Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently

Size: px
Start display at page:

Download "Relativity II. The laws of physics are identical in all inertial frames of reference. equivalently"

Transcription

1 Relatiity II I. Henri Poincare's Relatiity Principle In the late 1800's, Henri Poincare proposed that the principle of Galilean relatiity be expanded to inclde all physical phenomena and not jst mechanics. This iew was spported experimentally by the Michelson-Morely experiment. Poincare's work was ery important becase it had a great inflence pon yong Albert Einstein. The laws of physics are identical in all inertial frames of reference. eqialently All reference frames in niform linear motion are eqialent. Yo can not physically determine absolte motion. II. Albert Einstein's Postlates We hae preiosly seen that H.A. Lorentz deeloped the basic eqations of special relatiity based pon a theory of the electron and determining the transformation eqations nder which Maxwell's eqations were coariant. We now consider the man who transformed physics in the twentieth centry. Einstein considered the problem in a radically different way. First, he began with two fndamental postlates: 1) The laws of physics are the identical in all inertial reference frames. 2) The speed of electromagnetic radiation in acm is constant, independent of any motion of the sorce. To Lorentz, the fact that all obserers measre the speed of light was a conseqence (reslt) of his theory based on the electron. It had no deeper meaning. To Einstein, this fact abot light was too niqe to be a coincidence. Ths, it was the nderlying principle pon which natre operated. Likewise, Einstein felt that Poincare's relatiity principle was spported by experimental eidence and mst be a fndamental principle pon which to bild a theory. Lorentz theory was based pon nerified properties of electrons and the ether while Einstein saw no

2 need for the ether at all. His theory was based pon experimentally erified facts! Einstein obtained the same eqations as Lorentz bt they had a far different meaning. The interferometer didn't contract de to being bilt ot of matter. Space itself is contracted. It makes no sense to talk abot the tre length of an object. It is the length of the object as seen in this reference frame. Or ery concepts abot the natre of space and time mst be modified! III. Eents A physical eent is defined by spatial and time coordinates (x,y,z,t) or eqialently (x',y',z',t'). IV. Simltaneity Eents that appear simltaneos to one obserer may not be simltaneos to a second obserer! Example: Consider two light beams emitted in opposite directions from the middle of a train traeling at 0.3 c as shown below. According to a person on the train, the light beams strike the detectors at the end of the train simltaneosly at t = L/c. Howeer, a person standing by the train track beliees the beam at the back of the train strikes first! 0.3 c Space-Time Diagram ct ct' x' x

3 The green line shows that the train obserer sees the two black eents simltaneosly. Howeer, simltaneos eents according to the track obserer occr along the prple line with the line flowing toward the pper right corner for increasing time. Black dashed line denotes the light cone. V. General Space Time Problems In Newtonian Mechanics, space and time are independent. Einstein showed that time and space are intertwined. Ths, it is not possible to separate space and time in most problems. (Problems in Chapter 6 of Scham s Otline shold help clarify this.) VI. Classical Doppler Shift (See Uniersity Physics Textbook) Anyone who has watched ato racing on TV is aware of the Doppler shift. As a race car approaches the camera, the sond of its engine increases in pitch (freqency). After the car passes the camera, the pitch of the car s engine decreases. We cold se this pitch to determine the relatie speed of the car. This techniqe is sed in many real world applications inclding ltrasond imaging, Doppler radar, and to determine the motion of stars. A. Moing Obserer Assme that we hae a stationary adio sorce that prodces sond waes of freqency f and speed. A stationary obserer shown below sees the time between each wae as y Sorce Obserer x Distance Time Speed 1 T f If the obserer is now moing at a elocity relatie to the sorce then the speed of the waes as seen by the obserer is

4 Speed where the positie sign is when the obserer is moing toward the sorce. The time between waes is now T' 1 f '. Taking the ratio of or two reslts we get that T T' f '. f f ' f B. Moing Sorce We now consider the case in which the sorce is moing toward the obserer. In this case, the wae's speed is nchanged bt the distance between wae fronts (waelength) is redced (increased) for the sorce moing toward (away) from the obserer as shown below: y Sorce T ' Obserer x From the diagram, we find the new waelength as ' T

5 ' T 1 ' 1 f T ' 1 c ' c f f ' Ths, the freqency seen by the obserer for a moing sorce is gien by f ' f. Note: The motion of the obserer and sorce create different effects. For sond, this difference is explained de to motion relatie to the preferred reference frame! This preferred frame is the reference frame stationary to the medim propagating the sond (air)! Problem: Or classical deriation wold imply that by measring the Doppler shift of light, yo cold determine if the obserer or sorce was in motion (ie measre absolte motion). Ths, or work is not consistent with relatiity that reqires the effects de to motion by the obserer and sorce to be the same. This problem cased Einstein to discard the ether theory of light and thereby inflenced his deelopment of Relatiity.

6 VII. Relatiistic Doppler Shift Since light has no medim, there shold be no difference between moing the sorce and the obserer. The problem with or preios deriation when dealing with light was that we didn't considered that space and time coordinates are different for the sorce and obserer. Ths, we mst accont for the contraction of space and dilation of time de to motion. After acconting for differences in time and space, we get the following reslt for both moing sorce and moing obserer f ' c c f See Chapter 3 of Modern Physics by Bersetin, Fishbane, and Gasiorowicz for the proof. VIII. Newton Second Law and Linear Momentm A. Newton Second Law Newton's Second Law has the same form in Special Relatiity that it does in Classical Physics. This garantees that Special relatiity prodces the same reslts as Newtonian mechanics at slow speeds. F ext dp dt B. Classical Linear Momentm According to the first postlate of relatiity, the laws of physics are the same for all inertial reference frames. Ths, all inertial obserers shold agree that linear momentm is consered in collisions! Einstein discoered that for collisions the classical linear momentm, dr p mo mo, was not consered for all obserers nder the Lorentz dt transformation!! Ths, there was a problem with calclating the linear momentm!

7 Einstein discoered that the following qantity was consered dring collisions: dr p mo where to is the proper time. o dt Howeer, this formla doesn't conceptally make sense as it inoles the measrement of position and time by different obserers. Srely, the linear momentm of an object doesn't reqire two different obserers to hae reality!! Using Calcls, we can rearrange the eqation as follows: p m o dr dt dt dt o m o c. p m o 1- c 2 m Ths, yo cold consider that it was the mass and not the elocity whose calclation had to be modified!! Einstein actally only considered the concept of rest mass to be sefl. I hae fond that this philosophical debate has no pedagogical ale at the leel of this corse. Most ndergradate stdents are better sered both in nderstanding the connection between relatiity and classical physics and in soling practical engineering problems by considering m to be the tre mass. Ths, I will teach the material with this philosophical approach. II. Rest Mass and Relatiistic Mass The mass of an object measred by an obserer depends on the motion of the object relatie to the obserer in relatiity. A. If the object is at rest with respect to an obserer, its mass will be the lowest and is called its rest mass, mo. This is an intrinsic property of the object and is the mass that we sed in classical physics.

8 B. An object moing at a speed with respect to an obserer will hae a larger apparent mass. This relatiistic mass, m, is related to the object's rest mass by the following formla for objects with non-zero rest masses: m m o 1 c 2 C. Linear Momentm Newton's Second Law is still correct bt yo mst se the correct mass (relatiistic mass) in calclating the linear momentm.

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS REVOLUTIONS IN MODERN PHYSICS:... L (P.588-591) Special Relatiity Time dilation is only one of the consequences of Einstein s special theory of relatiity. Since reference frames

More information

RELATIVISTIC DOPPLER EFFECT AND VELOCITY TRANSFORMATIONS

RELATIVISTIC DOPPLER EFFECT AND VELOCITY TRANSFORMATIONS Fundamental Journal of Modern Physics ISSN: 49-9768 Vol. 11, Issue 1, 018, Pages 1-1 This paper is aailable online at http://www.frdint.com/ Published online December 11, 017 RELATIVISTIC DOPPLER EFFECT

More information

Everything should be made as simple as possible, but not simpler -A. Einstein

Everything should be made as simple as possible, but not simpler -A. Einstein r1 Eerything should be made as simple as possible, but not simpler -A. Einstein r2 SR1... -3-2 -1 0 1 2 3... Synchronizing clocks At the origin, at three o clock, the clock sends out a light signal to

More information

Replacement of Einstein s Relativity Theory with a New One: Why the Second Postulate is Superfluous?

Replacement of Einstein s Relativity Theory with a New One: Why the Second Postulate is Superfluous? International Jornal of Physics, 16, Vol. 4, No. 5, 14-145 Available online at http://pbs.sciepb.com/ijp/4/5/5 Science and Edcation Pblishing DOI:1.1691/ijp-4-5-5 Replacement of Einstein s Relativity Theory

More information

General Physics I. Lecture 17: Moving Clocks and Sticks. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 17: Moving Clocks and Sticks. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 17: Moing Clocks and Sticks Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ With Respect to What? The answer seems to be with respect to any inertial frame

More information

Chapter 39 Relativity

Chapter 39 Relativity Chapter 39 Relatiity from relatie motion to relatiity 39. The Priniple of Galilean Relatiity The laws of mehanis mst be the same in all inertial frames of referene. Galilean spae-time transformation eqations

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Physics 2130: General Physics 3

Physics 2130: General Physics 3 Phsics 2130: General Phsics 3 Lecture 8 Length contraction and Lorent Transformations. Reading for Monda: Sec. 1.13, start Chap. 2 Homework: HWK3 due Wednesda at 5PM. Last Time: Time Dilation Who measures

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 2 LINEAR IMPULSE AND MOMENTUM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL LINEAR IMPULSE AND MOMENTUM On copletion of this ttorial yo shold be able to do the following. State Newton s laws of otion. Define linear

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

Low-emittance tuning of storage rings using normal mode beam position monitor calibration

Low-emittance tuning of storage rings using normal mode beam position monitor calibration PHYSIAL REVIEW SPEIAL TOPIS - AELERATORS AND BEAMS 4, 784 () Low-emittance tning of storage rings sing normal mode beam position monitor calibration A. Wolski* Uniersity of Lierpool, Lierpool, United Kingdom

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007 Graphs and Networks Lectre 5 PageRank Lectrer: Daniel A. Spielman September 20, 2007 5.1 Intro to PageRank PageRank, the algorithm reportedly sed by Google, assigns a nmerical rank to eery web page. More

More information

1 The space of linear transformations from R n to R m :

1 The space of linear transformations from R n to R m : Math 540 Spring 20 Notes #4 Higher deriaties, Taylor s theorem The space of linear transformations from R n to R m We hae discssed linear transformations mapping R n to R m We can add sch linear transformations

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

FLUCTUATING WIND VELOCITY CHARACTERISTICS OF THE WAKE OF A CONICAL HILL THAT CAUSE LARGE HORIZONTAL RESPONSE OF A CANTILEVER MODEL

FLUCTUATING WIND VELOCITY CHARACTERISTICS OF THE WAKE OF A CONICAL HILL THAT CAUSE LARGE HORIZONTAL RESPONSE OF A CANTILEVER MODEL BBAA VI International Colloqim on: Blff Bodies Aerodynamics & Applications Milano, Italy, Jly, 2-24 28 FLUCTUATING WIND VELOCITY CHARACTERISTICS OF THE WAKE OF A CONICAL HILL THAT CAUSE LARGE HORIZONTAL

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday!

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday! Physis D Letre Slides Letre : Jan 11th 00 Viek Sharma UCSD Physis First Qiz This Friday! Bring a Ble Book, allator; hek battery Make sre yo remember the ode nmber for this ose gien to yo (reord it some

More information

Cosmic Microwave Background Radiation. Carl W. Akerlof April 7, 2013

Cosmic Microwave Background Radiation. Carl W. Akerlof April 7, 2013 Cosmic Microwave Backgrond Radiation Carl W. Akerlof April 7, 013 Notes: Dry ice sblimation temperatre: Isopropyl alcohol freezing point: LNA operating voltage: 194.65 K 184.65 K 18.0 v he terrestrial

More information

Special Theory of Relativity. A Brief introduction

Special Theory of Relativity. A Brief introduction Special Theory of Relativity A Brief introduction Classical Physics At the end of the 19th century it looked as if Physics was pretty well wrapped up. Newtonian mechanics and the law of Gravitation had

More information

The Faraday Induction Law and Field Transformations in Special Relativity

The Faraday Induction Law and Field Transformations in Special Relativity Apeiron, ol. 10, No., April 003 118 The Farada Indction Law and Field Transformations in Special Relatiit Aleander L. Kholmetskii Department of Phsics, elars State Uniersit, 4, F. Skorina Aene, 0080 Minsk

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

Lecture 4 Fields, Relativity

Lecture 4 Fields, Relativity The Nature of the Physical World January 7th, 00 Lecture 4 Fields, Relatiity Arán García-Bellido What is the essence of a force? Graitational Field Electric Field At each point in space, graitational

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Special relativity. Announcements:

Special relativity. Announcements: Announcements: Special relatiity Homework solutions are posted! Remember problem soling sessions on Tuesday from 1-3pm in G140. Homework is due on Wednesday at 1:00pm in wood cabinet in G2B90 Hendrik Lorentz

More information

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time.

Lecture #8-6 Waves and Sound 1. Mechanical Waves We have already considered simple harmonic motion, which is an example of periodic motion in time. Lecture #8-6 Waes and Sound 1. Mechanical Waes We hae already considered simple harmonic motion, which is an example of periodic motion in time. The position of the body is changing with time as a sinusoidal

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys101 Lectures 31, 32 Sound, Decibels, Doppler Effect Key points: Intensity of Sound: Decibels Doppler Effect Ref: 12-1,2,7. Page 1 Characteristics of Sound Sound can trael through any kind of matter,

More information

Math 144 Activity #10 Applications of Vectors

Math 144 Activity #10 Applications of Vectors 144 p 1 Math 144 Actiity #10 Applications of Vectors In the last actiity, yo were introdced to ectors. In this actiity yo will look at some of the applications of ectors. Let the position ector = a, b

More information

Special relativity. x' = x vt y' = y z' = z t' = t Galilean transformation. = dx' dt. = dx. u' = dx' dt'

Special relativity. x' = x vt y' = y z' = z t' = t Galilean transformation. = dx' dt. = dx. u' = dx' dt' PHYS-3 Relatiity. Notes for Physics and Higher Physics b. Joe Wolfe See also our web pages: http://www.phys.unsw.edu.au/~jw/time.html http://www.phys.unsw.edu.au/~jw/relatiity.html http://www.phys.unsw.edu.au/~jw/twin.html

More information

Sources of Non Stationarity in the Semivariogram

Sources of Non Stationarity in the Semivariogram Sorces of Non Stationarity in the Semivariogram Migel A. Cba and Oy Leangthong Traditional ncertainty characterization techniqes sch as Simple Kriging or Seqential Gassian Simlation rely on stationary

More information

The Theory of Virtual Particles as an Alternative to Special Relativity

The Theory of Virtual Particles as an Alternative to Special Relativity International Jornal of Physics, 017, Vol. 5, No. 4, 141-146 Available online at http://pbs.sciepb.com/ijp/5/4/6 Science and Edcation Pblishing DOI:10.1691/ijp-5-4-6 The Theory of Virtal Particles as an

More information

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE

1. INTRODUCTION. A solution for the dark matter mystery based on Euclidean relativity. Frédéric LASSIAILLE 2009 Page 1 14/05/2010. Frédéric LASSIAILLE Frédéric LASSIAILLE 2009 Page 1 14/05/2010 Frédéric LASSIAILLE email: lmimi2003@hotmail.com http://lmi.chez-alice.fr/anglais A soltion for the dark matter mystery based on Eclidean relativity The stdy

More information

Chapter-1 Relativity Part I RADIATION

Chapter-1 Relativity Part I RADIATION Chapter-1 Relativity Part I RADIATION Radiation implies the transfer of energy from one place to another. - Electromagnetic Radiation - Light - Particle and Cosmic Radiation photons, protons, neutrons,

More information

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of

ρ u = u. (1) w z will become certain time, and at a certain point in space, the value of THE CONDITIONS NECESSARY FOR DISCONTINUOUS MOTION IN GASES G I Taylor Proceedings of the Royal Society A vol LXXXIV (90) pp 37-377 The possibility of the propagation of a srface of discontinity in a gas

More information

Turbulence and boundary layers

Turbulence and boundary layers Trblence and bondary layers Weather and trblence Big whorls hae little whorls which feed on the elocity; and little whorls hae lesser whorls and so on to iscosity Lewis Fry Richardson Momentm eqations

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

General Physics I. Lecture 18: Lorentz Transformation. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 18: Lorentz Transformation. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 18: Lorentz Transformation Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Experimental erification of the special theory Lorentz transformation

More information

3.3 Operations With Vectors, Linear Combinations

3.3 Operations With Vectors, Linear Combinations Operations With Vectors, Linear Combinations Performance Criteria: (d) Mltiply ectors by scalars and add ectors, algebraically Find linear combinations of ectors algebraically (e) Illstrate the parallelogram

More information

Kinetic plasma description

Kinetic plasma description Kinetic plasma description Distribution function Boltzmann and Vlaso equations Soling the Vlaso equation Examples of distribution functions plasma element t 1 r t 2 r Different leels of plasma description

More information

Frames of Reference, Energy and Momentum, with

Frames of Reference, Energy and Momentum, with Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

Differential Geometry. Peter Petersen

Differential Geometry. Peter Petersen Differential Geometry Peter Petersen CHAPTER Preliminaries.. Vectors-Matrices Gien a basis e, f for a two dimensional ector space we expand ectors sing matrix mltiplication e e + f f e f apple e f and

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wae Phenomena Physics 15c Lecture 14 Spherical Waes (H&L Chapter 7) Doppler Effect, Shock Waes (H&L Chapter 8) What We Did Last Time! Discussed waes in - and 3-dimensions! Wae equation and normal modes

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

Methods of Design-Oriented Analysis The GFT: A Final Solution for Feedback Systems

Methods of Design-Oriented Analysis The GFT: A Final Solution for Feedback Systems http://www.ardem.com/free_downloads.asp v.1, 5/11/05 Methods of Design-Oriented Analysis The GFT: A Final Soltion for Feedback Systems R. David Middlebrook Are yo an analog or mixed signal design engineer

More information

General Physics I. Lecture 20: Lorentz Transformation. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 20: Lorentz Transformation. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 20: Lorentz Transformation Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Lorentz transformation The inariant interal Minkowski diagram; Geometrical

More information

Numerical Model for Studying Cloud Formation Processes in the Tropics

Numerical Model for Studying Cloud Formation Processes in the Tropics Astralian Jornal of Basic and Applied Sciences, 5(2): 189-193, 211 ISSN 1991-8178 Nmerical Model for Stdying Clod Formation Processes in the Tropics Chantawan Noisri, Dsadee Skawat Department of Mathematics

More information

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-1 April 01, Tallinn, Estonia UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL Põdra, P. & Laaneots, R. Abstract: Strength analysis is a

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

Chapter 1. The Postulates of the Special Theory of Relativity

Chapter 1. The Postulates of the Special Theory of Relativity Chapter 1 The Postulates of the Special Theory of Relatiity Imagine a railroad station with six tracks (Fig. 1.1): On track 1a a train has stopped, the train on track 1b is going to the east at a elocity

More information

Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship.

Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship. Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship. Aristotle Galileo v Galileo: The object would land at the base of the mast. Therefore,

More information

TESTING MEANS. we want to test. but we need to know if 2 1 = 2 2 if it is, we use the methods described last time pooled estimate of variance

TESTING MEANS. we want to test. but we need to know if 2 1 = 2 2 if it is, we use the methods described last time pooled estimate of variance Introdction to Statistics in Psychology PSY Profess Greg Francis Lectre 6 Hypothesis testing f two sample case Planning a replication stdy TESTING MENS we want to test H : µ µ H a : µ µ 6 bt we need to

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

Newtonian or Galilean Relativity

Newtonian or Galilean Relativity Relativity Eamples 1. What is the velocity of an electron in a 400 kv transmission electron microscope? What is the velocity in the 6 GeV CESR particle accelerator?. If one million muons enter the atmosphere

More information

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum

The Real Stabilizability Radius of the Multi-Link Inverted Pendulum Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, Jne 14-16, 26 WeC123 The Real Stabilizability Radis of the Mlti-Link Inerted Pendlm Simon Lam and Edward J Daison Abstract

More information

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 2 INTERMEDIATE AND SHORT COMPRESSION MEMBERS

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 2 INTERMEDIATE AND SHORT COMPRESSION MEMBERS MECHANICS O SOIDS COMPRESSION MEMBERS TUTORIA INTERMEDIATE AND SHORT COMPRESSION MEMBERS Yo shold jdge yor progress by completing the self assessment exercises. On completion of this ttorial yo shold be

More information

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities General Lorentz Boost Transformations, Acting on Some Important Physical Quantities We are interested in transforming measurements made in a reference frame O into measurements of the same quantities as

More information

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation.

Before we work on deriving the Lorentz transformations, let's first look at the classical Galilean transformation. Background The curious "failure" of the Michelson-Morley experiment in 1887 to determine the motion of the earth through the aether prompted a lot of physicists to try and figure out why. The first attempt

More information

Compatibility of the theory of special relativity with an absolute reference frame with a longitudinal Doppler shift

Compatibility of the theory of special relativity with an absolute reference frame with a longitudinal Doppler shift Compatibility o the theory o speial relatiity with an absolte reerene rame with a longitdinal Doppler shit Masanori ato Honda Eletronis Co., Ltd., Oyamazka, Oiwa-ho, Toyohashi, ihi 44-33, Japan bstrat:

More information

Chapter 36 Relativistic Mechanics

Chapter 36 Relativistic Mechanics Chapter 36 Relatiistic Mechanics What is relatiit? Terminolog and phsical framework Galilean relatiit Einstein s relatiit Eents and measurements imultaneit Time dilation Length contraction Lorentz transformations

More information

6.4 VECTORS AND DOT PRODUCTS

6.4 VECTORS AND DOT PRODUCTS 458 Chapter 6 Additional Topics in Trigonometry 6.4 VECTORS AND DOT PRODUCTS What yo shold learn ind the dot prodct of two ectors and se the properties of the dot prodct. ind the angle between two ectors

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k A possible mechanism to explain wae-particle duality L D HOWE No current affiliation PACS Numbers: 0.50.-r, 03.65.-w, 05.60.-k Abstract The relationship between light speed energy and the kinetic energy

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sept 29 Vivek Sharma UCSD Physics Galilean Relativity Describing a Physical Phenomenon Event ( and a series of them) Observer (and many of them) Frame of reference (& an Observer

More information

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves

Physics 11 Chapters 15: Traveling Waves and Sound and 16: Superposition and Standing Waves Physics 11 Chapters 15: Traeling Waes and Sound and 16: Superposition and Standing Waes We are what we beliee we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as

More information

Relativistic Energy Derivation

Relativistic Energy Derivation Relatiistic Energy Deriation Flamenco Chuck Keyser //4 ass Deriation (The ass Creation Equation ρ, ρ as the initial condition, C the mass creation rate, T the time, ρ a density. Let V be a second mass

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

Microscopic Properties of Gases

Microscopic Properties of Gases icroscopic Properties of Gases So far we he seen the gas laws. These came from observations. In this section we want to look at a theory that explains the gas laws: The kinetic theory of gases or The kinetic

More information

The Open Civil Engineering Journal

The Open Civil Engineering Journal Send Orders for Reprints to reprints@benthamscience.ae 564 The Open Ciil Engineering Jornal, 16, 1, 564-57 The Open Ciil Engineering Jornal Content list aailable at: www.benthamopen.com/tociej/ DOI: 1.174/187414951611564

More information

Minimizing Intra-Edge Crossings in Wiring Diagrams and Public Transportation Maps

Minimizing Intra-Edge Crossings in Wiring Diagrams and Public Transportation Maps Minimizing Intra-Edge Crossings in Wiring Diagrams and Pblic Transportation Maps Marc Benkert 1, Martin Nöllenbrg 1, Takeaki Uno 2, and Alexander Wolff 1 1 Department of Compter Science, Karlsrhe Uniersity,

More information

Problem Set 1: Solutions

Problem Set 1: Solutions Uniersity of Alabama Department of Physics and Astronomy PH 253 / LeClair Fall 2010 Problem Set 1: Solutions 1. A classic paradox inoling length contraction and the relatiity of simultaneity is as follows:

More information

MAT389 Fall 2016, Problem Set 6

MAT389 Fall 2016, Problem Set 6 MAT389 Fall 016, Problem Set 6 Trigonometric and hperbolic fnctions 6.1 Show that e iz = cos z + i sin z for eer comple nmber z. Hint: start from the right-hand side and work or wa towards the left-hand

More information

University of Bristol

University of Bristol Uniersity of Bristol AEROGUST Workshop 27 th - 28 th April 2017, Uniersity of Lierpool Presented by Robbie Cook and Chris Wales Oeriew Theory Nonlinear strctral soler copled with nsteady aerodynamics Gst

More information

Konyalioglu, Serpil. Konyalioglu, A.Cihan. Ipek, A.Sabri. Isik, Ahmet

Konyalioglu, Serpil. Konyalioglu, A.Cihan. Ipek, A.Sabri. Isik, Ahmet The Role of Visalization Approach on Stdent s Conceptal Learning Konyaliogl, Serpil Department of Secondary Science and Mathematics Edcation, K.K. Edcation Faclty, Atatürk University, 25240- Erzrm-Trkey;

More information

Simplified Identification Scheme for Structures on a Flexible Base

Simplified Identification Scheme for Structures on a Flexible Base Simplified Identification Scheme for Strctres on a Flexible Base L.M. Star California State University, Long Beach G. Mylonais University of Patras, Greece J.P. Stewart University of California, Los Angeles

More information

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY EXPT. 5 DETERMITIO OF pk a OF IDICTOR USIG SPECTROPHOTOMETRY Strctre 5.1 Introdction Objectives 5.2 Principle 5.3 Spectrophotometric Determination of pka Vale of Indicator 5.4 Reqirements 5.5 Soltions

More information

Physics 2D Lecture Slides Lecture 2. March 31, 2009

Physics 2D Lecture Slides Lecture 2. March 31, 2009 Physics 2D Lecture Slides Lecture 2 March 31, 2009 Newton s Laws and Galilean Transformation! But Newton s Laws of Mechanics remain the same in All frames of references!! 2 2 d x' d x' dv = " dt 2 dt 2

More information

ANOVA INTERPRETING. It might be tempting to just look at the data and wing it

ANOVA INTERPRETING. It might be tempting to just look at the data and wing it Introdction to Statistics in Psychology PSY 2 Professor Greg Francis Lectre 33 ANalysis Of VAriance Something erss which thing? ANOVA Test statistic: F = MS B MS W Estimated ariability from noise and mean

More information

FACULTY WORKING PAPER NO. 1081

FACULTY WORKING PAPER NO. 1081 35 51 COPY 2 FACULTY WORKING PAPER NO. 1081 Diagnostic Inference in Performance Evalation: Effects of Case and Event Covariation and Similarity Clifton Brown College of Commerce and Bsiness Administration

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

Optimal Control of a Heterogeneous Two Server System with Consideration for Power and Performance

Optimal Control of a Heterogeneous Two Server System with Consideration for Power and Performance Optimal Control of a Heterogeneos Two Server System with Consideration for Power and Performance by Jiazheng Li A thesis presented to the University of Waterloo in flfilment of the thesis reqirement for

More information

Analysis of Enthalpy Approximation for Compressed Liquid Water

Analysis of Enthalpy Approximation for Compressed Liquid Water Analysis of Entalpy Approximation for Compressed Liqid Water Milioje M. Kostic e-mail: kostic@ni.ed Nortern Illinois Uniersity, DeKalb, IL 60115-2854 It is cstom to approximate solid and liqid termodynamic

More information

Sound, Decibels, Doppler Effect

Sound, Decibels, Doppler Effect Phys Lectures 3, 33 Sound, Decibels, Doppler Eect Key points: ntensity o Sound: Decibels Doppler Eect Re: -,,7. Page Characteristics o Sound Sound can trael through any kind o matter, but not through a

More information

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons )

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons ) Modern Physics At the beginning of the twentieth century, two new theories revolutionized our understanding of the world and modified old physics that had existed for over 200 years: Relativity: Describes

More information

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720 Physics 139 Relatiity Thomas Precession February 1998 G. F. SMOOT Department ofphysics, Uniersity of California, erkeley, USA 94720 1 Thomas Precession Thomas Precession is a kinematic eect discoered by

More information

Frequency Estimation, Multiple Stationary Nonsinusoidal Resonances With Trend 1

Frequency Estimation, Multiple Stationary Nonsinusoidal Resonances With Trend 1 Freqency Estimation, Mltiple Stationary Nonsinsoidal Resonances With Trend 1 G. Larry Bretthorst Department of Chemistry, Washington University, St. Lois MO 6313 Abstract. In this paper, we address the

More information

ON TRANSIENT DYNAMICS, OFF-EQUILIBRIUM BEHAVIOUR AND IDENTIFICATION IN BLENDED MULTIPLE MODEL STRUCTURES

ON TRANSIENT DYNAMICS, OFF-EQUILIBRIUM BEHAVIOUR AND IDENTIFICATION IN BLENDED MULTIPLE MODEL STRUCTURES ON TRANSIENT DYNAMICS, OFF-EQUILIBRIUM BEHAVIOUR AND IDENTIFICATION IN BLENDED MULTIPLE MODEL STRUCTURES Roderick Mrray-Smith Dept. of Compting Science, Glasgow Uniersity, Glasgow, Scotland. rod@dcs.gla.ac.k

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

E ect Of Quadrant Bow On Delta Undulator Phase Errors

E ect Of Quadrant Bow On Delta Undulator Phase Errors LCLS-TN-15-1 E ect Of Qadrant Bow On Delta Undlator Phase Errors Zachary Wolf SLAC Febrary 18, 015 Abstract The Delta ndlator qadrants are tned individally and are then assembled to make the tned ndlator.

More information

Pulses on a Struck String

Pulses on a Struck String 8.03 at ESG Spplemental Notes Plses on a Strck String These notes investigate specific eamples of transverse motion on a stretched string in cases where the string is at some time ndisplaced, bt with a

More information

Direct linearization method for nonlinear PDE s and the related kernel RBFs

Direct linearization method for nonlinear PDE s and the related kernel RBFs Direct linearization method for nonlinear PDE s and the related kernel BFs W. Chen Department of Informatics, Uniersity of Oslo, P.O.Box 1080, Blindern, 0316 Oslo, Norway Email: wenc@ifi.io.no Abstract

More information

Lecture 13 Birth of Relativity

Lecture 13 Birth of Relativity Lecture 13 Birth of Relatiity The Birth of Relatiity Albert Einstein Announcements Today: Einstein and the Birth of Relatiity Lightman Ch 3, March, Ch 9 Next Time: Wedding of Space and Time Space-Time

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information