Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles

Size: px
Start display at page:

Download "Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles"

Transcription

1 Final Exam: Thr. Dec. 21, 2:45-4:45 pm, 113 Psycholoy Bilin Exam is cmlative, coverin all material Review Chap. 18: Particle Physics an fiels: a new pictre Qarks an leptons The stron an weak interaction Unification an mass Strin theory Phy107 Fall as fiels Electromanetic fiel sprea ot over space. Stroner near the the sorce of the electric/manetic chare - weaker farther away. Electromanetic raiation, the photon, is the qanta of the fiel. Describe electron particles as fiels: Makes sense - the electron was sprea ot aron the hyroen atom. Wasn t in one place - ha locations it was more or less probable to be. Stroner an weaker like the electromanetic fiel. Electron is the qanta of the electron fiel. Phy107 Fall Qantm Electroynamics: QED Normal electromanetic force comes abot from exchane of photons. Electromanetic replsion via emission of a photon electron photon electron Phy107 Fall Enery ncertainty To make a very short plse in time, nee to combine a rane of freqencies. Freqency relate to qantm enery by E=hf. Heisenber ncertainty relation can also be state (Enery ncertainty)x(time ncertainty) ~ (Planck s constant) In other wors, if a particle of enery E only exists for a time less than h/e, it oesn t reqire any enery to create it! These are the virtal particles that propaate fiels Phy107 Fall Pair proction, annihilation Electron an positron can annihilate to form two photons. An nexpecte preiction! Photon can isappear to form electron-positron pair. Relativity: Mass an enery are the same Go from electron mass to electromanetic/photon enery an back Phy107 Fall Creatin more particles All that is neee to create particles is enery. Enery can be provie by hih-enery collision of particles. An example: Electron an positron annihilate to form a photon. This can then create particles with mc 2 <photon enery. e- e-,µe+ µ, Mon mass: 100MeV/c 2, electron mass 0.5 MeV/c 2 e+,µ+ New particles fon this way Phy107 Fall

2 What have we learne? Matter is mae of atoms Atoms are mae of leptons an qarks Atoms are mae of leptons an qarks Leptons Qarks e Interact via ifferent forces carrie by particles, photons, simple except for the mon Phy107 Fall Three enerations of particles Three enerations ifferentiate primarily by mass (enery). First eneration One pair of leptons, one pair of qarks Leptons: Electron, electron-netrino. Qarks: Up, own. All 3 enerations seen Phy107 Fall Liht Heavier Heaviest The enerations Chare These are the exchane bosons. What are they exchane between? Or on what are the corresponin forces exerte? Example: When a photon is exchane between two particles, there is a electromanetic or Colomb force. We know that only particles with electrical chare interact via the Colomb force Zero chare -> zero Colomb interaction Phy107 Fall Phy107 Fall Many Chares In this lanae, we say that the electrical chare is a sorce of an EM fiel. A mass chare is the sorce of a ravitational fiel A weak chare (sometimes calle flavor ) is the sorce of a weak interaction fiel A stron chare (sometimes calle color ) is the sorce of a stron interaction fiel Qarks an leptons have mltiple chares. Some of the bosons have chares. Electric, flavor, color, mass Flavor Electric, flavor, mass All those chares! Color None Electric, mass Phy107 Fall Phy107 Fall

3 Interactions throh Exchane of Color Chare Initially Emission of Glon After lon emission RED RED-ANTIBLUE + BLUE (qark) (lon) (qark) Re-absorption of Glon Before lon absorption After lon absorption RED-ANTIBLUE + BLUE RED (lon) (qark) (qark) Phy107 Fall Feynman Diarams (Qark Scatterin) Qark-qark Scatterin Col also be Qark-antiqark Scatterin or Antiqark-antiqark Scatterin Qark-antiqark Annihilation Position Phy107 Fall time Glon interactions Since lons carry color chare, they can interact with each other!(photons can t o that) Very important, makes stron interaction stroner an leas to confinement Glon-lon Scatterin Glon-lon Fsion More Baryons Qark p own strane Q +2/3-1/3-1/3 Mass ~5 [MeV/c 2 ] ~10 [MeV/c 2 ] ~200 [MeV/c 2 ] s s s Excite state - Hiher enery/mass s Lamba ( ) Q = 0 M=1116 MeV/c 2 s Sima ( + ) Q = +1 M=1189 MeV/c 2 s Sima ( 0 ) Q = 0 M=1192 MeV/c 2 s Sima ( ) Q = -1 M=1197 MeV/c 2 Phy107 Fall Phy107 Fall Mesons They are forme when a qark an an anti-qark bin toether. So far we ve only seen 3 qark combinations. There are also 2 qark combinations. The harons: 2 qarks, meson an 3 qarks, baryon. Carriers of the weak force Like the Electromanetic & Stron forces, the Weak force is also meiate by force carriers. For the weak force, there are three force carriers: What s the chare of this particle? Q=+1, an it s calle a + c What s the chare of this particle? s What s the chare of this particle? W + W - Z 0 These weak force carriers carry electric chare also! This weak force carrier is electrically netral The chare of the weak interaction Q= -1, an this charm Q= 0, this strane is calle weak chare meson is calle a D - meson is calle a K 0 Phy107 Fall Phy107 Fall

4 Rane of the interaction Electron oesn t have enoh enery to create Z o. Z o only present e to ncertainty relation (Enery ncertainty)x(time ncertainty)~planck cnst It can only exist for a time etermine by Planck cnst Time ncertainty ~ Particle mass Farthest it can travel in that time is Planck cnst Rane ~(Liht Spee)x Particle Mass ~ m Phy107 Fall Scatterin from qarks in a ncles What Ice Cbe looks for is netrinos emerin from collisions as mons. n µ W + µ - p time The netrino interacts with qarks bon insie ncleons in the ncles. Netrino emits W +, chanin flavor into mon. Down qark bon in a netron absorbs W +, chanin into a p qark. The ncleon then has two ps an one own qark, which is a proton. Always look to conserve chare in these interactions Phy107 Fall Similar to nclear beta ecay Interaction via the W explains nclear beta ecay. Lepton ecay Flavor chane can occr spontaneosly if the particle is heavy enoh. n W - _ e - p time qark emits a W-, chanin flavor into a qark. W ecays to an electron an anti-electron netrino. The ncleon then has two ps an one own qark, which is a proton. Similar to the rotate Feynman iaram we sties with the electromanetic force Generation I e Electron is stable Generation II µ µ 2x10-6 secons Generation III 3x10-13 secons Chare -1 0 Phy107 Fall Phy107 Fall Qarks an the weak force Qarks have color chare, electric chare, an weak chare other interactions swamp the weak interaction Bt similar to leptons, qarks can chane their flavor (ecay) via the weak force, by emittin a W particle. Flavor chane between enerations Bt for qarks, not limite to within a eneration! Generation I Generation II Generation III Chare Generation I Generation II Generation III Chare c t +2/3 c t +2/3 s b -1/3 s b -1/3 Emit W + 2x10-12 secons Emit W secons secons secons Phy107 Fall Phy107 Fall

5 & their Interactions (Smmary) qarks Chare leptons (e,µ, ) Netral leptons ( ) Color Chare? Y N N EM Chare? Y Y N Weak Chare? Y Y Y Qarks can participate in Stron, EM & Weak Interactions. All qarks & all leptons carry weak chare. Comparison of the Force Carriers Force Carrier Chare of force carrier Coples to: Rane EM Photon ( ) None w/elect. chare Infinite (1/ 2 ) Stron Glon () Color w/color chare (Qarks,lons) <10-14 m (insie harons) W +, W - Electric & Weak w/weak chare (Qarks, leptons) W,Z) < 2x10-18 m Weak Z 0 None w/weak chare (Qarks, leptons W,Z) < 2x10-18 m Netrinos only carry weak chare. Phy107 Fall Phy107 Fall Key Points Differences between particles connecte to how they interact, what chares they have. Qarks have all the chares. Color chare: Qarks form composite states harons via the stron force. Flavor chare: Heavy qarks ecay to lihter qarks via the weak force. Leptons have no color chane. Don t form any composite states. Netrinos only interact via the weak force which means they rarely interact at all. Phy107 Fall Key Points Cont. Properties of the force carriers etermine the aspects of that force. Glons an the stron force. Glon can interact with other lons. Limits the rane of that force an makes it stroner. W, Z an the weak force. Force carriers are massive. Limits the rane they can travel an makes the force weaker. Photon an the electromanetic force. Happy mile ron between stron an weak. Phy107 Fall Netral weak Zero chare Mass=91 GeV/c 2 Rane ~ m Electroweak Unification Electromanetic Zero chare Mass=0 GeV/c 2 Rane ~ inf. These two both exchane netral bosons Neither boson chanes the lepton flavor (remains electron) Have the same strenth at hih enery! W + W - e e Pos. weak Pos. chare Mass=80 GeV/c 2 Rane ~ m Ne. weak Ne. chare Mass=80 GeV/c 2 Rane ~ m These two both exchane chare bosons. Both bosons chane the lepton flavor Unification Details of weak interaction sest Diff. qarks are iff. orientations of the same particle. Diff. leptons are iff. orientations of the same particle. Weak an EM interactions are ifferent parts of a sinle electroweak force. Electroweak interaction le to the introction of the His Boson Gran Unifie Theories (GUTs) Will combine leptons an qarks Unify stron an electroweak an ravitational interactions. From one sorce. Electroweak force. Nee His particle to ive Phy107 W, Fall Z 2006 mass - an everythin else. 29 Phy107 Fall

6 Checklist for a theory of everythin Unify all the forces: stron force - ravity Qantize the forces - QFT very sccessfl Unify the particles: qarks, leptons - 3 enerations Explain all the ifferent masses an strenths Explain ark matter Explain why niverse is mostly matter Explain physics at very hih enery - bi ban Phy107 Fall Kalza-Klein: EM & ravity Connect electromanetism an ravity in a classical relativistic theory. Kalza an Klein fon a theory in five imensions (for space & one time) with one interaction (5-imensional ravity). When one of the imensions was compactifie, two interactions reslte: ravity an electromanetism. What appears to s as two istinct interactions oriinate from only one. Kalza & Klein, 1920 Only nifies ravity. Can t be qantize. Doesn t answer all the other qestions! Phy107 Fall Spersymmetry (SSy) Spersymmetry Sccesses Desine to explain behavior at very hih enery Sperpartners (compare to anti-particles) Every fermion has a boson partner an vice versa Phy107 Fall Forces mere in SUSY Same strenth at hih enery. Lihtest SUSY particles on t ecay. Dark Matter Doesn t nifies ravity. Can t explain many of the other qestions! Phy107 Fall Strin theory A strin is a fnamental qantm mechanical object that has a small bt nonzero spatial extent. Jst like a particle has a mass, a strin has a tension that characterizes its behavior. Qantm mechanical vibrations of the strin correspon to the particles we observe Can incle Kalza Klein theory an Spersymmetry. Checklist Strin Theory Unify all the forces: stron force - ravity Qantize the forces - QFT very sccessfl Unify the particles: qarks lepton - 3 enerations Explain all the ifferent masses an strenths Explain ark matter Explain why niverse is mostly matter Explain physics at very hih enery - bi ban Bilin experiments to explore all these theories inclin the Stanar Moel - His not fon yet! Phy107 Fall Phy107 Fall

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles Final Exam: Mon. May 8, 2:45-4:45 pm, 2241 Cham. Exam is cmlative, coverin all material 40 qestions, 2 note sheets allowe Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The weak

More information

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons Exam 4: Fri. May 10, in-class 20 qestions, covers fission, fsion, particle physics No final exam. Essays retrne Friay Toay: Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The

More information

Chapter 17. Weak Interactions

Chapter 17. Weak Interactions Chapter 17 Weak Interactions The weak interactions are meiate by W ± or (netral) Z exchange. In the case of W ±, this means that the flavors of the qarks interacting with the gage boson can change. W ±

More information

Overview of particle physics

Overview of particle physics Overview of particle physics The big qestions of particle physics are 1. What is the niverse mae of? 2. How is it hel together? We can start at orinary istances an work or way own. Macroscopic stff is

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

QUARK WORKBENCH TEACHER NOTES

QUARK WORKBENCH TEACHER NOTES QUARK WORKBENCH TEACHER NOTES DESCRIPTION Stents se cleverly constrcte pzzle pieces an look for patterns in how those pieces can fit together. The pzzles pieces obey, as mch as possible, the Stanar Moel

More information

t b e - d -1/3 4/18/2016 Particle Classification 3 Generations of Leptons and Quarks Standard Model

t b e - d -1/3 4/18/2016 Particle Classification 3 Generations of Leptons and Quarks Standard Model PHYS 342 Moern Physics Elementary Particles an Stanar Moel II Toay's Contents: a) Particle Collier b) Stanar Moel of Elementary Particles c) Fiel Bosons: qantization of for basic forces ) Higgs Boson:

More information

1 Drawing Feynman Diagrams

1 Drawing Feynman Diagrams 1 Drawing Feynman Diagrams 1. A ermion (qark, lepton, netrino) is rawn by a straight line with an arrow pointing to the let: 2. An antiermion is rawn by a straight line with an arrow pointing to the right:

More information

Hadron Structure Theory I. Alexei Prokudin

Hadron Structure Theory I. Alexei Prokudin Haron Strctre Theory I Alexei Prokin The plan: l Lectre I: Strctre of the ncleon l Lectre II Transverse Momentm Depenent istribtions (TMDs) Semi Inclsive Deep Inelastic Scattering (SIDIS) l Ttorial Calclations

More information

The story of the Universe

The story of the Universe The story of the Universe From the Bi Ban to today's Universe Quantum ravity era Grand unification era Electroweak era Protons and neutrons form Nuclei are formed Atoms and liht era Galaxy formation Today

More information

Subatomic Physics: Particle Physics. Review April 13th Key Concepts. What s important are the concepts not the facts and figures.

Subatomic Physics: Particle Physics. Review April 13th Key Concepts. What s important are the concepts not the facts and figures. Subatomic Physics: Particle Physics Review April 13th 21 The Standard Model Natural Units Relativistic Dynamics Anti-matter Quarks, Leptons & Hadrons Feynman Diarams and Feynman Rules Decays QED, QCD,

More information

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1 7. QCD Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 7. QCD 1 In this section... The stron vertex Colour, luons and self-interactions QCD potential, confinement Hadronisation, jets Runnin

More information

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube From Last Time Dissse the weak interation All qarks an leptons have a weak harge They interat throgh the weak interation Weak interation often swampe y eletromagneti or strong interation. Interation with

More information

Steve Smith Tuition: Physics Notes

Steve Smith Tuition: Physics Notes Steve Smith Tition: Physics Notes E = mc 2 F = GMm r 2 sin θ m = mλ hν = φ + 1 2 mv2 Particle-opoly! Contents 1 Getting Reay to Play... 3 1.1 e Broglie s Formla..........................................

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Particle Physics. Dr M.A. Thomson. ν e. e + W + Z 0 e + e - W - Part II, Lent Term 2004 HANDOUT VI. Dr M.A. Thomson Lent 2004

Particle Physics. Dr M.A. Thomson. ν e. e + W + Z 0 e + e - W - Part II, Lent Term 2004 HANDOUT VI. Dr M.A. Thomson Lent 2004 Particle Physics Dr M.A. Thomson e + W + Z 0 e + q q Part II, Lent Term 2004 HANDOUT VI 2 The Weak Interaction The WEAK interaction acconts for many ecays in particle physics e.g. μ! e νeνμ, fi! e νeνfi,

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the LECTURE 13 Elementary Particle Physics (The chart on the classroom wall can be fon at http://www-pg.lbl.gov/cpep/cpep sm large.html.) For Fnamental Forces As far as we know, there are jst for fnamental

More information

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle Illstrations of a Modified : Part 1-The Solar Proton- Proton Cycle by Roger N. Weller, (proton3@gmail.com), Febrary 23, 2014 Abstract A proposed modification of the, when applied to the Solar Proton-Proton

More information

Post-Sphaleron Baryogenesis and n n Oscillations. K.S. Babu

Post-Sphaleron Baryogenesis and n n Oscillations. K.S. Babu Post-Sphaleron Baryogenesis an n n Oscillations K.S. Bab Oklahoma State University INT Workshop on Netron-Antinetron Oscillations University of Washington, Seattle October 23 27, 2017 Base on: K. S. Bab,

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Particle Physics HANDOUT III. Part II, Lent Term q g. e + e - Dr M.A. Thomson. α S. Q q. 1 q 2. Dr M.A. Thomson Lent 2004

Particle Physics HANDOUT III. Part II, Lent Term q g. e + e - Dr M.A. Thomson. α S. Q q. 1 q 2. Dr M.A. Thomson Lent 2004 1 Particle Physics Dr M.A. Thomson e + e - α γ 1 2 α S Q α Part II, Lent Term 2004 HANDOUT III QCD 2 QUANTUM ELECTRODYNAMICS: is the uantum theory of the electromanetic interaction. mediated by massless

More information

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012 Particle Physics, Fall Solutions to Final Exam December, Part I: Short Answer [ points] For each of the following, give a short answer (- sentences, or a formula). [5 points each]. [This one might be har

More information

Rough Schedule. Units often used in Elementary Particle Physics

Rough Schedule. Units often used in Elementary Particle Physics Rouh Schedule (1) The course orientation and a special lecture on "Understandin of radio activities now in Sendai". (2) Rutherford Scatterin and Concepts for Experiments. (3) Accelerators and Particle

More information

5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1

5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1 5. Feynman Diarams Partile an Nulear Physis Dr. Tina Potter 2017 Dr. Tina Potter 5. Feynman Diarams 1 In this setion... Introution to Feynman iarams. Anatomy of Feynman iarams. Allowe verties. General

More information

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time

Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material. From last time Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

V. Hadron quantum numbers

V. Hadron quantum numbers V. Hadron qantm nmbers Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space-time symmetries : total spin J, parity P, charge conjgation C. Common notation: 1 -- + 2 J P (e.g. for proton:

More information

The Perfect Cosmological Principle

The Perfect Cosmological Principle Cosmoloy AS7009, 0 Lecture Outline The cosmoloical principle: Isotropy Homoeneity Bi Ban vs. Steady State cosmoloy Redshift and Hubble s law Scale factor, Hubble time, Horizon distance Olbers paradox:

More information

Light flavor asymmetry of polarized quark distributions in thermodynamical bag model

Light flavor asymmetry of polarized quark distributions in thermodynamical bag model Inian Jornal of Pre & Applie Physics Vol. 5, April 014, pp. 19-3 Light flavor asymmetry of polarize qark istribtions in thermoynamical bag moel K Ganesamrthy a & S Mrganantham b* a Department of Physics,

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

A Theory of Dark Matter

A Theory of Dark Matter DOI c Inian Acaemy of Sciences A Theory of Dark Matter JAIDEV B. PARMAR Abstract. A moel of the Universe is constrcte an a nmber of problems in Contemporary physics like Baryon Asymmetry, Dark Matter,

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Cosmology AS7009, 2008 Lecture 2

Cosmology AS7009, 2008 Lecture 2 Cosmoloy AS7009, 008 Lecture Outline The cosmoloical principle: Isotropy Homoeneity Bi Ban vs. Steady State cosmoloy Redshift and Hubble s s law Scale factor, Hubble time, Horizon distance Olbers paradox:

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Let s have a coffee with the Standard Model of particle physics!

Let s have a coffee with the Standard Model of particle physics! Physics Edcation PAPER OPEN ACCESS Let s have a coffee with the Standard Model of particle physics! To cite this article: Jlia Woithe et al 2017 Phys. Edc. 52 034001 Related content - The Search and Discovery

More information

Two questions from the exam

Two questions from the exam Two qestions from the exam 3. When the sn is located near one of the horizons, an observer looking at the sky directly overhead will view partially polarized light. This effect is de to which of the following

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

Flavor and Spin Asymmetries of the Proton

Flavor and Spin Asymmetries of the Proton Flavor an Spin Asymmetries of the Proton Jen-Chieh Peng University of Illinois at Urbana-Champaign INT/JLab Workshop on Parton Distribtions in the st Centry Seattle, Nov. 8-, 4 Otline Stats of flavor asymmetry

More information

Search for SUSY and Extra Dimensions at LEP

Search for SUSY and Extra Dimensions at LEP Search for SUSY and Extra Dimensions at LEP (OPAL) 1. Physikalisches Institut B, RWTH Aachen On behalf of the LEP collaborations July 29th, 2006 ICHEP 2006, Moscow Outline Four abstracts submitted: Supersymmetry

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions

Today. From Last Time. Fundamental Matter Particles. Similar particles. Exchange Bosons (force carriers) And several different interactions From Last Time Discussed the weak interaction All quarks and leptons have a weak charge They interact through the weak interaction Weak interaction often swamped by electromagnetic or strong interaction.

More information

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 1 Physics 301: Physics Today Prof. Wesley Smith, wsmith@hep.wisc.edu Undergraduate Physics Colloquium! Discussions of current research

More information

Possible holographic universe, graviton rest mass, mass gap and dark energy

Possible holographic universe, graviton rest mass, mass gap and dark energy JJJPL report 0423-2 (2015); vixra:1508.0292 (2015). Possible holographic niverse, graviton rest mass, mass gap and dark energy Jae-Kwang Hwang JJJ Physics Laboratory, 1077 Beech Tree Lane, Brentwood, TN

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Chapter 3. Building Hadrons from Quarks

Chapter 3. Building Hadrons from Quarks P570 Chapter Bilding Hadrons from Qarks Mesons in SU() We are now ready to consider mesons and baryons constrcted from qarks. As we recall, mesons are made of qark-antiqark pair and baryons are made of

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics Standard Model Introdtion 1 Qarknet Syrase Smmer Institte Partile Physis Letre 2 Topis for Letre 2 Introdtion to Standard Model Eletromagneti & Strong Interations 2 Prelde Definition of Theory: a oherent

More information

What is fundamental? wwhat is it made of? whow is it all held together? The TWO most fundamental questions about the universe are: Fig. 15.1, p.

What is fundamental? wwhat is it made of? whow is it all held together? The TWO most fundamental questions about the universe are: Fig. 15.1, p. What is fndamental? The TWO most fndamental qestions abot the niverse are: wwhat is it made of? whow is it all held together? Fig. 15.1, p. 467 For Fndamental Elements l The Hnt for the answers to those

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007 Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Physics Quarknet/Service Learning

Physics Quarknet/Service Learning Physics 29000 Quarknet/Service Learning Lecture 3: Ionizing Radiation Purdue University Department of Physics February 1, 2013 1 Resources Particle Data Group: http://pdg.lbl.gov Summary tables of particle

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS

PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS ANNOUNCEMENTS Problem Set 3 e on Friay 1700 No cla next Teay No office hor Monay, Teay Sorry! Pleae feel free to en me email abot qetion, etc. or

More information

Bosons in the Zoo of Elementary Particles

Bosons in the Zoo of Elementary Particles Bosons in the Zoo of Elementary Particles Daniele Sasso * Abstract In this paper we want to raise the question concerning the physical identity of bosons and the function that they perform in the Non-Standard

More information

arxiv: v1 [hep-ex] 13 Sep 2016

arxiv: v1 [hep-ex] 13 Sep 2016 Haron Spectroscopy, exotics an B c physics at arxiv:169.3888v1 [hepex] 13 Sep 16 Biplab Dey on behalf of the Collaboration Sezione INFN i Milano, Milano, Italy Email: biplab.ey@cern.ch Abstract. The experiment

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 1 Matter Particles Quarks: Leptons: Anti-matter Particles Anti-quarks: Anti-leptons: Hadrons Stable bound states of quarks Baryons:

More information

The Proton Decay and Experiments

The Proton Decay and Experiments The Proton Decay and Experiments Astroteilchenphysik Vortrag Carlos Ayerbe Gayoso Ayerbe@kph.uni-mainz.de 18.12. 02 Contents 1- Summary of the Standard Model 2- Beyond Standard Model - Grand Unified Theories

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

Weak Interaction of Hadrons and Neutral Current. H. A. Tanaka

Weak Interaction of Hadrons and Neutral Current. H. A. Tanaka Weak Interaction of Haron an Netral Crrent H. A. Tanaka Miterm: Replace the miterm grae with final grae i higher i.e. if final grae > miterm grae, final i worth 60% of yor grae. otherwie, miterm i 20%,

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Chapter 46. Particle Physics and Cosmology

Chapter 46. Particle Physics and Cosmology Chapter 46 Particle Physics and Cosmology Atoms as Elementary Particles Atoms From the Greek for indivisible Were once thought to be the elementary particles Atom constituents Proton, neutron, and electron

More information

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc.

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc. Chapter 29 Lecture Particle Physics Prepared by Dedra Demaree, Georgetown University Particle Physics What is antimatter? What are the fundamental particles and interactions in nature? What was the Big

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

The following diagram summarizes the history of unification in Theoretical Physics:

The following diagram summarizes the history of unification in Theoretical Physics: Summary of Theoretical Physics L. David Roper, roperld@vt.edu Written for the Book Group of Blacksburg VA For the discussion of The Elegant Universe by Brian Greene, 10 October 004 This file is available

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information

The Standard Model of Particle Physics

The Standard Model of Particle Physics The Standard Model of Particle Physics Jesse Chvojka University of Rochester PARTICLE Program Let s s look at what it is Description of fundamental particles quarks and leptons Three out of Four (Forces)

More information

Remainder of Course. 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM

Remainder of Course. 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM Remainder of Course 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM Practice Final on Course Web Page See HW #12 (not to be

More information

VI. The quark model: hadron quantum numbers, resonances

VI. The quark model: hadron quantum numbers, resonances VI. The qark model: hadron qantm nmbers, resonances Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space symmetries : J, P, C. Common notation: J P (e.g. for proton: 1 2 --+ ), or J

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Vector boson plus jet physics at CMS

Vector boson plus jet physics at CMS Jornal of Physics: Conference Series OPEN ACCESS Vector boson pls physics CMS o cite this article: om Cornelis an the CMS collaborion J. Phys.: Conf. Ser. 6 View the article online for pes an enhancements.

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course?

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Contents: Review of the Standard Model! What we know! What we don

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Constraints on fourth generation Majorana neutrinos

Constraints on fourth generation Majorana neutrinos Jornal of Physics: Conference Series Constraints on forth generation Majorana netrinos To cite this article: Alexaner Lenz et al 2010 J. Phys.: Conf. Ser. 259 012096 Relate content - Lepton nmber, black

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

An Introduction to Modern Particle Physics

An Introduction to Modern Particle Physics An Introduction to Modern Particle Physics Mark Thomson University of Cambridge ALEPH DALI 3 Gev EC 6 Gev HC Run=56698 Evt=7455 Y" RO TPC 1cm 0 1cm 1cm 0 1cm X" Z0

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in Muons M. Swartz 1 Muons: everything you ve ever wanted to know The muon was first observed in cosmic ray tracks in a cloud chamber by Carl Anderson and Seth Neddermeyer in 1937. It was eventually shown

More information

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Physics Beyond the Standard Model Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Increasingly General Theories Grand Unified Theories of electroweak and strong interactions Supersymmetry

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

J. R. Yablon. Jay R. Yablon Schenectady, New York November 3, 2014

J. R. Yablon. Jay R. Yablon Schenectady, New York November 3, 2014 Decoing the clear Genome: Is there an Unambigos an recise way to Define the Crrent Qark Masses an Relate them to clear Bining Energies an Mass Defects, an what is the Unerlying Theory? Jay R. Yablon Schenectay,

More information

Measurements of high energy g-rays from collective states

Measurements of high energy g-rays from collective states Measurements of hih enery -rays from collective states Franco Camera University of Milano and INFN sect. of Milano Outline: - ELI-NP and the excitation of collective states - General Physics cases for

More information