 7 Rev A Design Example Design of a lipped channel in a Made by ER/EM Date Feb 006 Checked by HB Date March 006 DESIGN EXAMPLE DESIGN OF A LIPPED CHANNEL IN AN EXPOSED FLOOR Design a simply

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 110-S10 Flexural Drift Capaity of Reinfored Conrete Wall with Limited Confinement by S. Takahashi, K. Yoshida, T. Ihinose, Y. Sanada, K. Matsumoto, H. Fukuyama,

More information

Moment Curvature Characteristics for Structural Elements of RC Building

Moment Curvature Characteristics for Structural Elements of RC Building Moment Curvature Charateristis for Strutural Elements of RC Building Ravi Kumar C M 1,*, Vimal Choudhary 2, K S Babu Narayan 3 and D. Venkat Reddy 3 1 Researh Sholar, 2 PG Student, 3 Professors, Department

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F013abn Case Stdy Refored Conrete adapted from Simplified Design of Conrete Strtres, James Ambrose, 7 th ed. Bildg desription The bildg is a three-story offie bildg tended for spelative

More information

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE F-DEK ROOF (ASD) 1-1/2" high x 6" pitch x 36" wide SECTION PROPERTIES GAGE Wd 22 1.63 20 1.98 18 2.62 16 3.30 I D (DEFLECTION) 0.142 0.173 0.228 fy = 40 ksi Sp Sn 0.122 0.135 708 815 905 1211 1329 2365

More information

Drift Capacity of Lightly Reinforced Concrete Columns

Drift Capacity of Lightly Reinforced Concrete Columns Australian Earthquake Engineering Soiety Conferene, Perth, Western Australia Drift Capaity of ightly Reinfored Conrete Columns A Wibowo, J Wilson, NTK am, EF Gad,, M Fardipour, K Rodsin, P ukkunaprasit

More information

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect World Aademy of Siene, Engineering and Tehnology Vol:8, No:6, 04 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effet Mantai Chen, Johnny Ching Ming Ho International Siene Index,

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Advances in Engineering Research, volume 93 International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016)

Advances in Engineering Research, volume 93 International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016) International Symposium on Mehanial Engineering and Material Siene ISMEMS 06 Punhing Shear Strength Model for RC Slab-Column Connetion Based on Multiaxial Strength Theory of Conrete H. Y. PANG, a, Z. J.

More information

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM - Tehnial Paper - THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIE CAPACITY OF RC BEAM Patarapol TANTIPIDOK *, Koji MATSUMOTO *, Ken WATANABE *3 and Junihiro NIWA *4 ABSTRACT

More information

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at Unbraced Column Verification Example AISC Design Examples AISC 3 th Edition IP Steel is available for purchase onle at www.asdipsoft.com H-9 Example H.4 W-Shape Subject to Combed Axial Compression and

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Shear-Friction Strength of RC Walls with 550 MPa Bars

Shear-Friction Strength of RC Walls with 550 MPa Bars Proeedings of the Tenth Paifi Conferene on Earthquake Engineering Building an Earthquake-Resilient Paifi 6-8 November 215, Sydney, Australia Shear-Frition Strength of RC Walls with 55 MPa Bars Jang-woon

More information

Example 2.2 [Ribbed slab design]

Example 2.2 [Ribbed slab design] Example 2.2 [Ribbed slab design] A typical floor system of a lecture hall is to be designed as a ribbed slab. The joists which are spaced at 400mm are supported by girders. The overall depth of the slab

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

Strength of Materials

Strength of Materials Strength of Materials Session Pure Bending 04 Leture note : Praudianto, M.Eng. g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà Pure Bending: Prisati

More information

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS Attaullah Shah* Allama Iqbal Open University Islamabad Pakistan Saeed Ahmad Department of Civil Engineering,

More information

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section Application nr. 3 (Ultimate Limit State) Resistance of member cross-section 1)Resistance of member crosssection in tension Examples of members in tension: - Diagonal of a truss-girder - Bottom chord of

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

ŽILINSKÁ UNIVERZITA V ŽILINE. Fakulta stavebná BRIDGES. Examples. Jozef GOCÁL

ŽILINSKÁ UNIVERZITA V ŽILINE. Fakulta stavebná BRIDGES. Examples. Jozef GOCÁL ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta stavebná BRIDGES Examples Joz GOCÁL Ž I L I N A 2 0 0 8 ŽILINSKÁ UNIVERZITA V ŽILINE, Stavebná fakulta BRIDGES, Examples Podľa prednášok a návodu na cvičenia preložil

More information

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17

GENERAL GEOMETRY LEFT SIDE BEAM RIGHT SIDE BS :2000/AC:2009. Ratio 0.17 Autodesk Robot Structural Analysis Professional 2015 Design of fixed beam-to-beam connection BS 5950-1:2000/AC:2009 Ratio 0.17 GENERAL Connection no.: 2 Connection name: Beam-Beam Structure node: 40 Structure

More information

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN Chapter Solution P. w = 5 0. 0. =.5k/m (or.5/) US load =.5 g k +.5 q k =.5k/m = / =.5 / =.k.m (d) V = / =.5 / =.k P. w =.5g k +.5q k =.5 +.5 =.5k/m = / =.5 / =.k.m V = / =.5 / = 7.k 5 5( ) 000 0,0005000.

More information

SPECIFIC VERIFICATION Chapter 5

SPECIFIC VERIFICATION Chapter 5 As = 736624/(0.5*413.69) = 3562 mm 2 (ADAPT 3569 mm 2, B29, C6) Data Block 27 - Compressive Stresses The initial compressive strength, f ci, is the strength entered in the Material/Concrete input screen.

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

Part G-4: Sample Exams

Part G-4: Sample Exams Part G-4: Sample Exams 1 Cairo University M.S.: Eletronis Cooling Faulty of Engineering Final Exam (Sample 1) Mehanial Power Engineering Dept. Time allowed 2 Hours Solve as muh as you an. 1. A heat sink

More information

Failure Assessment Diagram Analysis of Creep Crack Initiation in 316H Stainless Steel

Failure Assessment Diagram Analysis of Creep Crack Initiation in 316H Stainless Steel Failure Assessment Diagram Analysis of Creep Crak Initiation in 316H Stainless Steel C. M. Davies *, N. P. O Dowd, D. W. Dean, K. M. Nikbin, R. A. Ainsworth Department of Mehanial Engineering, Imperial

More information

TECH BULLETIN. SIP No. Subject: Engineering Properties. Date: March 2011 (Revised January 2015)

TECH BULLETIN. SIP No.   Subject: Engineering Properties. Date: March 2011 (Revised January 2015) TECH BULLETIN SI No. 075 Subjet: Engineering roperties Date: Marh 011 (Reised January 015) R-Control SI hae been long reognized as a strutural omponent for use a wall, roof, or floor panels that resist

More information

Nonlinear Finite Element Flexural Analysis of RC Beams

Nonlinear Finite Element Flexural Analysis of RC Beams International Journal of Applied Engineering Researh ISSN 097-456 Volume 1, Number 4 (018) pp. 014-00 Nonlinear Finite Element Flexural Analysis of RC Beams Mazen Musmar Civil Engineering Department, The

More information