1 Drawing Feynman Diagrams

Size: px
Start display at page:

Download "1 Drawing Feynman Diagrams"

Transcription

1 1 Drawing Feynman Diagrams 1. A ermion (qark, lepton, netrino) is rawn by a straight line with an arrow pointing to the let: 2. An antiermion is rawn by a straight line with an arrow pointing to the right: 3. A photon or W ±, boson is rawn by a wavy line: W ±, 4. A glon is rawn by a crle line: g 5. The emission o a photon rom a lepton or a qark oesn t change the ermion: l, q l, q Bt a photon cannot be emitte rom a netrino: ν ν 6. The emission o a W ± rom a ermion changes the lavor o the ermion in the ollowing way: Q = 1 e µ τ c t Q = Q = 0 ν e ν µ ν τ s b Q = 1 3 Bt or qarks, we have an aitional mixing between amilies: c t s b This means that when emitting a W ±, an qark or example will mostly change into a qark, bt it has a small chance to change into a s qark instea, an an even smaller chance to change into a b qark. Similarly, a c will mostly change into a s qark, bt has small chances o changing into an or b. Note that there is no horizontal mixing, i.e. an never changes into a c qark! In practice, we will limit orselves to the light qarks (,, s):

2 1 DRAWING FEYNMAN DIAGRAMS 2 s Some examples or iagrams emitting a W ± : e ν e An sing qark mixing: s To know the sign o the W -boson, we se charge conservation: the sm o the charges at the let han sie mst eqal the sm o the charges at the right han sie. 7. The emission o a boson oesn t change the ermion, as was the case or the emission o a photon, bt a can also be emitte rom a netrino: l, q, ν l, q, ν 8. A glon can only be emitte rom qarks, an will change their color charge. However, as we almost never raw the color charge o a qark, in the iagram the qark oesn t change: g q q 9. To make sre we never nee to raw color charge in or iagrams, we only allow qarks to combine into color netral particles, which consist o three qarks or a qarkantiqark pair. As an example we raw the emission o a rom a proton, changing it into a netron: p n 10. When moving a particle s placement in a Feynman iagram rom right to let (or vice versa), we change a particle to its antiparticle. Using this rle, we can trn the emission o a into the absorption o a (becase the antiparticle o a is a )

3 1 DRAWING FEYNMAN DIAGRAMS 3 or into the creation or annihilation o a qark pair (note that when moving a ermion this way, the irection o the arrow stays the same relatively to the line) 1 The same transormations can be applie on photon, an glon emissions. 11. We also get a vali Feynman iagram by taking the antiparticle o every particle in the iagram. Using this rle, we can trn the emission o a into the emission o a Again, the same transormations can be applie on photon, an glon emissions. 12. The W ±, an the glon also have three- an or-point interactions:,, Bt in practice yo will only nee the glon three-interaction, becase the other threean or-interactions are strongly sppresse. 13. To get an iea o the probability o a Feynman iagram, we cont the nmber o vertices (another wor or interaction points). The more, the less probable. Also, the strong interaction (glons) is more probable than the electromagnetic interaction (photons), which in trn is more probable than the weak interaction ( an W ± bosons). 1 Or as a rle o thmb: an incoming particle has its arrow pointing inwars, an otgoing particle has its arrow pointing otwars; an incoming antiparticle has its arrow pointing otwars, an otgoing antiparticle has its arrow pointing inwars.

4 2 CONSERVATION LAWS 4 Hint: raw yorsel a set o basic iagrams with the an bosons, in orer to have a reerence to know which particles cople to which. For the photon, the an the glon this is straightorwar (becase then the particle oesn t change), bt or the W ± this is a bit more elaborate. 2 Conservation Laws Not every interaction satisies all conservation laws. The strong orce satisies all conservation laws, the electromagnetic orce conserves all bt isospin, an the weak orce satisies most (not lavor nor isospin). There are qite a lot conservation laws, so we will limit orselves to the easiest ones. 0. First a hint: any qantm nmber changes to its aitive inverse when making an antiparticle rom a particle. For example, a positron e + has electron lepton nmber L e = 1 becase an electron e has L e = Conservation o electric charge. The sm o the charges o the initial particles shol eqal the sm o the inal particles. 2. Conservation o energy. This is particlarly important when the interaction is a ecay (i.e. one particle going to several particles), becase then in the rest rame o the initial particle we have that its energy (in other wors its mass, as it is in rest) shol eqal the sm o the energies o the inal particles. This implies m initial m inal In case o a collision (two or more initial particles) energy conservation can always be satisie by giving the initial particles enogh energy. It is thereore only neee to check energy conservation in case o a ecay (one initial particle). 3. Conservation o lepton nmber. This conservation is even tre within the lepton amilies. For example, the ecay µ e + ν e + ν µ L e : 0 = L µ : 1 = L : 1 = conserves electron lepton nmber L e, mon lepton nmber L µ an total lepton nmber L. However, the ecay µ e + e + + e L e : L µ : L : 1 = is not allowe, althogh total lepton nmber is conserve. Bt electron an mon nmber are not conserve separately, which is enogh to prohibit the interaction.

5 2 CONSERVATION LAWS 5 4. Conservation o baryon nmber. This law tells s that the nmber o initial baryons (particles mae rom three qarks) shol eqal the nmber o inal baryons. For example, the interactions are allowe, bt p n + e + ν e p + p π + + π B : 1 = B : 1 1 = p π + + π + π 0 B : is not. Keep in min that there is no sch rle or mesons! 5. Conservation o lavor (not conserve by the weak interaction). This law says that qark lavor shol be conserve between initial an inal states. As we are only consiering light qarks, the only special lavor is that o a strange qark, which is calle strangeness. 2 This implies or example that the interaction K + π + + π 0 S : mst take place sing the weak interaction, as strangeness is not conserve (meaning it cannot take place sing the strong nor the electromagnetic orce, as those two o conserve lavor). 6. Conservation o isospin (not conserve by the weak interaction, nor by the electromagnetic). reerik.van.er.veken@cern.ch 2 To conse yo a bit, a particle with one s qark has strangeness S = 1 an a particle with one anti-s has strangeness S = +1. This is grown historically.

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons Exam 4: Fri. May 10, in-class 20 qestions, covers fission, fsion, particle physics No final exam. Essays retrne Friay Toay: Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The

More information

Chapter 17. Weak Interactions

Chapter 17. Weak Interactions Chapter 17 Weak Interactions The weak interactions are meiate by W ± or (netral) Z exchange. In the case of W ±, this means that the flavors of the qarks interacting with the gage boson can change. W ±

More information

Steve Smith Tuition: Physics Notes

Steve Smith Tuition: Physics Notes Steve Smith Tition: Physics Notes E = mc 2 F = GMm r 2 sin θ m = mλ hν = φ + 1 2 mv2 Particle-opoly! Contents 1 Getting Reay to Play... 3 1.1 e Broglie s Formla..........................................

More information

Overview of particle physics

Overview of particle physics Overview of particle physics The big qestions of particle physics are 1. What is the niverse mae of? 2. How is it hel together? We can start at orinary istances an work or way own. Macroscopic stff is

More information

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles Final Exam: Thr. Dec. 21, 2:45-4:45 pm, 113 Psycholoy Bilin Exam is cmlative, coverin all material Review Chap. 18: Particle Physics an fiels: a new pictre Qarks an leptons The stron an weak interaction

More information

V. Hadron quantum numbers

V. Hadron quantum numbers V. Hadron qantm nmbers Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space-time symmetries : total spin J, parity P, charge conjgation C. Common notation: 1 -- + 2 J P (e.g. for proton:

More information

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle Illstrations of a Modified : Part 1-The Solar Proton- Proton Cycle by Roger N. Weller, (proton3@gmail.com), Febrary 23, 2014 Abstract A proposed modification of the, when applied to the Solar Proton-Proton

More information

QUARK WORKBENCH TEACHER NOTES

QUARK WORKBENCH TEACHER NOTES QUARK WORKBENCH TEACHER NOTES DESCRIPTION Stents se cleverly constrcte pzzle pieces an look for patterns in how those pieces can fit together. The pzzles pieces obey, as mch as possible, the Stanar Moel

More information

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the LECTURE 13 Elementary Particle Physics (The chart on the classroom wall can be fon at http://www-pg.lbl.gov/cpep/cpep sm large.html.) For Fnamental Forces As far as we know, there are jst for fnamental

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

Episode 536: Vector bosons and Feynman diagrams

Episode 536: Vector bosons and Feynman diagrams Episode 536: Vector bosons and Feynman diagrams You need to check your own specification here for details of what students will need to do in examinations, and to look at past papers: although Feynman

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK 2 SOLUTIONS PHIL SAAD 1. Carroll 1.4 1.1. A qasar, a istance D from an observer on Earth, emits a jet of gas at a spee v an an angle θ from the line of sight of the observer. The apparent spee

More information

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube From Last Time Dissse the weak interation All qarks an leptons have a weak harge They interat throgh the weak interation Weak interation often swampe y eletromagneti or strong interation. Interation with

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles Final Exam: Mon. May 8, 2:45-4:45 pm, 2241 Cham. Exam is cmlative, coverin all material 40 qestions, 2 note sheets allowe Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The weak

More information

t b e - d -1/3 4/18/2016 Particle Classification 3 Generations of Leptons and Quarks Standard Model

t b e - d -1/3 4/18/2016 Particle Classification 3 Generations of Leptons and Quarks Standard Model PHYS 342 Moern Physics Elementary Particles an Stanar Moel II Toay's Contents: a) Particle Collier b) Stanar Moel of Elementary Particles c) Fiel Bosons: qantization of for basic forces ) Higgs Boson:

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations 1 Introction Nclear an Particle Phyic - Lectre 16 Netral kaon ecay an ocillation e have alreay een that the netral kaon will have em-leptonic an haronic ecay. However, they alo exhibit the phenomenon of

More information

Particle Physics. Dr M.A. Thomson. ν e. e + W + Z 0 e + e - W - Part II, Lent Term 2004 HANDOUT VI. Dr M.A. Thomson Lent 2004

Particle Physics. Dr M.A. Thomson. ν e. e + W + Z 0 e + e - W - Part II, Lent Term 2004 HANDOUT VI. Dr M.A. Thomson Lent 2004 Particle Physics Dr M.A. Thomson e + W + Z 0 e + q q Part II, Lent Term 2004 HANDOUT VI 2 The Weak Interaction The WEAK interaction acconts for many ecays in particle physics e.g. μ! e νeνμ, fi! e νeνfi,

More information

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012 Particle Physics, Fall Solutions to Final Exam December, Part I: Short Answer [ points] For each of the following, give a short answer (- sentences, or a formula). [5 points each]. [This one might be har

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particles (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. This question explores

More information

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks)

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks) AQA Questions from 2004 to 2006 Particle Physics 239 94 1. (a) An ion of plutonium Pu has an overall charge of +1.6 10 19 C. For this ion state the number of (i) protons... neutrons... (iii) electrons...

More information

Hadron Structure Theory I. Alexei Prokudin

Hadron Structure Theory I. Alexei Prokudin Haron Strctre Theory I Alexei Prokin The plan: l Lectre I: Strctre of the ncleon l Lectre II Transverse Momentm Depenent istribtions (TMDs) Semi Inclsive Deep Inelastic Scattering (SIDIS) l Ttorial Calclations

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics Standard Model Introdtion 1 Qarknet Syrase Smmer Institte Partile Physis Letre 2 Topis for Letre 2 Introdtion to Standard Model Eletromagneti & Strong Interations 2 Prelde Definition of Theory: a oherent

More information

VI. The quark model: hadron quantum numbers, resonances

VI. The quark model: hadron quantum numbers, resonances VI. The qark model: hadron qantm nmbers, resonances Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space symmetries : J, P, C. Common notation: J P (e.g. for proton: 1 2 --+ ), or J

More information

Chapter 3. Building Hadrons from Quarks

Chapter 3. Building Hadrons from Quarks P570 Chapter Bilding Hadrons from Qarks Mesons in SU() We are now ready to consider mesons and baryons constrcted from qarks. As we recall, mesons are made of qark-antiqark pair and baryons are made of

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Post-Sphaleron Baryogenesis and n n Oscillations. K.S. Babu

Post-Sphaleron Baryogenesis and n n Oscillations. K.S. Babu Post-Sphaleron Baryogenesis an n n Oscillations K.S. Bab Oklahoma State University INT Workshop on Netron-Antinetron Oscillations University of Washington, Seattle October 23 27, 2017 Base on: K. S. Bab,

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Logarithmic, Exponential and Other Transcendental Functions

Logarithmic, Exponential and Other Transcendental Functions Logarithmic, Eponential an Other Transcenental Fnctions 5: The Natral Logarithmic Fnction: Differentiation The Definition First, yo mst know the real efinition of the natral logarithm: ln= t (where > 0)

More information

Examination in Nuclear and Particle Physics

Examination in Nuclear and Particle Physics Eamination in Nuclear and Particle Physics 009-0-9 Time: Monday 9 October 009, 4:00-9:00 hours. Allowed means: Physics Handbook - Nordling and Österman, β Mathematical Handbook, Charts of the Nuclides

More information

PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS

PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS PHYSICS 489/1489 LECTURE 16: WEAK INTERACTION OF HADRONS ANNOUNCEMENTS Problem Set 3 e on Friay 1700 No cla next Teay No office hor Monay, Teay Sorry! Pleae feel free to en me email abot qetion, etc. or

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should:

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: include the names of the interactions identify the groups of particles that

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Chapter 46 Solutions

Chapter 46 Solutions Chapter 46 Solutions 46.1 Assuming that the proton and antiproton are left nearly at rest after they are produced, the energy of the photon E, must be E = E 0 = (938.3 MeV) = 1876.6 MeV = 3.00 10 10 J

More information

Particles. Constituents of the atom

Particles. Constituents of the atom Particles Constituents of the atom For Z X = mass number (protons + neutrons), Z = number of protons Isotopes are atoms with the same number of protons number but different number of neutrons. charge Specific

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011

Physics 161 Homework 2 - Solutions Wednesday August 31, 2011 Physics 161 Homework 2 - s Wednesday August 31, 2011 Make sure your name is on every page, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007 Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Possible holographic universe, graviton rest mass, mass gap and dark energy

Possible holographic universe, graviton rest mass, mass gap and dark energy JJJPL report 0423-2 (2015); vixra:1508.0292 (2015). Possible holographic niverse, graviton rest mass, mass gap and dark energy Jae-Kwang Hwang JJJ Physics Laboratory, 1077 Beech Tree Lane, Brentwood, TN

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information

Light flavor asymmetry of polarized quark distributions in thermodynamical bag model

Light flavor asymmetry of polarized quark distributions in thermodynamical bag model Inian Jornal of Pre & Applie Physics Vol. 5, April 014, pp. 19-3 Light flavor asymmetry of polarize qark istribtions in thermoynamical bag moel K Ganesamrthy a & S Mrganantham b* a Department of Physics,

More information

A Note on Irreducible Polynomials and Identity Testing

A Note on Irreducible Polynomials and Identity Testing A Note on Irrecible Polynomials an Ientity Testing Chanan Saha Department of Compter Science an Engineering Inian Institte of Technology Kanpr Abstract We show that, given a finite fiel F q an an integer

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Electroweak Pion decay in the Bethe-Salpeter approach

Electroweak Pion decay in the Bethe-Salpeter approach Electroweak Pion ecay in the Bethe-Salpeter approach Wali Ahme Mian in collaboration with Axel Maas an Helios Sanchis-Alepz Bon states in QCD an beyon St. Goar Feb. 20th-23th, 2017 W. A. Mian Electroweak

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

(a) For e/0, two vectors, abc = {011, 111} can detect it. Thus. (b) For e/1, one vector, abc = 010 can detect it. Thus

(a) For e/0, two vectors, abc = {011, 111} can detect it. Thus. (b) For e/1, one vector, abc = 010 can detect it. Thus Chapter 4 Exercise Solutions 4.1 (Ranom Test Generation We woul enumerate the pseuo-exhaustive vectors or each o the three primary output. Let T1 be the exhaustive test set o 8 vectors or inputs a, b,

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

5.5 U-substitution. Solution. Z

5.5 U-substitution. Solution. Z CHAPTER 5. THE DEFINITE INTEGRAL 22 5.5 U-sbstittion Eample. (a) Fin the erivative of sin( 2 ). (b) Fin the anti-erivative cos( 2 ). Soltion. (a) We se the chain rle: sin(2 )=cos( 2 )( 2 ) 0 =cos( 2 )2

More information

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

PHYS 3446 Lecture #17

PHYS 3446 Lecture #17 PHY 3446 Lecture #7 Monday, Nov. 6, 26 Dr.. Elementary Particle Properties Quantum Numbers trangeness Isospin Gell-Mann-Nishijima Relations Production and Decay of Resonances Monday, Nov. 6, 26 PHY 3446,

More information

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge An Introduction to Modern Particle Physics Mark Thomson University of Cambridge Science Summer School: 30 th July - 1 st August 2007 1 Course Synopsis Introduction : Particles and Forces - what are the

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

SF2972 Game Theory Exam with Solutions March 19, 2015

SF2972 Game Theory Exam with Solutions March 19, 2015 SF2972 Game Theory Exam with Soltions March 9, 205 Part A Classical Game Theory Jörgen Weibll an Mark Voornevel. Consier the following finite two-player game G, where player chooses row an player 2 chooses

More information

Episode 535: Particle reactions

Episode 535: Particle reactions Episode 535: Particle reactions This episode considers both hadrons and leptons in particle reactions. Students must take account of both conservation of lepton number and conservation of baryon number.

More information

9 Nuclear decay Answers to exam practice questions

9 Nuclear decay Answers to exam practice questions Pages 173 178 Exam practice questions 1 X-rays are quanta of energy emitted when electrons fall to a lower energy level, and so do not emanate from the nucleus Answer D. 2 Alpha particles, being the most

More information

Lecture 11 Weak Decays of Hadrons

Lecture 11 Weak Decays of Hadrons Lectre 11 Weak Decays of Hadrons M - The Cabibbo- Kobayashi*- Maskawa* Matrix (* Nobel prize 008) 1 Charged Pion Decay Charged pion lifekme τ(π + ) = τ(π ) = 6 ns Matrix element: V d M = G F f π (ν µ )

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

PARTICLE PHYSICS: A PHYSICS KIT

PARTICLE PHYSICS: A PHYSICS KIT FORCE SUMMARY Force charge? baryon number? strangeness? leton number? Range Force carrier article Strong Short range: attractive u to 3 10-15 m. Below 0.5 10-15 m, it is reulsive. Gluon Weak No Very short

More information

Atomic emission & absorption spectra

Atomic emission & absorption spectra Name: Date: Modern Physics Models of the Atom The word atom comes from the Greek word atomos meaning indivisible We now know that this model of the atom is not accurate JJ Thompson Experiment and atomic

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory Neutrino Physics Kam-Biu Luk Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory 4-15 June, 2007 Outline Brief overview of particle physics Properties of

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Intro to Particle Physics and The Standard Model. Robert Clare UCR

Intro to Particle Physics and The Standard Model. Robert Clare UCR Intro to Particle Physics and The Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960 s Timeline

More information

What is matter and how is it formed?

What is matter and how is it formed? What is matter and how is it formed? Lesson 6: Subatomic Particles Subatomic particles refers to particles that are more "fundamental" than... Are these fundamental particles or are they made up of smaller,

More information

If the whole universe has no meaning, we. should never have found out that it has no. meaning: just as, if there were no light in

If the whole universe has no meaning, we. should never have found out that it has no. meaning: just as, if there were no light in If the whole universe has no meaning, we should never have found out that it has no meaning: just as, if there were no light in the universe and therefore no creatures with eyes, we should never know it

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

At this time the quark model consisted of three particles, the properties of which are given in the table.

At this time the quark model consisted of three particles, the properties of which are given in the table. *1 In 1961 Murray Gell-Mann predicted the existence of a new particle called an omega (Ω) minus. It was subsequently discovered in 1964. At this time the quark model consisted of three particles, the properties

More information

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK)

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Problem I: (a) Give an example of experimental evidence that the partons in the nucleon (i) are fractionally charged. How can

More information

Lecture: Corporate Income Tax - Unlevered firms

Lecture: Corporate Income Tax - Unlevered firms Lectre: Corporate Income Tax - Unlevered firms Ltz Krschwitz & Andreas Löffler Disconted Cash Flow, Section 2.1, Otline 2.1 Unlevered firms Similar companies Notation 2.1.1 Valation eqation 2.1.2 Weak

More information