Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics

Size: px
Start display at page:

Download "Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics"

Transcription

1 Standard Model Introdtion 1 Qarknet Syrase Smmer Institte Partile Physis

2 Letre 2 Topis for Letre 2 Introdtion to Standard Model Eletromagneti & Strong Interations 2

3 Prelde Definition of Theory: a oherent grop of tested general propositions, ommonly regarded as orret, that an be sed as priniples of explanation and predition for a lass of phenomena. Important to add & reall: Theory is something that is falsifiable, bt not provable. Theories we teah abot have proven to be preditive, and therefore we believe them bt they are still falsifiable. Even Deeper Theory Deeper Theory Theory When do yo know that yo ve reahed the ltimate theory The Theory of Everything!? 3

4 The Standard Model Partiles Aim of researh into matter is to ome p with the most fndamental desription of partiles and fores years have lead s to a fairly eonomial pitre. I II III All fndamental partiles to date are fond to be fermions (spin 1/2) of type: Qarks (q=+2/3[,,t] or 1/3[d,s,b]) Leptons (q=0 or 1) Antipartiles have opposite harge and same mass as these partiles. 4

5 The Standard Model Fores Partiles interat via fores. What is fore? Yeah, OK, a psh or a pll F = dp/dt, an exhange of momentm. The modern view of fores is that they reslt from an interation between two partiles Not srprising, even Newton s 3 rd Law tells s that! In the modern view, the interation is proded by the exhange of a fore arrier. Eah fore has one (or more) arriers that mediate the interation in qestion. The photon is the mediator of the eletromagneti interation. 5

6 The Hydrogen atom Yo all know that the prinipal energy levels of the H atom is given by the simple formla: E n = 13.6 ev / n 2 Bt where does the 13.6 ev ome from? From qantm physis, yo an show that: 13.6 ev 2 m e e 2 2 m e e em( m ) e The qantity em is alled the EM opling onstant. It s vale is ~1/137, and gives the strength of the opling between a harge q=±e and a photon. What wold em be the opling between a and a p qark? 6

7 What is harge anyway? What is eletri harge? I really don t know, do yo? Best answer I have: It is an intrinsi property that allows ertain partiles to interat via the EM fore, i.e. interat with photons. No harge no play with Dr. photon! The strength of the interation will depend on the harge (larger harge larger fore) What is mass? What is spin? 7

8 Copling onstants In the H atom, the eletron is bond de to the ontinal exhange of photons between the eletron and the proton. The strength of that interation is diretly proportional to the EM opling onstant, em! In general, all fore arriers will ople to partiles with some strength. The partile in qestion mst have the right harge (more on this as we go) The larger the opling onstant, the large the energy level splittings, larger probability of interation orring, et. 8

9 The EM fore The qantm desription of EM interations of harged partiles is alled QED (Qantm EletroDynamis). Rihard Feynman was a pioneer in developing QED. Thanks to him (and others), we an draw diagrams of interations, apply well known Feynman rles to them, and allate the rate or probability of some proess. So alled Feynman diagrams We won t allate anything, bt they are a very sefl visal aid 9

10 Bak to fores Why does a nles with many (repelling) protons stay together? The protons are so lose, the replsive EM fore mst be ginormos! From Newtonian physis, yo know there MUST be a STRONGER fore that s holding them all together! The STRONG FORCE 10

11 Strong Fore The strongest of the for fores responsible for holding the nles together. Modeled after QED, de its spetalar sess. It is alled QCD (QantmChromoDynamis) QCD is really a theory of the interations of qarks The binding between protons and netrons is a residal effet of the QCD interations. Ex: Hydrogen, van der Waal, ovalent, ioni, et bonds in hemistry are NOT fndamental fores. They re all residal effets of the EM fore! QCD has some similar featres to QED A fore arrier (glon, also massless) It oples to some intrinsi property of qarks (olor harge) Big differene: range limited to ~nlear sizes ( range for EM fore ) 11

12 Hadrons We find in natre that qarks are bond p in two possible ways: Baryons: 3 qarks stk together proton = (d), netron = (dd) Mesons: qark + antiqark bond together pions: + = (d), = (d), 0 = (1/ 2)(+dd) Reall, in eletromagnetism, it is the eletri harge that allows them to interat via the EM fore (photons) Qarks arry olor harge, and it is this property (not eletri harge) that allows them to interat via the strong fore (glons) Bt instead of (+, ), qarks have 3 possible vales of this attribte. For historial reasons, they re labeled RED, GREEN & BLUE. 12

13 Matter Matter in the Standard Model Qarks Leptons t t t t t t e e + d d d s s s b b b d d d s s s b b b e e Not observed freely in natre? Observed freely : Atoms, Nleosynthesis olor harge d leads to qarks binding together proton netron Baryons b + B 0 Mesons Hydrogen 13

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube

W + W - Z 0. Question. From Last Time. Fundamental Matter Particles. The Standard Model. Carriers of the weak force. Ice Cube From Last Time Dissse the weak interation All qarks an leptons have a weak harge They interat throgh the weak interation Weak interation often swampe y eletromagneti or strong interation. Interation with

More information

Addition of velocities. Taking differentials of the Lorentz transformation, relative velocities may be calculated:

Addition of velocities. Taking differentials of the Lorentz transformation, relative velocities may be calculated: Addition of veloities Taking differentials of the Lorentz transformation, relative veloities may be allated: So that defining veloities as: x dx/dt, y dy/dt, x dx /dt, et. it is easily shown that: With

More information

Let s move to Bound States

Let s move to Bound States Let s move to Bound States When we disuss bound states of two objets in entral-fore potential, kineti energy and potential energy are ~the same. How does this ompare to the rest energy of the objets? Hydrogen

More information

V. Hadron quantum numbers

V. Hadron quantum numbers V. Hadron qantm nmbers Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space-time symmetries : total spin J, parity P, charge conjgation C. Common notation: 1 -- + 2 J P (e.g. for proton:

More information

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons

Particles and fields. Today: Review Particle Physics. Question. Quantum Electrodynamics: QED. Electrons and photons Exam 4: Fri. May 10, in-class 20 qestions, covers fission, fsion, particle physics No final exam. Essays retrne Friay Toay: Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

QUARK WORKBENCH TEACHER NOTES

QUARK WORKBENCH TEACHER NOTES QUARK WORKBENCH TEACHER NOTES DESCRIPTION Stents se cleverly constrcte pzzle pieces an look for patterns in how those pieces can fit together. The pzzles pieces obey, as mch as possible, the Stanar Moel

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Chapter 17. Weak Interactions

Chapter 17. Weak Interactions Chapter 17 Weak Interactions The weak interactions are meiate by W ± or (netral) Z exchange. In the case of W ±, this means that the flavors of the qarks interacting with the gage boson can change. W ±

More information

What is fundamental? wwhat is it made of? whow is it all held together? The TWO most fundamental questions about the universe are: Fig. 15.1, p.

What is fundamental? wwhat is it made of? whow is it all held together? The TWO most fundamental questions about the universe are: Fig. 15.1, p. What is fndamental? The TWO most fndamental qestions abot the niverse are: wwhat is it made of? whow is it all held together? Fig. 15.1, p. 467 For Fndamental Elements l The Hnt for the answers to those

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle

Illustrations of a Modified Standard Model: Part 1-The Solar Proton- Proton Cycle Illstrations of a Modified : Part 1-The Solar Proton- Proton Cycle by Roger N. Weller, (proton3@gmail.com), Febrary 23, 2014 Abstract A proposed modification of the, when applied to the Solar Proton-Proton

More information

1 Drawing Feynman Diagrams

1 Drawing Feynman Diagrams 1 Drawing Feynman Diagrams 1. A ermion (qark, lepton, netrino) is rawn by a straight line with an arrow pointing to the let: 2. An antiermion is rawn by a straight line with an arrow pointing to the right:

More information

Overview of particle physics

Overview of particle physics Overview of particle physics The big qestions of particle physics are 1. What is the niverse mae of? 2. How is it hel together? We can start at orinary istances an work or way own. Macroscopic stff is

More information

arxiv: v1 [hep-ph] 25 Mar 2014

arxiv: v1 [hep-ph] 25 Mar 2014 Moleclar state Σ b Σ b in the copled-channel formalism S.M. Gerasyta and E.E. Matskevich Department of Physics, St. Petersbrg State Forest Technical University, Instittski Per. 5, St. Petersbrg 940, Rssia

More information

Chapter 3. Building Hadrons from Quarks

Chapter 3. Building Hadrons from Quarks P570 Chapter Bilding Hadrons from Qarks Mesons in SU() We are now ready to consider mesons and baryons constrcted from qarks. As we recall, mesons are made of qark-antiqark pair and baryons are made of

More information

VI. The quark model: hadron quantum numbers, resonances

VI. The quark model: hadron quantum numbers, resonances VI. The qark model: hadron qantm nmbers, resonances Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space symmetries : J, P, C. Common notation: J P (e.g. for proton: 1 2 --+ ), or J

More information

INTRODUCTION TO QUANTUM MECHANICS

INTRODUCTION TO QUANTUM MECHANICS A. La Rosa Letre Notes PSU-Physis PH 45 INTRODUCTION TO QUANTUM MECHANICS PART-I TRANSITION from CLASSICAL to QUANTUM PHYSICS CHAPTER CLASSICAL PHYSICS ELECTROMAGNETISM and RELATIITY REIEW,. ELECTROMAGNETISM..A

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Particle physics: what is the world made of?

Particle physics: what is the world made of? Particle physics: what is the world made of? From our experience from chemistry has told us about: Name Mass (kg) Mass (atomic mass units) Decreasing mass Neutron Proton Electron Previous lecture on stellar

More information

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013 Fundamental Forces David Morrissey Key Concepts, March 15, 2013 Not a fundamental force... Also not a fundamental force... What Do We Mean By Fundamental? Example: Electromagnetism (EM) electric forces

More information

Chapter 39 Relativity

Chapter 39 Relativity Chapter 39 Relatiity from relatie motion to relatiity 39. The Priniple of Galilean Relatiity The laws of mehanis mst be the same in all inertial frames of referene. Galilean spae-time transformation eqations

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

CHAPTER 5 INTRODUCTION TO OCEANIC TURBIDITY CURRENTS 5.1 INTRODUCTION

CHAPTER 5 INTRODUCTION TO OCEANIC TURBIDITY CURRENTS 5.1 INTRODUCTION CHAPTER 5 INTRODCTION TO OCEANIC TRBIDITY CRRENTS 5.1 INTRODCTION Trbidity rrents are the ndersea eqivalents of sediment-laden river flows. They onsist of density-driven bottom rrents for whih the agent

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Two questions from the exam

Two questions from the exam Two qestions from the exam 3. When the sn is located near one of the horizons, an observer looking at the sky directly overhead will view partially polarized light. This effect is de to which of the following

More information

NLO QCD CORRECTIONS TO VBF AND VVV PRODUCTION

NLO QCD CORRECTIONS TO VBF AND VVV PRODUCTION NLO QCD CORRECTIONS TO VBF AND VVV PRODUCTION Dieter Zeppenfeld Universität Karlsrhe CTEQ Meeting, Argonne, De. 5 6, 2008 VBF Proesses NLO for, Z and ZZ prodtion Phenomenology and reslts for LHC Conlsions

More information

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points)

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points) Problem 3 : Solution/marking sheme Large Hadron Collider 10 points) Part A. LHC Aelerator 6 points) A1 0.7 pt) Find the exat expression for the final veloity v of the protons as a funtion of the aelerating

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Properties of Quarks

Properties of Quarks PHY04 Partile Physis 9 Dr C N Booth Properties of Quarks In the earlier part of this ourse, we have disussed three families of leptons but prinipally onentrated on one doublet of quarks, the u and d. We

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

10.2 Solving Quadratic Equations by Completing the Square

10.2 Solving Quadratic Equations by Completing the Square . Solving Qadratic Eqations b Completing the Sqare Consider the eqation ( ) We can see clearl that the soltions are However, What if the eqation was given to s in standard form, that is 6 How wold we go

More information

Exploring GPDs: energy-momentum tensor & applications

Exploring GPDs: energy-momentum tensor & applications Precision Radiative Corrections for Next Generation Experiments May 16-19, 2016 Thomas Jefferson National Accelerator Facility Newport News, VA Exploring GPDs: energy-momentm tensor & applications Peter

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Generalized Dimensional Analysis

Generalized Dimensional Analysis #HUTP-92/A036 7/92 Generalized Dimensional Analysis arxiv:hep-ph/9207278v1 31 Jul 1992 Howard Georgi Lyman Laboratory of Physis Harvard University Cambridge, MA 02138 Abstrat I desribe a version of so-alled

More information

The Simple Solutions of Four Actual Problems. of General Theory of Relativity.

The Simple Solutions of Four Actual Problems. of General Theory of Relativity. The Simple Soltions of For Atal Problems of General Theory of Relativity. H Changwei Room 81, No.17,Lane 1769, Pdong Wlian Road, 19 Shanghai China,1-8818, hhangwei5@yahoo.om.n Abstrat: It is qite ompliated

More information

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004 Quiz is This Friday Quiz will over Setions.-.6 (inlusive) Remaining material will be arried over to Quiz Bring Blue Book, hek alulator battery Write all answers in indelible ink else no grade! Write answers

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Metal: a free electron gas model. Drude theory: simplest model for metals Sommerfeld theory: classical mechanics quantum mechanics

Metal: a free electron gas model. Drude theory: simplest model for metals Sommerfeld theory: classical mechanics quantum mechanics Metal: a free eletron gas model Drude theory: simplest model for metals Sommerfeld theory: lassial mehanis quantum mehanis Drude model in a nutshell Simplest model for metal Consider kinetis for eletrons

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently

Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently Relatiity II I. Henri Poincare's Relatiity Principle In the late 1800's, Henri Poincare proposed that the principle of Galilean relatiity be expanded to inclde all physical phenomena and not jst mechanics.

More information

Gravity from the Uncertainty Principle.

Gravity from the Uncertainty Principle. Gravity from the Unertainty Priniple. M.E. MCulloh Otober 29, 2013 Abstrat It is shown here that Newton's gravity law an be derived from the unertainty priniple. The idea is that as the distane between

More information

State variable feedback

State variable feedback State variable feedbak We have previosly disssed systems desribed by the linear state-spae eqations Ax B y Cx n m with xt () R the internal state, t () R the ontrol inpt, and yt () R the measred otpt.

More information

A Preliminary Explanation for the Pentaquark P found by LHCb

A Preliminary Explanation for the Pentaquark P found by LHCb A Preliminary Explanation for the Pentaquark P found by HCb Mario Everaldo de Souza Departamento de Físia, Universidade Federal de Sergipe, Av. Marehal Rondon, s/n, Rosa Elze, 49100-000 São Cristóvão,

More information

ELECTROCHEMISTRY Lecture/Lession Plan -1

ELECTROCHEMISTRY Lecture/Lession Plan -1 Chapter 4 ELECTROCHEMISTRY Leture/Lession Plan -1 ELECTROCHEMISTRY 4.1 Conept of eletrohemistry Eletrohemistry is a branh of hemistry where we will study how hemial energy an be transformed into eletrial

More information

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap Physics 121 for Majors Class 9 Newton s Laws Standard Model Last Class Matrices Classical boosts Lorentz boosts Space-time four-vectors Space and time problems in relativity Today s Class Newton s Laws

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

How the Thrust of Shawyer s Thruster can be Strongly Increased

How the Thrust of Shawyer s Thruster can be Strongly Increased How the Thrust of Shawyer s Thruster an be Strongly Inreased Fran De Aquino Professor Emeritus of Physis, Maranhao State Uniersity, UEMA. Titular Researher (R) of National Institute for Spae Researh, INPE

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles Final Exam: Thr. Dec. 21, 2:45-4:45 pm, 113 Psycholoy Bilin Exam is cmlative, coverin all material Review Chap. 18: Particle Physics an fiels: a new pictre Qarks an leptons The stron an weak interaction

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introdtion to Metabolism Name Period ---------------------- ---------- Chapter 8: An Introdtion to Metabolism Conept 8.1 An organism's metabolism transforms matter and energy, sbjet to the

More information

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the

mon netrino ν μ ß 0 0 ta fi ta netrino ν fi ß 0 0 Particles have corresponing antiparticles which have the opposite spin an charge. Each of the LECTURE 13 Elementary Particle Physics (The chart on the classroom wall can be fon at http://www-pg.lbl.gov/cpep/cpep sm large.html.) For Fnamental Forces As far as we know, there are jst for fnamental

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

Possible holographic universe, graviton rest mass, mass gap and dark energy

Possible holographic universe, graviton rest mass, mass gap and dark energy JJJPL report 0423-2 (2015); vixra:1508.0292 (2015). Possible holographic niverse, graviton rest mass, mass gap and dark energy Jae-Kwang Hwang JJJ Physics Laboratory, 1077 Beech Tree Lane, Brentwood, TN

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Nuclear Shell Structure Evolution Theory

Nuclear Shell Structure Evolution Theory Nulear Shell Struture Evolution Theory Zhengda Wang (1) Xiaobin Wang () Xiaodong Zhang () Xiaohun Wang () (1) Institute of Modern physis Chinese Aademy of SienesLan Zhou P. R. China 70000 () Seagate Tehnology

More information

A proposed experiment for measuring the speed of propagation of the Coulomb force.

A proposed experiment for measuring the speed of propagation of the Coulomb force. A proposed experiment for measuring the speed of propagation of the Coulomb fore. January 29, 2009 1 Introdution The eletri field at a time t due to an eletrial harge moving with veloity v is given, using

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1

5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1 5. Feynman Diarams Partile an Nulear Physis Dr. Tina Potter 2017 Dr. Tina Potter 5. Feynman Diarams 1 In this setion... Introution to Feynman iarams. Anatomy of Feynman iarams. Allowe verties. General

More information

An Investigation into Estimating Type B Degrees of Freedom

An Investigation into Estimating Type B Degrees of Freedom An Investigation into Estimating Type B Degrees of H. Castrp President, Integrated Sciences Grop Jne, 00 Backgrond The degrees of freedom associated with an ncertainty estimate qantifies the amont of information

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

PY Modern Physics

PY Modern Physics PY 351 - Modern Physis Assignment 6 - Otober 19, 2017. Due in lass on Otober 26, 2017. Assignment 6: Do all six problems. After a base of 4 points (to make the maximum sore equal to 100), eah orret solution

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions)

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions) .0 Fall 05, Problem Set 6 (Normal Version Solutions) Due: November, :59PM on Stellar November 4, 05 Complete all the assigned problems, and do make sure to show your intermediate work. Please upload your

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

n 1 sin 1 n 2 sin 2 Light and Modern Incident ray Normal 30.0 Air Glass Refracted ray speed of light in vacuum speed of light in a medium c v

n 1 sin 1 n 2 sin 2 Light and Modern Incident ray Normal 30.0 Air Glass Refracted ray speed of light in vacuum speed of light in a medium c v Light and Modern E hf n speed of light in vacm speed of light in a medim c v n sin n sin Incident ray Normal TIP. The reqency Remains the Same The freqency of a wave does not change as the wave passes

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 0 February 004 Today in Physis 8: dispersion in onduting dia Semilassial theory of ondutivity Condutivity and dispersion in tals and in very dilute ondutors : group veloity plasma frequeny

More information

Bayes and Naïve Bayes Classifiers CS434

Bayes and Naïve Bayes Classifiers CS434 Bayes and Naïve Bayes Classifiers CS434 In this lectre 1. Review some basic probability concepts 2. Introdce a sefl probabilistic rle - Bayes rle 3. Introdce the learning algorithm based on Bayes rle (ths

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

PoS( EPS-HEP 2013)338

PoS( EPS-HEP 2013)338 Flavor-violation in two-higgs-doblet models sorce: https://doi.org/1.7892/boris.64247 downloaded: 13.3.217, Christoph Greb and Ahmet Kokl, Albert Einstein Center for Fndamental Physics, Institte for Theoretical

More information

= ν L. C ν L. = ν R. P ν L. CP ν L. CP Violation. Standard Model contains only left-handed neutrinos and right-handed anti-neutrinos

= ν L. C ν L. = ν R. P ν L. CP ν L. CP Violation. Standard Model contains only left-handed neutrinos and right-handed anti-neutrinos Phy489 Leture 9 1 CP iolation Stanar Moel ontains only left-hane neutrinos an right-hane anti-neutrinos C ν L = ν L harge onjugation not a symmetry of the weak interation P ν L = ν R parity also not onserve

More information

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO)

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) LECTURE 22 Eletromagneti Spetrum 2 White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) 1. Add together magenta, yan, and yellow. Play with intensities of eah to get white light.

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information