MECHANICS OF MATERIALS

Size: px
Start display at page:

Download "MECHANICS OF MATERIALS"

Transcription

1 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain

2 00 The McGraw-Hill Companies, Inc. All rights reserved. 7 - Transformations of Stress and Strain Introduction Transformation of Plane Stress Principal Stresses Maimum Shearing Stress Eample 7.01 Sample Problem 7.1 Mohr s Circle for Plane Stress Eample 7.0 Sample Problem 7. General State of Stress Application of Mohr s Circle to the Three- Dimensional Analsis of Stress Yield Criteria for Ductile Materials Under Plane Stress Fracture Criteria for Brittle Materials Under Plane Stress Stresses in Thin-Walled Pressure Vessels

3 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-3 Introduction The most general state of stress at a point ma be represented b 6 components,,, τ, τ z z, τ z normal stresses shearing stresses (Note : τ τ, τ z τ z, τ z τ Same state of stress is represented b a different set of components if aes are rotated. The first part of the chapter is concerned with how the components of stress are transformed under a rotation of the coordinate aes. The second part of the chapter is devoted to a similar analsis of the transformation of the components of strain. z )

4 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-4 Introduction Plane Stress - state of stress in which two faces of the cubic element are free of stress. For the illustrated eample, the state of stress is defined b,, τ and τ τ 0. z z z State of plane stress occurs in a thin plate subjected to forces acting in the midplane of the plate. State of plane stress also occurs on the free surface of a structural element or machine component, i.e., at an point of the surface not subjected to an eternal force.

5 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-5 Transformation of Plane Stress F F 0 0 τ A Consider the conditions for equilibrium of a prismatic element with faces perpendicular to the,, and aes. ( Acosθ ) cosθ τ ( Acosθ ) ( Asinθ ) sinθ τ ( Asinθ ) cosθ A + ( Acosθ ) sinθ τ ( Acosθ ) ( Asinθ ) cosθ + τ ( Asinθ ) sinθ The equations ma be rewritten to ield sinθ cosθ τ sin θ cosθ cosθ τ τ τ cosθ sin θ sin θ

6 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-6 Principal Stresses The previous equations are combined to ield parametric equations for a circle, ( ) ave + τ where R ave + R + τ Principal stresses occur on the principal planes of stress with zero shearing stresses. ma,min tan θ p τ + ± Note : defines two angles separated b 90 + τ o

7 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-7 Maimum Shearing Stress Maimum shearing stress occurs for ave τ ma R tan θ s τ Note : defines two angles separated b 90 offset fromθ ave p + b 45 + τ o o and

8 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-8 Eample 7.01 For the state of plane stress shown, determine (a) the principal panes, (b) the principal stresses, (c) the maimum shearing stress and the corresponding normal stress. SOLUTION: Find the element orientation for the principal stresses from τ tan θ p Determine the principal stresses from + ma,min ± + τ Calculate the maimum shearing stress with τ ma + τ +

9 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-9 Eample MPa 10MPa τ + 40MPa SOLUTION: Find the element orientation for the principal stresses from τ ( + 40) tan θ p θ p θ p 53.1, , ( ) Determine the principal stresses from + ma,min ± + τ ma min 0 ± 70MPa 30MPa ( 30) + ( 40)

10 00 The McGraw-Hill Companies, Inc. All rights reserved Eample 7.01 Calculate the maimum shearing stress with τ ma + τ ( 30) + ( 40) τ ma 50MPa + 50MPa 10MPa τ + 40MPa θ s θ p θ s , The corresponding normal stress is ave MPa

11 00 The McGraw-Hill Companies, Inc. All rights reserved Sample Problem 7.1 SOLUTION: Determine an equivalent force-couple sstem at the center of the transverse section passing through H. Evaluate the normal and shearing stresses at H. Determine the principal planes and calculate the principal stresses. A single horizontal force P of 150 lb magnitude is applied to end D of lever ABD. Determine (a) the normal and shearing stresses on an element at point H having sides parallel to the and aes, (b) the principal planes and principal stresses at the point H.

12 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-1 Sample Problem 7.1 SOLUTION: Determine an equivalent force-couple sstem at the center of the transverse section passing through H. P 150lb T M ( 150lb)( 18in).7 kip ( 150lb)( 10in) 1.5kip in Evaluate the normal and shearing stresses at H. Mc ( 1.5kip in)( 0.6in) + + I 1 4 π 0.6in τ Tc + J + in ( ) 4 (.7 kip in)( 0.6in) 1π ( 0.6in) ksi τ ksi

13 00 The McGraw-Hill Companies, Inc. All rights reserved Sample Problem 7.1 Determine the principal planes and calculate the principal stresses. tan θ θ p p θ p τ 61.0, , ( 7.96) ma,min ma min + ± + τ ± ksi 4.68ksi ( 7.96)

14 00 The McGraw-Hill Companies, Inc. All rights reserved Mohr s Circle for Plane Stress With the phsical significance of Mohr s circle for plane stress established, it ma be applied with simple geometric considerations. Critical values are estimated graphicall or calculated. For a known state of plane stress,, plot the points X and Y and construct the circle centered at C. + ave R + τ The principal stresses are obtained at A and B. ma,min tan θ p τ ave ± R The direction of rotation of O to Oa is the same as CX to CA. τ

15 00 The McGraw-Hill Companies, Inc. All rights reserved Mohr s Circle for Plane Stress With Mohr s circle uniquel defined, the state of stress at other aes orientations ma be depicted. For the state of stress at an angle θ with respect to the aes, construct a new diameter X Y at an angle θ with respect to XY. Normal and shear stresses are obtained from the coordinates X Y.

16 00 The McGraw-Hill Companies, Inc. All rights reserved Mohr s Circle for Plane Stress Mohr s circle for centric aial loading: P, τ 0 A τ P A Mohr s circle for torsional loading: Tc Tc 0 τ τ 0 J J

17 00 The McGraw-Hill Companies, Inc. All rights reserved Eample 7.0 For the state of plane stress shown, (a) construct Mohr s circle, determine (b) the principal planes, (c) the principal stresses, (d) the maimum shearing stress and the corresponding normal stress. SOLUTION: Construction of Mohr s circle ( 50) + ( 10) + ave CF MPa R CX FX 40MPa ( 30) + ( 40) 50MPa 0MPa

18 00 The McGraw-Hill Companies, Inc. All rights reserved Eample 7.0 Principal planes and stresses ma OA OC + CA ma 70MPa OB OC BC 0 50 ma ma 30 MPa tan θ θ p p θ p FX CP

19 00 The McGraw-Hill Companies, Inc. All rights reserved Eample 7.0 Maimum shear stress θ s θ p + 45 τ ma R ave θs τ ma 50 MPa 0 MPa

20 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-0 Sample Problem 7. For the state of stress shown, determine (a) the principal planes and the principal stresses, (b) the stress components eerted on the element obtained b rotating the given element counterclockwise through 30 degrees. SOLUTION: Construct Mohr s circle ave R 60 80MPa ( CF ) + ( FX ) ( 0) + ( 48) 5MPa

21 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-1 Sample Problem 7. Principal planes and stresses tan θ θ p p θ p XF CF clockwise ma OA OC + CA ma +13 MPa ma OA OC BC 80 5 min +8 MPa

22 00 The McGraw-Hill Companies, Inc. All rights reserved. 7 - Sample Problem 7. Stress components after rotation b 30 o Points X and Y on Mohr s circle that correspond to stress components on the rotated element are obtained b rotating XY counterclockwise through θ 60 φ τ OK OC KC 80 5cos5.6 OL OC + CL cos5.6 KX 5sin 5.6 τ MPa MPa 41.3MPa

23 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-3 General State of Stress Consider the general 3D state of stress at a point and the transformation of stress from element rotation State of stress at Q defined b:,,, τ, τ, τ z z z Consider tetrahedron with face perpendicular to the line QN with direction cosines: λ, λ, λ The requirement n λ + + τ F n 0 λ + z λ λ + τ λ z z leads to, λ λ + τ Form of equation guarantees that an element orientation can be found such that a b λ + λ + n a b c These are the principal aes and principal planes and the normal stresses are the principal stresses. λ c z z λ z z λ

24 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-4 Application of Mohr s Circle to the Three- Dimensional Analsis of Stress Transformation of stress for an element rotated around a principal ais ma be represented b Mohr s circle. Points A, B, and C represent the principal stresses on the principal planes (shearing stress is zero) The three circles represent the normal and shearing stresses for rotation around each principal ais. Radius of the largest circle ields the maimum shearing stress. 1 τ ma ma min

25 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-5 Application of Mohr s Circle to the Three- Dimensional Analsis of Stress In the case of plane stress, the ais perpendicular to the plane of stress is a principal ais (shearing stress equal zero). If the points A and B (representing the principal planes) are on opposite sides of the origin, then a) the corresponding principal stresses are the maimum and minimum normal stresses for the element b) the maimum shearing stress for the element is equal to the maimum inplane shearing stress c) planes of maimum shearing stress are at 45 o to the principal planes.

26 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-6 Application of Mohr s Circle to the Three- Dimensional Analsis of Stress If A and B are on the same side of the origin (i.e., have the same sign), then a) the circle defining ma, min, and τ ma for the element is not the circle corresponding to transformations within the plane of stress b) maimum shearing stress for the element is equal to half of the maimum stress c) planes of maimum shearing stress are at 45 degrees to the plane of stress

27 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-7 Yield Criteria for Ductile Materials Under Plane Stress Failure of a machine component subjected to uniaial stress is directl predicted from an equivalent tensile test Failure of a machine component subjected to plane stress cannot be directl predicted from the uniaial state of stress in a tensile test specimen It is convenient to determine the principal stresses and to base the failure criteria on the corresponding biaial stress state Failure criteria are based on the mechanism of failure. Allows comparison of the failure conditions for a uniaial stress test and biaial component loading

28 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-8 Yield Criteria for Ductile Materials Under Plane Stress Maimum shearing stress criteria: Structural component is safe as long as the maimum shearing stress is less than the maimum shearing stress in a tensile test specimen at ield, i.e., τ Y ma < τy For a and b with the same sign, a b τ ma or < For a and b with opposite signs, Y a b τ ma < Y

29 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-9 Yield Criteria for Ductile Materials Under Plane Stress Maimum distortion energ criteria: Structural component is safe as long as the distortion energ per unit volume is less than that occurring in a tensile test specimen at ield. ( ) ( ) Y b b a a Y Y b b a a Y d G G u u < + + < + <

30 00 The McGraw-Hill Companies, Inc. All rights reserved Fracture Criteria for Brittle Materials Under Plane Stress Brittle materials fail suddenl through rupture or fracture in a tensile test. The failure condition is characterized b the ultimate strength U. Maimum normal stress criteria: Structural component is safe as long as the maimum normal stress is less than the ultimate strength of a tensile test specimen. a b < < U U

31 00 The McGraw-Hill Companies, Inc. All rights reserved Stresses in Thin-Walled Pressure Vessels Clindrical vessel with principal stresses 1 hoop stress longitudinal stress Hoop stress: F z pr t 0 pr t ( t ) p( r ) 1 Longitudinal stress: F ( ) ( ) π rt p π r

32 00 The McGraw-Hill Companies, Inc. All rights reserved. 7-3 Stresses in Thin-Walled Pressure Vessels Points A and B correspond to hoop stress, 1, and longitudinal stress, Maimum in-plane shearing stress: τ 1 ma( in plane) pr 4t Maimum out-of-plane shearing stress corresponds to a 45 o rotation of the plane stress element around a longitudinal ais τ ma pr t

33 00 The McGraw-Hill Companies, Inc. All rights reserved Stresses in Thin-Walled Pressure Vessels Spherical pressure vessel: 1 pr t Mohr s circle for in-plane transformations reduces to a point τ 1 ma(in-plane) constant 0 Maimum out-of-plane shearing stress τ 1 ma 1 pr 4t

34 00 The McGraw-Hill Companies, Inc. All rights reserved Transformation of Plane Strain Plane strain - deformations of the material take place in parallel planes and are the same in each of those planes. Plane strain occurs in a plate subjected along its edges to a uniforml distributed load and restrained from epanding or contracting laterall b smooth, rigid and fied supports components of ε strain : ( ε γ γ 0) ε γ z z z Eample: Consider a long bar subjected to uniforml distributed transverse loads. State of plane stress eists in an transverse section not located too close to the ends of the bar.

35 00 The McGraw-Hill Companies, Inc. All rights reserved Transformation of Plane Strain State of strain at the point Q results in different strain components with respect to the and reference frames. ε ε γ ε ε γ ( θ ) OB ε cos ε ε ε ε ( 45 ) 1 ( ε + ε + γ ) ( ε + ε ) OB + ε + ε θ + ε sin θ + γ ε ε γ sin θ + ε ε γ + cosθ + ε ε γ cosθ cosθ sinθ cosθ Appling the trigonometric relations used for the transformation of stress, sin θ sin θ

36 00 The McGraw-Hill Companies, Inc. All rights reserved Mohr s Circle for Plane Strain The equations for the transformation of plane strain are of the same form as the equations for the transformation of plane stress - Mohr s circle techniques appl. Abscissa for the center C and radius R, ε ave ε + ε ε ε γ R + Principal aes of strain and principal strains, γ tan θ p ε ε ε ma ε ave + R ε min ε ( ε ε ) γ γ R + ma ave R Maimum in-plane shearing strain,

37 00 The McGraw-Hill Companies, Inc. All rights reserved Three-Dimensional Analsis of Strain Previousl demonstrated that three principal aes eist such that the perpendicular element faces are free of shearing stresses. B Hooke s Law, it follows that the shearing strains are zero as well and that the principal planes of stress are also the principal planes of strain. Rotation about the principal aes ma be represented b Mohr s circles.

38 00 The McGraw-Hill Companies, Inc. All rights reserved Three-Dimensional Analsis of Strain For the case of plane strain where the and aes are in the plane of strain, - the z ais is also a principal ais - the corresponding principal normal strain is represented b the point Z 0 or the origin. If the points A and B lie on opposite sides of the origin, the maimum shearing strain is the maimum in-plane shearing strain, D and E. If the points A and B lie on the same side of the origin, the maimum shearing strain is out of the plane of strain and is represented b the points D and E.

39 00 The McGraw-Hill Companies, Inc. All rights reserved Three-Dimensional Analsis of Strain Consider the case of plane stress, 0 a b z Corresponding normal strains, a ν ε b ε a b E ν E ν εc E a + b E ( + ) ( ε + ε ) a E b ν 1 ν Strain perpendicular to the plane of stress is not zero. If B is located between A and C on the Mohr-circle diagram, the maimum shearing strain is equal to the diameter CA. a b

40 00 The McGraw-Hill Companies, Inc. All rights reserved Measurements of Strain: Strain Rosette Strain gages indicate normal strain through changes in resistance. With a 45 o rosette, ε and ε are measured directl. γ is obtained indirectl with, OB ( ε ε ) γ ε + Normal and shearing strains ma be obtained from normal strains in an three directions, ε ε 1 cos θ + ε 1 sin θ + γ 1 sinθ cosθ 1 1 ε ε cos θ + ε sin θ + γ sinθ cosθ ε 3 ε cos θ 3 + ε sin θ 3 + γ sinθ cosθ 3 3

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit Transformations of Stress and Strain 006 The McGraw-Hill Companies,

More information

Principal Stresses, Yielding Criteria, wall structures

Principal Stresses, Yielding Criteria, wall structures Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 7 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Transformations of

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and

The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and The aircraft shown is being tested to determine how the forces due to lift would be distributed over the wing. This chapter deals with stresses and strains in structures and machine components. 436 H P

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

Stress State.

Stress State. Stress State mi@seu.edu.cn Contents The Stress State of a Point( 点的应力状态 ) Simple, General & Principal Stress State( 简单 一般和主应力状态 ) Ordering of Principal Stresses( 主应力排序 ) On the Damage Mechanisms of Materials(

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 9 Distributed CHAPTER VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Forces: Moments of nertia Contents ntroduction

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Conceptual question Conceptual question 12.2

Conceptual question Conceptual question 12.2 Conceptual question 12.1 rigid cap of weight W t g r A thin-walled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

More information

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000 Toda s Topics ME Instructor: Peter Pinsk Class # November,. Consider two designs of a lug wrench for an automobile: (a) single ended, (b) double ended. The distance between points A and B is in. and the

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members 006 The McGraw-Hill

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 1 Introduction MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Concept of Stress Contents Concept of Stress

More information

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

More information

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

More information

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 6 Shearing MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University Stresses in Beams and Thin- Walled Members Shearing

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

9 Strength Theories of Lamina

9 Strength Theories of Lamina 9 trength Theories of Lamina 9- TRENGTH O ORTHOTROPIC LAMINA or isotropic materials the simplest method to predict failure is to compare the applied stresses to the strengths or some other allowable stresses.

More information

PROBLEM 7.31 SOLUTION. β = τ max = 36.4 MPa. Solve Probs. 7.5 and 7.9, using Mohr s circle.

PROBLEM 7.31 SOLUTION. β = τ max = 36.4 MPa. Solve Probs. 7.5 and 7.9, using Mohr s circle. PROBLEM 7.1 Solve Probs. 7.5 an 7.9, using Mohr s circle. PROBLEM 7.5 through 7.8 For the given state of stress, etermine (a) the principal planes, (b) the principal stresses. PROBLEM 7.9 through 7.1 For

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

Distributed Forces: Moments of Inertia

Distributed Forces: Moments of Inertia Distributed Forces: Moments of nertia Contents ntroduction Moments of nertia of an Area Moments of nertia of an Area b ntegration Polar Moments of nertia Radius of Gration of an Area Sample Problems Parallel

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATER MECHANICS OF MATERIAS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf Energy Methods ecture Notes: J. Walt Oler Teas Tech niversity 6 The McGraw-Hill Copanies, Inc. All rights reserved.

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

Chapter 15: Visualizing Stress and Strain

Chapter 15: Visualizing Stress and Strain hapter 15: Visualizing Stress and Strain Measuring Stress We can see deformation, if it's large enough, but we cannot see stress, and in most cases we cannot measure it directl. Instead, we can use a strain

More information

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN

CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN CHAPER THREE ANALYSIS OF PLANE STRESS AND STRAIN Introduction This chapter is concerned with finding normal and shear stresses acting on inclined sections cut through a member, because these stresses may

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal

More information

ME 323 FINAL EXAM FALL SEMESTER :00 PM 9:00 PM Dec. 16, 2010

ME 323 FINAL EXAM FALL SEMESTER :00 PM 9:00 PM Dec. 16, 2010 ME 33 FINA EXAM FA SEMESTER 1 7: PM 9: PM Dec. 16, 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work on

More information

Mohr's Circle for 2-D Stress Analysis

Mohr's Circle for 2-D Stress Analysis Mohr's Circle for 2-D Stress Analysis If you want to know the principal stresses and maximum shear stresses, you can simply make it through 2-D or 3-D Mohr's cirlcles! You can know about the theory of

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition Combined Stresses and Mohr s Circle Material in this lecture was taken from chapter 4 of General Case of Combined Stresses Two-dimensional stress condition General Case of Combined Stresses con t The normal

More information

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 7. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NME: ES30 STRENGTH OF MTERILS FINL EXM: FRIDY, MY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULE: Law of Cosines:

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Copanies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi

PROBLEM 7.1 SOLUTION. σ = 5.49 ksi. τ = ksi PROBLEM 7.1 For the given state of stress, determine the normal and shearing stresses exerted on the oblique face of the shaded triangular element shon. Use a method of analysis based on the equilibrium

More information

9. Stress Transformation

9. Stress Transformation 9.7 ABSOLUTE MAXIMUM SHEAR STRESS A pt in a body subjected to a general 3-D state of stress will have a normal stress and shear-stress components acting on each of its faces. We can develop stress-transformation

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES LECTURE Third Editio FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES A. J. Clark School of Egieerig Departmet of Civil ad Evirometal Egieerig Chapter 7.4 b Dr. Ibrahim A. Assakkaf SPRING 3 ENES

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 0: Engineering Mechanics Rajib Kumar Bhattacharja Department of Civil Engineering ndian nstitute of Technolog Guwahati M Block : Room No 005 : Tel: 8 www.iitg.ernet.in/rkbc Area Moments of nertia Parallel

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Statics of Particles VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Statics of Particles Lecture Notes: J. Walt Oler Teas Tech Universit Contents Introduction Resultant

More information

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-0-521-88121-0 - Metal Forming: Mechanics Metallurg, Third Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for analzing metal forming operations.

More information

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NAME: ES30 STRENGTH OF MATERIALS FINAL EXAM: FRIDAY, MAY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULAE: Law

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Module 2 Stresses in machine elements

Module 2 Stresses in machine elements Module 2 Stresses in machine elements Lesson 3 Strain analysis Instructional Objectives At the end of this lesson, the student should learn Normal and shear strains. 3-D strain matri. Constitutive equation;

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

ME 323 Examination #2

ME 323 Examination #2 ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 6 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J.

More information

CIV E 205 Mechanics of Solids II. Course Notes

CIV E 205 Mechanics of Solids II. Course Notes Department of Civil Engineering CIV E 205 Mechanics of Solids II Instructor: Tarek Hegazi Email: tarek@uwaterloo.ca Course Notes Mechanics of Materials Objectives: - Solve Problems in a structured systematic

More information

Cover sheet and Problem 1

Cover sheet and Problem 1 over sheet and Problem nstructions M 33 FNL M FLL SMSTR 0 Time allowed: hours. There are 4 problems, each problem is of equal value. The first problem consists of three smaller sub-problems. egin each

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 009 The McGraw-Hill Companies, nc. All rights reserved. Fifth S E CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

GG303 Lab 10 10/26/09 1. Stresses

GG303 Lab 10 10/26/09 1. Stresses GG303 Lab 10 10/26/09 1 Stresses Eercise 1 (38 pts total) 1a Write down the epressions for all the stress components in the ' coordinate sstem in terms of the stress components in the reference frame.

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

You must have a compass, ruler, and protractor for this exam

You must have a compass, ruler, and protractor for this exam ES30 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 14 TH, 4PM TO 7PM, HUGEL 100 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit Given: Law

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

Equilibrium of Deformable Body

Equilibrium of Deformable Body Equilibrium of Deformable Body Review Static Equilibrium If a body is in static equilibrium under the action applied external forces, the Newton s Second Law provides us six scalar equations of equilibrium

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 2 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Stress and Strain Axial Loading 2.1 An Introduction

More information

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.7. PLANE LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Plane Linear Elasticit Theor Plane Stress Simplifing Hpothesis Strain Field Constitutive Equation Displacement Field The

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information