Bayes and Naïve Bayes Classifiers CS434

Size: px
Start display at page:

Download "Bayes and Naïve Bayes Classifiers CS434"

Transcription

1 Bayes and Naïve Bayes Classifiers CS434

2 In this lectre 1. Review some basic probability concepts 2. Introdce a sefl probabilistic rle - Bayes rle 3. Introdce the learning algorithm based on Bayes rle (ths the name Bayes classifier) and its extension, Naïve Beyes

3 Commonly sed discrete distribtions Binary random variable ~ 1 ; Categorical distribtion: can take mltiple vales, 1,, 1

4 Learning the parameters of discrete Let denote the event of getting a head when tossing a coin ( Given a seqence of coin tosses, we estimate distribtions Let denote the otcome of rolling a die ( ) Given a seqence of rolls, we estimate Estimation sing sch simple conting performs what we call Maximm Likelihood Estimation (MLE). There are other methods as well.

5 Continos Random Variables A continos random variable can take any vale in an interval on the real line sally corresponds to some real-valed measrements, e.g., today s lowest temperatre The probability of a continos random variable taking an exact vale is typically zero: P(=56.2)=0 It is more meaningfl to measre the probability of a random variable taking a vale within an interval 50, 60 This is captred in the Probability density fnction

6 PDF: probability density fnction The probability of taking vale in a given range, is defined to be the area nder the PDF crve between and We often se to denote the PDF of Note: 0 can be larger than

7 What is the intitive meaning of? If When x is sampled from, yo are times more likely to see a vale near than that a vale near Higher probability (approximately 40% more likely) to see an x near 15, than an x that is near 20

8 Commonly Used Continos Distribtions f E.g., Sppose we know that in the last 10 mintes, one cstomer arrived at OSU federal conter #1. The actal time of arrival X can be modeled by a niform distribtion over the interval of (0, 10) f E.g., the body temp. of a person, the average IQ of a class of 1 st graders f E.g., the time between two sccessive forest fires

9 Conditional Probability P(A B) = probability of A being tre given that B is tre H = Have a headache F = Coming down with Fl F P(H) = 1/10 P(F) = 1/40 P(H F) = 1/2 Copyright Andrew W. Moore H Headaches are rare and fl is rarer, bt if yo re coming down with a fl there s a chance yo ll have a headache.

10 Conditional Probability F H P(H F) = Area of H and F region Area of F region H = Have a headache F = Coming down with Fl = P(H ^ F) P(F) P(H) = 1/10 P(F) = 1/40 P(H F) = 1/2 Copyright Andrew W. Moore

11 Definition of Conditional Probability Corollary: The Chain Rle Copyright Andrew W. Moore

12 Probabilistic Inference F H = Have a headache F = Coming down with Fl H P(H) = 1/10 P(F) = 1/40 P(H F) = 1/2 One day yo wake p with a headache. Yo think: Drat! 50% of fls are associated with headaches so I mst have a chance of coming down with fl Is this reasoning good? Copyright Andrew W. Moore

13 Probabilistic Inference F P(F H) = H H = Have a headache F = Coming down with Fl P(H) = 1/10 P(F) = 1/40 P(H F) = 1/2 P(F H) = Copyright Andrew W. Moore

14 What we st did P(A B) P(A B) P(B) P(B A) = = P(A) P(A) This is Bayes Rle Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53: Copyright Andrew W. Moore

15 Using Bayes Rle to Gamble $1.00 The Win envelope has a dollar and for beads in it The Lose envelope has three beads and no money Trivial qestion: someone draws an envelope at random and offers to sell it to yo. How mch shold yo pay in order to not lose money on average? Copyright Andrew W. Moore

16 Using Bayes Rle to Gamble $1.00 The Win envelope has a dollar and for beads in it Copyright Andrew W. Moore The Lose envelope has three beads and no money Interesting qestion: before deciding, yo are allowed to see one bead drawn from the envelope. Sppose it s black: How mch shold yo pay? Sppose it s red: How mch shold yo pay?

17 Where are we? We have recalled the fndamentals of probability We have discssed conditional probability and Bayes rle Now we will move on to talk abot the Bayes classifier

18 Basic Idea Each example is described by inpt featres, i.e.,,,,, for now we assme they are discrete variables Each example belongs to one of possible classes, denoted by 1,, If we don t know anything abot the featres, a randomly drawn example has a fixed probability to belong to class If an example belongs to class, its featres,, will follow some particlar distribtion,, Given an example,,, a bayes classifier reasons abot the vale of sing Bayes rle:,,,,,,

19 Learning a Bayes Classifier,,,,,, Given a set of training data, : 1,,, we learn: Class Priors: for 1, 1 Class Conditional Distribtion:,, for 1,, P( 1,..., m #of class y ) examples that have vales ( #of total class examples Marginal Distribtion of :,, 1, 2,..., No need to learn, can be compted sing m )

20 Learning a oint distribtion Bild a JD table for yor attribtes in which the probabilities are nspecified A B C Prob 0 0 0? 0 0 1? 0 1 0? 0 1 1? 1 0 0? 1 0 1? 1 1 0? 1 1 1? The fill in each row with records matching row Pˆ (row) total nmber of records A B C Prob Fraction of all records in which A and B are Tre bt C is False

21 Example of Learning a Joint This Joint was obtained by learning from three attribtes in the UCI Adlt Censs Database [Kohavi 1995] examples in total examples with this vale combination UCI machine learning repository:

22 Bayes Classifiers in a ntshell ) ( ),, ( argmax ),, ( ) ( ),, ( argmax ),, ( argmax predict y P y P P y P y P y P y m m m m 1. Estimate as fraction of class examples for =1,,c. 2. Learn conditional oint distribtion,, for 1,, 3. To make a prediction for a new example,, learning

23 Example: Spam Filtering Use the Bag-of-words representation Assme a dictionary of words and tokens Create one binary attribte for each dictionary entry i.e., 1 means the -th word is sed in the Consider a reasonable dictionary size: we have 5000 binary attribtes How many parameters that we need to learn? We need to learn the class prior (=1),(=0): 1 For each of the two classes, we need to learn a oint distribtion table of 5000 binary variables: 2 1 Total: Clearly we don t have nearly enogh data to estimate that many parameters

24 Joint Distribtion Overfits It is common to enconter the following sitation: No training examples have the exact vale combinations 1, 2,., 0 for all vales of How do we make predictions for sch examples? To avoid overfitting Make some bold assmptions to simplify the oint distribtion

25 The Naïve Bayes Assmption Assme that each featre is independent of any other featres given the class label ) ( ) ( ),, ( x P x P y x x P m m m m

26 A note abot independence Assme A and B are two random events. Then A and B are independent if and only if P(A B) = P(A)

27 Independence Theorems Assme P(A B) = P(A) Then P(A^B) = P(A) P(B) Assme P(A B) = P(A) Then P(B A) = P(B)

28 Examples of independent events Two separate coin tosses Consider the following for events: T: Toothache ( I have a toothache) C: Catch (dentist s steel probe catches in my tooth) A: Cavity (I have a cavity) W: Weather (weather is good) P(T, C, A, W) =P(T,C,A)P(W)

29 Conditional Independence P(A B,C) = P(A C) A and B are conditionally independent given C P(B A,C)=P(B C) If A and B are conditionally independent given C, then we have P(A,B C) = P(A C) P(B C)

30 Example of conditional independence T: Toothache ( I have a toothache) C: Catch (dentist s steel probe catches in my tooth) A: Cavity T and C are conditionally independent given A: P(T, C A) =P(T A)*P(C A) So, events that are not independent from each other might be conditionally independent given some fact It can also happen the other way arond. Events that are independent might become conditionally dependent given some fact. B=Brglar in yor hose; A = Alarm (Brglar) rang in yor hose E = Earthqake happened B is independent of E (ignoring some minor possible connections between them) However, if we know A is tre, then B and E are no longer independent. Why? P(B A) >> P(B A, E) Knowing E is tre makes it mch less likely for B to be tre

31 Naïve Bayes Classifier By assming that each attribte is independent of any other attribtes given the class label, we now have a Naïve Bayes Classifier Instead of learning a oint distribtion of all featres, we learn separately for each featre And we compte the oint by taking the prodct:

32 Naïve Bayes Classifiers in a ntshell m i i i m m m m y x P y P y P y x x P x x y P y predict ) ( ) ( argmax ) ( ),, ( argmax ),, ( argmax 1. Learn the for each featre, and y vale 2. Estimate as fraction of records with. 3. For a new example,, : learning

33 Example X 1 X 2 X 3 Y Apply Naïve Bayes, and make prediction for (1,0,1)?

34 Laplace Smoothing With the Naïve Bayes Assmption, we can still end p with zero probabilities E.g., if we receive an that contains a word that has never appeared in the training s 0for 0and 1 As sch we ignore all the other words in the becase of this single rare word Laplace smoothing can help 10 # of ex. with 1, 0 # of ex. with 0 2 1

35 Final Notes abot (Naïve) Bayes Classifier Any density estimator can be plgged in to estimate P(x 1,x 2,, x m y) for Bayes, or P(x i y) for Naïve Bayes Real valed attribtes can be discretized or directly modeled sing simple continos distribtions sch as Gassian (Normal) distribtion Naïve Bayes is wonderflly cheap and srvives tens of thosands of attribtes easily

Probabilistic and Bayesian Analytics

Probabilistic and Bayesian Analytics Probabilistic and Bayesian Analytics Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these

More information

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com Probability Basics These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides slide 1 Inference with Bayes rule: Example In a bag there are two envelopes one has a red ball (worth $100) and a black ball one

More information

Basic Probability and Statistics

Basic Probability and Statistics Basic Probability and Statistics Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Jerry Zhu, Mark Craven] slide 1 Reasoning with Uncertainty

More information

Sources of Uncertainty

Sources of Uncertainty Probability Basics Sources of Uncertainty The world is a very uncertain place... Uncertain inputs Missing data Noisy data Uncertain knowledge Mul>ple causes lead to mul>ple effects Incomplete enumera>on

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4375 --- Fall 2018 Bayesian a Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell 1 Uncertainty Most real-world problems deal with

More information

Introduction to Machine Learning

Introduction to Machine Learning Uncertainty Introduction to Machine Learning CS4375 --- Fall 2018 a Bayesian Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell Most real-world problems deal with

More information

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry

Department of Industrial Engineering Statistical Quality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control presented by Dr. Eng. Abed Schokry Department of Indstrial Engineering Statistical Qality Control C and U Chart presented by Dr. Eng. Abed

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Math 116 First Midterm October 14, 2009

Math 116 First Midterm October 14, 2009 Math 116 First Midterm October 14, 9 Name: EXAM SOLUTIONS Instrctor: Section: 1. Do not open this exam ntil yo are told to do so.. This exam has 1 pages inclding this cover. There are 9 problems. Note

More information

CS 188: Artificial Intelligence Spring Today

CS 188: Artificial Intelligence Spring Today CS 188: Artificial Intelligence Spring 2006 Lecture 9: Naïve Bayes 2/14/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Bayes rule Today Expectations and utilities Naïve

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 06: ayes Theorem Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) Eamonn Koegh (UC Riverside) Andrew Moore (CMU/Google) 1 Naïve ayes Classifier

More information

Lecture 9: Naive Bayes, SVM, Kernels. Saravanan Thirumuruganathan

Lecture 9: Naive Bayes, SVM, Kernels. Saravanan Thirumuruganathan Lecture 9: Naive Bayes, SVM, Kernels Instructor: Outline 1 Probability basics 2 Probabilistic Interpretation of Classification 3 Bayesian Classifiers, Naive Bayes 4 Support Vector Machines Probability

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

CS 331: Artificial Intelligence Naïve Bayes. Naïve Bayes

CS 331: Artificial Intelligence Naïve Bayes. Naïve Bayes CS 33: Artificial Intelligence Naïe Bayes Thanks to Andrew Moore for soe corse aterial Naïe Bayes A special type of Bayesian network Makes a conditional independence assption Typically sed for classification

More information

Probabilistic Models

Probabilistic Models Bayes Nets 1 Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables

More information

Introduction to AI Learning Bayesian networks. Vibhav Gogate

Introduction to AI Learning Bayesian networks. Vibhav Gogate Introduction to AI Learning Bayesian networks Vibhav Gogate Inductive Learning in a nutshell Given: Data Examples of a function (X, F(X)) Predict function F(X) for new examples X Discrete F(X): Classification

More information

An AI-ish view of Probability, Conditional Probability & Bayes Theorem

An AI-ish view of Probability, Conditional Probability & Bayes Theorem An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty.

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty. An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

COMP 328: Machine Learning

COMP 328: Machine Learning COMP 328: Machine Learning Lecture 2: Naive Bayes Classifiers Nevin L. Zhang Department of Computer Science and Engineering The Hong Kong University of Science and Technology Spring 2010 Nevin L. Zhang

More information

Machine Learning. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 8 May 2012

Machine Learning. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 8 May 2012 Machine Learning Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421 Introduction to Artificial Intelligence 8 May 2012 g 1 Many slides courtesy of Dan Klein, Stuart Russell, or Andrew

More information

Our Status. We re done with Part I Search and Planning!

Our Status. We re done with Part I Search and Planning! Probability [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Our Status We re done with Part

More information

BIOSTATISTICAL METHODS

BIOSTATISTICAL METHODS BIOSTATISTICAL METHOS FOR TRANSLATIONAL & CLINICAL RESEARCH ROC Crve: IAGNOSTIC MEICINE iagnostic tests have been presented as alwas having dichotomos otcomes. In some cases, the reslt of the test ma be

More information

Lecture 8: September 26

Lecture 8: September 26 10-704: Information Processing and Learning Fall 2016 Lectrer: Aarti Singh Lectre 8: September 26 Note: These notes are based on scribed notes from Spring15 offering of this corse. LaTeX template cortesy

More information

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning)

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Bayes Theorem & Naïve Bayes (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Review: Bayes Theorem & Diagnosis P( a b) Posterior Likelihood Prior P( b a) P( a)

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality.

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality. In today s lecture COSC343: Artificial Intelligence Lecture 5: Bayesian Reasoning Conditional probability independence Curse of dimensionality Lech Szymanski Dept. of Computer Science, University of Otago

More information

Probabilistic and Bayesian Learning

Probabilistic and Bayesian Learning Probabilistic and Bayesian Learning Note to other teachers and sers of these slides. Andrew wold be delighted if yo fond this sorce aterial sefl in giing yor own lectres. Feel free to se these slides erbati,

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Microscopic Properties of Gases

Microscopic Properties of Gases icroscopic Properties of Gases So far we he seen the gas laws. These came from observations. In this section we want to look at a theory that explains the gas laws: The kinetic theory of gases or The kinetic

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 14: Bayes Nets II Independence 3/9/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Decision Making in Complex Environments. Lecture 2 Ratings and Introduction to Analytic Network Process

Decision Making in Complex Environments. Lecture 2 Ratings and Introduction to Analytic Network Process Decision Making in Complex Environments Lectre 2 Ratings and Introdction to Analytic Network Process Lectres Smmary Lectre 5 Lectre 1 AHP=Hierar chies Lectre 3 ANP=Networks Strctring Complex Models with

More information

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Machine Learning 0-70/5 70/5-78, 78, Spring 00 Probability 0 Aarti Singh Lecture, January 3, 00 f(x) µ x Reading: Bishop: Chap, Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Announcements Homework

More information

Probabilistic Classification

Probabilistic Classification Bayesian Networks Probabilistic Classification Goal: Gather Labeled Training Data Build/Learn a Probability Model Use the model to infer class labels for unlabeled data points Example: Spam Filtering...

More information

Lecture 2: CENTRAL LIMIT THEOREM

Lecture 2: CENTRAL LIMIT THEOREM A Theorist s Toolkit (CMU 8-859T, Fall 3) Lectre : CENTRAL LIMIT THEOREM September th, 3 Lectrer: Ryan O Donnell Scribe: Anonymos SUM OF RANDOM VARIABLES Let X, X, X 3,... be i.i.d. random variables (Here

More information

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-1 April 01, Tallinn, Estonia UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL Põdra, P. & Laaneots, R. Abstract: Strength analysis is a

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH275: Statistical Methods Exercises VI (based on lectre, work week 7, hand in lectre Mon 4 Nov) ALL qestions cont towards the continos assessment for this modle. Q. The random variable X has a discrete

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 14, 2015 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

CS 188: Artificial Intelligence Fall 2009

CS 188: Artificial Intelligence Fall 2009 CS 188: Artificial Intelligence Fall 2009 Lecture 14: Bayes Nets 10/13/2009 Dan Klein UC Berkeley Announcements Assignments P3 due yesterday W2 due Thursday W1 returned in front (after lecture) Midterm

More information

Universal Scheme for Optimal Search and Stop

Universal Scheme for Optimal Search and Stop Universal Scheme for Optimal Search and Stop Sirin Nitinawarat Qalcomm Technologies, Inc. 5775 Morehose Drive San Diego, CA 92121, USA Email: sirin.nitinawarat@gmail.com Vengopal V. Veeravalli Coordinated

More information

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module Lab Manal for Engrd 202, Virtal Torsion Experiment Alminm modle Introdction In this modle, o will perform data redction and analsis for circlar cross section alminm samples. B plotting the torqe vs. twist

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 17: Representing Joint PMFs and Bayesian Networks Andrew McGregor University of Massachusetts Last Compiled: April 7, 2017 Warm Up: Joint distributions Recall

More information

4.2 First-Order Logic

4.2 First-Order Logic 64 First-Order Logic and Type Theory The problem can be seen in the two qestionable rles In the existential introdction, the term a has not yet been introdced into the derivation and its se can therefore

More information

An Investigation into Estimating Type B Degrees of Freedom

An Investigation into Estimating Type B Degrees of Freedom An Investigation into Estimating Type B Degrees of H. Castrp President, Integrated Sciences Grop Jne, 00 Backgrond The degrees of freedom associated with an ncertainty estimate qantifies the amont of information

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

Andrew W. Moore Professor School of Computer Science Carnegie Mellon University

Andrew W. Moore Professor School of Computer Science Carnegie Mellon University Spport Vector Machines Note to other teachers and sers of these slides. Andrew wold be delighted if yo fond this sorce material sefl in giving yor own lectres. Feel free to se these slides verbatim, or

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty Machine Learning CS6375 --- Spring 2015 a Bayesian Learning (I) 1 Uncertainty Most real-world problems deal with uncertain information Diagnosis: Likely disease given observed symptoms Equipment repair:

More information

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables Probability, Conditional Probability & Bayes Rule A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) 2 Discrete random variables A random variable can take on one of a set of different values, each with an

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classification n Uncertainty & robability n Baye's rule n Choosing Hypotheses- Maximum a posteriori n Maximum Likelihood - Baye's concept learning n Maximum Likelihood of real valued function n Bayes

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

Where are we in CS 440?

Where are we in CS 440? Where are we in CS 440? Now leaving: sequential deterministic reasoning Entering: probabilistic reasoning and machine learning robability: Review of main concepts Chapter 3 Making decisions under uncertainty

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Refresher on Discrete Probability

Refresher on Discrete Probability Refresher on Discrete Probability STAT 27725/CMSC 25400: Machine Learning Shubhendu Trivedi University of Chicago October 2015 Background Things you should have seen before Events, Event Spaces Probability

More information

Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom

Study on the impulsive pressure of tank oscillating by force towards multiple degrees of freedom EPJ Web of Conferences 80, 0034 (08) EFM 07 Stdy on the implsive pressre of tank oscillating by force towards mltiple degrees of freedom Shigeyki Hibi,* The ational Defense Academy, Department of Mechanical

More information

Frequency Estimation, Multiple Stationary Nonsinusoidal Resonances With Trend 1

Frequency Estimation, Multiple Stationary Nonsinusoidal Resonances With Trend 1 Freqency Estimation, Mltiple Stationary Nonsinsoidal Resonances With Trend 1 G. Larry Bretthorst Department of Chemistry, Washington University, St. Lois MO 6313 Abstract. In this paper, we address the

More information

COS 424: Interacting with Data. Lecturer: Dave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007

COS 424: Interacting with Data. Lecturer: Dave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007 COS 424: Interacting with ata Lecturer: ave Blei Lecture #11 Scribe: Andrew Ferguson March 13, 2007 1 Graphical Models Wrap-up We began the lecture with some final words on graphical models. Choosing a

More information

Conditional Probability & Independence. Conditional Probabilities

Conditional Probability & Independence. Conditional Probabilities Conditional Probability & Independence Conditional Probabilities Question: How should we modify P(E) if we learn that event F has occurred? Definition: the conditional probability of E given F is P(E F

More information

Midterm. You may use a calculator, but not any device that can access the Internet or store large amounts of data.

Midterm. You may use a calculator, but not any device that can access the Internet or store large amounts of data. INST 737 April 1, 2013 Midterm Name: }{{} by writing my name I swear by the honor code Read all of the following information before starting the exam: For free response questions, show all work, clearly

More information

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato Basic Probability Robert Platt Northeastern University Some images and slides are used from: 1. AIMA 2. Chris Amato (Discrete) Random variables What is a random variable? Suppose that the variable a denotes

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Multiplication and division. Explanation and worked examples. First, we ll look at work you should know at this level.

Multiplication and division. Explanation and worked examples. First, we ll look at work you should know at this level. x Mltilication and division Exlanation and worked examles Level First, we ll look at work yo shold know at this level. Work ot these mltilication and division sms: a) ) 96 c) 8 d) 6 Soltions: a) 9 6 Yo

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

Naive Bayes classification

Naive Bayes classification Naive Bayes classification Christos Dimitrakakis December 4, 2015 1 Introduction One of the most important methods in machine learning and statistics is that of Bayesian inference. This is the most fundamental

More information

Formules relatives aux probabilités qui dépendent de très grands nombers

Formules relatives aux probabilités qui dépendent de très grands nombers Formles relatives ax probabilités qi dépendent de très grands nombers M. Poisson Comptes rends II (836) pp. 603-63 In the most important applications of the theory of probabilities, the chances of events

More information

A [somewhat] Quick Overview of Probability. Shannon Quinn CSCI 6900

A [somewhat] Quick Overview of Probability. Shannon Quinn CSCI 6900 A [somewhat] Quick Overview of Probability Shannon Quinn CSCI 6900 [Some material pilfered from http://www.cs.cmu.edu/~awm/tutorials] Probabilistic and Bayesian Analytics Note to other teachers and users

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Algorithms for Classification: The Basic Methods

Algorithms for Classification: The Basic Methods Algorithms for Classification: The Basic Methods Outline Simplicity first: 1R Naïve Bayes 2 Classification Task: Given a set of pre-classified examples, build a model or classifier to classify new cases.

More information

Probabilistic Reasoning

Probabilistic Reasoning Course 16 :198 :520 : Introduction To Artificial Intelligence Lecture 7 Probabilistic Reasoning Abdeslam Boularias Monday, September 28, 2015 1 / 17 Outline We show how to reason and act under uncertainty.

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

The women s heptathlon in the Olympics consists of seven track and field

The women s heptathlon in the Olympics consists of seven track and field CHAPTER 6 The Standard Deviation as a Rler and the Normal Model The women s heptathlon in the Olympics consists of seven track and field events: the 200-m and 800-m rns, 100-m high hrdles, shot pt, javelin,

More information

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises LECTURE 1 State-Space Linear Sstems This lectre introdces state-space linear sstems, which are the main focs of this book. Contents 1. State-Space Linear Sstems 2. Block Diagrams 3. Exercises 1.1 State-Space

More information

Machine Learning Algorithm. Heejun Kim

Machine Learning Algorithm. Heejun Kim Machine Learning Algorithm Heejun Kim June 12, 2018 Machine Learning Algorithms Machine Learning algorithm: a procedure in developing computer programs that improve their performance with experience. Types

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

Integration of Basic Functions. Session 7 : 9/23 1

Integration of Basic Functions. Session 7 : 9/23 1 Integration o Basic Fnctions Session 7 : 9/3 Antiderivation Integration Deinition: Taking the antiderivative, or integral, o some nction F(), reslts in the nction () i ()F() Pt simply: i yo take the integral

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty November 2007

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty November 2007 1833-3 Workshop on Understanding and Evalating Radioanalytical Measrement Uncertainty 5-16 November 007 Applied Statistics: Basic statistical terms and concepts Sabrina BARBIZZI APAT - Agenzia per la Protezione

More information

Probability Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 27 Mar 2012

Probability Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 27 Mar 2012 1 Hal Daumé III (me@hal3.name) Probability 101++ Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 27 Mar 2012 Many slides courtesy of Dan

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Probability Steve Tanimoto University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

CS 188: Artificial Intelligence. Our Status in CS188

CS 188: Artificial Intelligence. Our Status in CS188 CS 188: Artificial Intelligence Probability Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Our Status in CS188 We re done with Part I Search and Planning! Part II: Probabilistic Reasoning

More information

VIBRATION MEASUREMENT UNCERTAINTY AND RELIABILITY DIAGNOSTICS RESULTS IN ROTATING SYSTEMS

VIBRATION MEASUREMENT UNCERTAINTY AND RELIABILITY DIAGNOSTICS RESULTS IN ROTATING SYSTEMS VIBRATIO MEASUREMET UCERTAITY AD RELIABILITY DIAGOSTICS RESULTS I ROTATIG SYSTEMS. Introdction M. Eidkevicite, V. Volkovas anas University of Technology, Lithania The rotating machinery technical state

More information

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018 Geometric Image Maniplation Lectre 4 Wednesda, Janar 4, 08 Programming Assignment Image Maniplation: Contet To start with the obvios, an image is a D arra of piels Piel locations represent points on the

More information

Where are we in CS 440?

Where are we in CS 440? Where are we in CS 440? Now leaving: sequential deterministic reasoning Entering: probabilistic reasoning and machine learning robability: Review of main concepts Chapter 3 Motivation: lanning under uncertainty

More information

Cartesian-product sample spaces and independence

Cartesian-product sample spaces and independence CS 70 Discrete Mathematics for CS Fall 003 Wagner Lecture 4 The final two lectures on probability will cover some basic methods for answering questions about probability spaces. We will apply them to the

More information

Stability of Model Predictive Control using Markov Chain Monte Carlo Optimisation

Stability of Model Predictive Control using Markov Chain Monte Carlo Optimisation Stability of Model Predictive Control sing Markov Chain Monte Carlo Optimisation Elilini Siva, Pal Golart, Jan Maciejowski and Nikolas Kantas Abstract We apply stochastic Lyapnov theory to perform stability

More information

Sources of Non Stationarity in the Semivariogram

Sources of Non Stationarity in the Semivariogram Sorces of Non Stationarity in the Semivariogram Migel A. Cba and Oy Leangthong Traditional ncertainty characterization techniqes sch as Simple Kriging or Seqential Gassian Simlation rely on stationary

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Strategic Timing of Content in Online Social Networks

Strategic Timing of Content in Online Social Networks Strategic Timing of Content in Online Social Networks Sina Modaresi Department of Indstrial Engineering, University of Pittsbrgh, Pittsbrgh PA 56, sim3@pitt.ed Jan Pablo Vielma Sloan School of Management,

More information

CS 188: Artificial Intelligence. Machine Learning

CS 188: Artificial Intelligence. Machine Learning CS 188: Artificial Intelligence Review of Machine Learning (ML) DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered.

More information

CS 331: Artificial Intelligence Probability I. Dealing with Uncertainty

CS 331: Artificial Intelligence Probability I. Dealing with Uncertainty CS 331: Artificial Intelligence Probability I Thanks to Andrew Moore for some course material 1 Dealing with Uncertainty We want to get to the point where we can reason with uncertainty This will require

More information