5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1

Size: px
Start display at page:

Download "5. Feynman Diagrams. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 5. Feynman Diagrams 1"

Transcription

1 5. Feynman Diarams Partile an Nulear Physis Dr. Tina Potter 2017 Dr. Tina Potter 5. Feynman Diarams 1

2 In this setion... Introution to Feynman iarams. Anatomy of Feynman iarams. Allowe verties. General rules Dr. Tina Potter 5. Feynman Diarams 2

3 Feynman Diarams Rihar Feynman 1965 Noel Prize The results of alulations ase on a sinle proess in Time-Orere Perturation Theory (sometimes alle ol-fashione, OFPT) epen on the referene frame. The sum of all time orerins is frame inepenent an provies the asis for our relativisti theory of Quantum Mehanis. A Feynman iaram represents the sum of all time orerins + = time time time Dr. Tina Potter 5. Feynman Diarams 3

4 Feynman Diarams Eah Feynman iaram represents a term in the perturation theory expansion of the matrix element for an interation. Normally, a full matrix element ontains an infinite numer of Feynman iarams. Total amplitue M fi = M 1 + M 2 + M Total rate Γ fi = 2π M 1 + M 2 + M ρ(e) Fermi s Golen Rule But eah vertex ives a fator of, so if is small (i.e. the perturation is small) only nee the first few. (Lowest orer = fewest verties possile) Example: QED = e = 4πα 0.30, α = e2 4π Dr. Tina Potter 5. Feynman Diarams 4

5 Feynman Diarams Perturation Theory Calulatin Matrix Elements from Perturation Theory from first priniples is umersome so we ont usually use it. Nee to o time-orere sums of (on mass shell) partiles whose proution an eay oes not onserve enery an momentum. Feynman Diarams Represent the maths of Perturation Theory with Feynman Diarams in a very simple way (to aritrary orer, if ouplins are small enouh). Use them to alulate matrix elements. Approx size of matrix element may e estimate from the simplest vali Feynman Diaram for iven proess. Full matrix element requires infinite numer of iarams. Now only nee one exhane partile, ut it is now off mass shell, however proution/eay now onserves enery an momentum. Dr. Tina Potter 5. Feynman Diarams 5

6 Anatomy of Feynman Diarams Feynman evise a pitorial metho for evaluatin matrix elements for the interations etween funamental partiles in a few simple rules. We shall use Feynman iarams extensively throuhout this ourse. Topoloial features of Feynman iarams are straihtforwarly assoiate with terms in the Matrix element Represent partiles (an antipartiles): Spin 1/2 Quarks an Leptons Spin 1, W ±, An eah interation point (vertex) with a Eah vertex ontriutes a fator of the ouplin onstant,. Dr. Tina Potter 5. Feynman Diarams 6

7 Anatomy of Feynman Diarams External lines (visile real partiles) Spin 1/2 Partile Antipartile Inomin Outoin Inomin Outoin Spin 1 Partile Inomin Internal lines (propaators; virtual partiles) Outoin Spin 1/2 Partile/antipartile Spin 1, W ±, Eah propaator ives a fator of 1 q 2 m 2 Dr. Tina Potter 5. Feynman Diarams 7

8 Verties A vertex represents a point of interation: either EM, weak or stron. The strenth of the interation is enote y EM interation: = Qe Weak interation: = W Stron interation: = α s (sometimes enote as Q α, where α = e 2 /4π) A vertex will have three (in rare ases four) lines attahe, e.. e + Qe Qe Qe Qe e + At eah vertex, onserve enery, momentum, anular momentum, hare, lepton numer (L e = +1 for, ν e, = 1 for e +, ν e, similar for L µ, L τ ), aryon numer (B = 1 3 (n q n q )), straneness (S = (n s n s )) & parity exept in weak interations. Dr. Tina Potter 5. Feynman Diarams 8

9 Allowe Verties EM must involve a photon, an hare partiles ouplin strenth Qe Q=hare µ τ e + u µ + τ + t ū s t Triple Gaue Vertex s W + Dr. Tina Potter 5. Feynman Diarams 9

10 Allowe Verties Weak must involve a aue vetor oson or W ± ouplin strenth W tip: if you see a ν or ν, it must e a weak interation with W ± µ τ ν e ν µ ν τ s Same family quarks are Caio favoure ū t s s Cross one family Caio suppresse ū t Dr. Tina Potter 5. Feynman Diarams 10

11 Allowe Verties Weak must involve a aue vetor oson or W ± ouplin strenth W tip: if you see a ν or ν, it must e a weak interation with W ± Cross two families Douly Caio suppresse ū t Also, Triple/Four Gaue Vertex W + W + W + W + W + W + W + Dr. Tina Potter 5. Feynman Diarams 11

12 Allowe Verties with Weak Same as iarams, ut also verties with ν µ τ i.e. f e + ν e µ + ν µ τ + ν τ f ν e u ū ν µ s s ν τ t t Not Allowe: Flavour Chanin Neutral Currents (FCNC) Dr. Tina Potter 5. Feynman Diarams 12 s

13 Allowe Verties Stron must involve a luon an/or quark q ouplin strenth α s onserve straneness, harm et u t ū s t s Also, Triple Gaue Vertex Dr. Tina Potter 5. Feynman Diarams 13

14 Forien Verties q X l W ± Dr. Tina Potter 5. Feynman Diarams 14

15 Examples Eletromaneti Qe q Stron q αs αs p Qe p q q M (e)2 q 2 M ( α s ) 2 q 2 u V u W Weak W u u ν e M V u 2 W q 2 m 2 W Dr. Tina Potter 5. Feynman Diarams 15

16 Drawin Feynman Diarams A Feynman iaram is a pitorial representation of the matrix element esriin partile eay or interation a a + + To raw a Feynman iaram an etermine whether a proess is allowe, follow the five asi steps elow: 1 Write own the initial an final state partiles an antipartiles an note the quark ontent of all harons. 2 Draw the simplest Feynman iaram usin the Stanar Moel verties. Bearin in min: Similar iarams for partiles/antipartiles Never have a vertex onnetin a lepton to a quark Only the weak CC vertex hanes flavour within enerations for leptons within/etween enerations for quarks Dr. Tina Potter 5. Feynman Diarams 16

17 Drawin Feynman Diarams Partile satterin If all are partiles (or all are antipartiles), only satterin iarams involve e.. a + + a Initial State Final State If partiles an antipartiles, may e ale to have satterin an/or annihilation iarams e.. a + + (Manelstam variales s, t, u) a p 1 p 3 a p 1 p 3 p 2 p 4 t-hannel, q 2 = t = (p 1 p 3 ) 2 = (p 2 p 4 ) 2 p 2 p 4 s-hannel, q 2 = s = (p 1 + p 2 ) 2 = (p 3 + p 4 ) 2 Dr. Tina Potter 5. Feynman Diarams 17

18 Drawin Feynman Diarams Iential Partiles If we have iential partiles in final state, e.. a + + may not know whih partile omes from whih vertex. Two possiilities are separate final Feynman iarams: a p 1 p 3 a p 1 p 3 p 4 p 2 p 4 t-hannel, q 2 = t = (p 1 p 3 ) 2 = (p 2 p 4 ) 2 p 2 u-hannel, q 2 = u = (p 1 p 4 ) 2 = (p 2 p 3 ) 2 Crossin not a vertex Dr. Tina Potter 5. Feynman Diarams 18

19 Drawin Feynman Diarams Bein ale to raw a Feynman iaram is a neessary, ut not a suffiient onition for the proess to our. Also nee to hek: 3 Chek that the whole system onserves Enery, momentum (trivially satisfie for interations, so lon as suffiient KE in initial state. May fori eays) Chare Anular momentum 4 Parity Conserve in EM/Stron interation Can e violate in the Weak interation 5 Chek symmetry for iential partiles in the final state Bosons ψ(1, 2) = +ψ(2, 1) Fermions ψ(1, 2) = ψ(2, 1) Finally, a proess will our via the Stron, EM an Weak interation (in that orer of preferene) if steps 1 5 are satisfie. Dr. Tina Potter 5. Feynman Diarams 19

20 Summary Feynman iarams are a ore part of the ourse. Make sure you an raw them! Feynman iarams are a sum over time orerins. Assoiate topoloial features of the iarams with terms in matrix elements. Verties ouplin strenth etween partiles an fiel quanta Propaator for eah internal line (off-mass shell, virtual partiles) Conservation of quantum numers at eah vertex Up next... Setion 6: QED Dr. Tina Potter 5. Feynman Diarams 20

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1

7. QCD. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 7. QCD 1 7. QCD Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 7. QCD 1 In this section... The stron vertex Colour, luons and self-interactions QCD potential, confinement Hadronisation, jets Runnin

More information

= ν L. C ν L. = ν R. P ν L. CP ν L. CP Violation. Standard Model contains only left-handed neutrinos and right-handed anti-neutrinos

= ν L. C ν L. = ν R. P ν L. CP ν L. CP Violation. Standard Model contains only left-handed neutrinos and right-handed anti-neutrinos Phy489 Leture 9 1 CP iolation Stanar Moel ontains only left-hane neutrinos an right-hane anti-neutrinos C ν L = ν L harge onjugation not a symmetry of the weak interation P ν L = ν R parity also not onserve

More information

Rough Schedule. Units often used in Elementary Particle Physics

Rough Schedule. Units often used in Elementary Particle Physics Rouh Schedule (1) The course orientation and a special lecture on "Understandin of radio activities now in Sendai". (2) Rutherford Scatterin and Concepts for Experiments. (3) Accelerators and Particle

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Subatomic Physics: Particle Physics. Review April 13th Key Concepts. What s important are the concepts not the facts and figures.

Subatomic Physics: Particle Physics. Review April 13th Key Concepts. What s important are the concepts not the facts and figures. Subatomic Physics: Particle Physics Review April 13th 21 The Standard Model Natural Units Relativistic Dynamics Anti-matter Quarks, Leptons & Hadrons Feynman Diarams and Feynman Rules Decays QED, QCD,

More information

The story of the Universe

The story of the Universe The story of the Universe From the Bi Ban to today's Universe Quantum ravity era Grand unification era Electroweak era Protons and neutrons form Nuclei are formed Atoms and liht era Galaxy formation Today

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles

Particles as fields. Review Chap. 18: Particle Physics. Energy uncertainty. Quantum Electrodynamics: QED. Creating more particles Final Exam: Thr. Dec. 21, 2:45-4:45 pm, 113 Psycholoy Bilin Exam is cmlative, coverin all material Review Chap. 18: Particle Physics an fiels: a new pictre Qarks an leptons The stron an weak interaction

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Particle Physics HANDOUT III. Part II, Lent Term q g. e + e - Dr M.A. Thomson. α S. Q q. 1 q 2. Dr M.A. Thomson Lent 2004

Particle Physics HANDOUT III. Part II, Lent Term q g. e + e - Dr M.A. Thomson. α S. Q q. 1 q 2. Dr M.A. Thomson Lent 2004 1 Particle Physics Dr M.A. Thomson e + e - α γ 1 2 α S Q α Part II, Lent Term 2004 HANDOUT III QCD 2 QUANTUM ELECTRODYNAMICS: is the uantum theory of the electromanetic interaction. mediated by massless

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 3 : Interaction by Particle Exchange and QED. Recap Prtile Physis Mihelms Term 2011 Prof Mrk Thomson g X g X g g Hnout 3 : Intertion y Prtile Exhnge n QED Prof. M.A. Thomson Mihelms 2011 101 Rep Working towrs proper lultion of ey n sttering proesses lnitilly

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Euler and Hamilton Paths

Euler and Hamilton Paths Euler an Hamilton Paths The town of Königserg, Prussia (now know as Kaliningra an part of the Russian repuli), was ivie into four setion y ranhes of the Pregel River. These four setions C A D B Figure:

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

VII.2 Electroweak Unification

VII.2 Electroweak Unification VII.2 Electroweak Unification The scoure of massless spin 1 particles With the benefit of hindsiht, we now know that Nature likes Yan-Mills theory. In the late 1960s and early 1970s, the electromanetic

More information

Properties of Quarks

Properties of Quarks PHY04 Partile Physis 9 Dr C N Booth Properties of Quarks In the earlier part of this ourse, we have disussed three families of leptons but prinipally onentrated on one doublet of quarks, the u and d. We

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

Generalized Dimensional Analysis

Generalized Dimensional Analysis #HUTP-92/A036 7/92 Generalized Dimensional Analysis arxiv:hep-ph/9207278v1 31 Jul 1992 Howard Georgi Lyman Laboratory of Physis Harvard University Cambridge, MA 02138 Abstrat I desribe a version of so-alled

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

1. A dependent variable is also known as a(n). a. explanatory variable b. control variable c. predictor variable d. response variable ANSWER:

1. A dependent variable is also known as a(n). a. explanatory variable b. control variable c. predictor variable d. response variable ANSWER: 1. A epenent variale is also known as a(n). a. explanatory variale. ontrol variale. preitor variale. response variale FEEDBACK: A epenent variale is known as a response variale. Definition of the Simple

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

The Unified Geometrical Theory of Fields and Particles

The Unified Geometrical Theory of Fields and Particles Applied Mathematis, 014, 5, 347-351 Published Online February 014 (http://www.sirp.org/journal/am) http://dx.doi.org/10.436/am.014.53036 The Unified Geometrial Theory of Fields and Partiles Amagh Nduka

More information

Feynman Diagrams. e + e µ + µ scattering

Feynman Diagrams. e + e µ + µ scattering Feynman Diagrams Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays. Greatly reduce the computation involved in calculating rate or cross section of a physical process,

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Energy, Momentum, Mass and Velocity of Moving Body

Energy, Momentum, Mass and Velocity of Moving Body nery omentum ass and eloity of ovin Body Serey G Fedosin Perm Perm Reion Russia e-mail intelli@listru In the weak-field approximation the problem of 4/3 is formulated for internal and external ravitational

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Modern Physics I Solutions to Homework 4 Handout

Modern Physics I Solutions to Homework 4 Handout Moern Physis I Solutions to Homework 4 Hanout TA: Alvaro Núñez an33@sires.nyu.eu New York University, Department of Physis, 4 Washington Pl., New York, NY 0003. Bernstein, Fishbane, Gasiorowiz: Chapter

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Evidence for a fourth quark from weak interaction-the GIM mechanism

Evidence for a fourth quark from weak interaction-the GIM mechanism Evience for a fourth quark from weak interaction-the GIM mechanism Haris Ðapo November 01 2007 Outline 1 Motivation 2 Before charm 3 Charm 4 After charm 5 Conclusions hat o we want to achieve? Electroweak

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Matter-light duality and speed greater than light

Matter-light duality and speed greater than light Matter-light duality and speed greater than light Shalender Singh* and Vishnu Priya Singh Parmar Priza Tehnologies In. R&D, 155 MCarthy Blvd, Ste 1111, Milpitas, California, USA 95035 Email: shalender@prizateh.om

More information

Chapter 17. Weak Interactions

Chapter 17. Weak Interactions Chapter 17 Weak Interactions The weak interactions are meiate by W ± or (netral) Z exchange. In the case of W ±, this means that the flavors of the qarks interacting with the gage boson can change. W ±

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Weak Interactions Cabbibo Angle and Selection Rules

Weak Interactions Cabbibo Angle and Selection Rules Particle and s Cabbibo Angle and 03/22/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 Helicity Helicity: Spin quantization along direction of motion. Helicity Helicity: Spin

More information

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass.

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass. The Complete Energy Translations in the Detailed Deay Proess of Baryoni Su-Atomi Partiles. [4] P.G.Bass. PGBass P12 Version 1..3 www.relativitydomains.om August 218 Astrat. This is the final paper on the

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD

Kern- und Teilchenphysik I Lecture 13:Quarks and QCD Kern- und Teilchenphysik I Lecture 13:Quarks and QCD (adapted from the Handout of Prof. Mark Thomson) Prof. Nico Serra Dr. Patrick Owen, Dr. Silva Coutinho http://www.physik.uzh.ch/de/lehre/phy211/hs2016.html

More information

Nuclear Shell Structure Evolution Theory

Nuclear Shell Structure Evolution Theory Nulear Shell Struture Evolution Theory Zhengda Wang (1) Xiaobin Wang () Xiaodong Zhang () Xiaohun Wang () (1) Institute of Modern physis Chinese Aademy of SienesLan Zhou P. R. China 70000 () Seagate Tehnology

More information

SUGRA Models at the LHC

SUGRA Models at the LHC SUGRA odels at the LHC Bhaskar Dutta and Teruki Kamon Texas A& University PASCOS 9, DESY, Germany 9 th July 9 SUGRA odels at the LHC SUSY at the LHC D (or l + l -, τ+τ High P T jet [mass differene is large]

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics

Standard Model Introduction. Quarknet Syracuse Summer Institute Particle Physics Standard Model Introdtion 1 Qarknet Syrase Smmer Institte Partile Physis Letre 2 Topis for Letre 2 Introdtion to Standard Model Eletromagneti & Strong Interations 2 Prelde Definition of Theory: a oherent

More information

Chapter 2: One-dimensional Steady State Conduction

Chapter 2: One-dimensional Steady State Conduction 1 Chapter : One-imensional Steay State Conution.1 Eamples of One-imensional Conution Eample.1: Plate with Energy Generation an Variable Conutivity Sine k is variable it must remain insie the ifferentiation

More information

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012

Particle Physics, Fall 2012 Solutions to Final Exam December 11, 2012 Particle Physics, Fall Solutions to Final Exam December, Part I: Short Answer [ points] For each of the following, give a short answer (- sentences, or a formula). [5 points each]. [This one might be har

More information

Ricerca Indiretta di Supersimmetria nei Decadimenti dei Mesoni B

Ricerca Indiretta di Supersimmetria nei Decadimenti dei Mesoni B Ricerca Iniretta i Supersimmetria nei Decaimenti ei Mesoni B L. Silvestrini INFN, Roma Introuction to CP Violation in the SM Introuction to CP Violation in the MSSM A moel-inepenent analysis of SUSY effects

More information

arxiv:hep-ph/ v1 26 Apr 1996

arxiv:hep-ph/ v1 26 Apr 1996 CERN-TH/96-55 hep-ph/9604412 arxiv:hep-ph/9604412v1 26 Apr 1996 B Decays and CP Violation Matthias Neuert Theory Division, CERN, CH-1211 Geneva 23, Switzerland Astract We review the status of the theory

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 18 Group Theory For Crystals Multi-Electron Crystal Field Theory Weak Field Scheme Stron Field Scheme Tanabe-Suano Diaram 1 Notation Convention

More information

Lecture 3. Experimental Methods & Feynman Diagrams

Lecture 3. Experimental Methods & Feynman Diagrams Lecture 3 Experimental Methods & Feynman Diagrams Natural Units & the Planck Scale Review of Relativistic Kinematics Cross-Sections, Matrix Elements & Phase Space Decay Rates, Lifetimes & Branching Fractions

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomi and Nulear Physis X-ray physis Compton effet and X-ray physis LD Physis Leaflets P6.3.7. Compton effet: Measuring the energy of the sattered photons as a funtion of the sattering angle Objets of

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles

Particles and fields. Review Particle Physics. Question. Quantum Electrodynamics: QED. Seeing antiparticles Final Exam: Mon. May 8, 2:45-4:45 pm, 2241 Cham. Exam is cmlative, coverin all material 40 qestions, 2 note sheets allowe Review Particle Physics Particles an fiels: a new pictre Qarks an leptons The weak

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomi and Nulear Physis X-ray physis Compton effet and X-ray physis LD Physis Leaflets P6.3.7. Compton effet: Measuring the energy of the sattered photons as a funtion of the sattering angle Objets of

More information

CKM Matrix I. V ud V us V ub d. d s b

CKM Matrix I. V ud V us V ub d. d s b s = V u V us V u V c V cs V c s V t V ts V t flavour CKM matrix mass 18 parameters (9 complex elements) -5 relative quark phases (unoservale) -9 unitarity conitions - = 4 inepenent parameters 3 Euler angles

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nulear and Partile Physis (5110) Marh 7, 009 Relativisti Kinematis 3/7/009 1 Relativisti Kinematis Review! Wherever you studied this before, look at it again, e.g. Tipler (Modern Physis), Hyperphysis

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

De Broglie s Pilot Waves

De Broglie s Pilot Waves De Broglie s Pilot Waves Bohr s Moel of the Hyrogen tom: One way to arrive at Bohr s hypothesis is to think of the electron not as a particle but as a staning wave at raius r aroun the proton. Thus, nλ

More information

The numbers inside a matrix are called the elements or entries of the matrix.

The numbers inside a matrix are called the elements or entries of the matrix. Chapter Review of Matries. Definitions A matrix is a retangular array of numers of the form a a a 3 a n a a a 3 a n a 3 a 3 a 33 a 3n..... a m a m a m3 a mn We usually use apital letters (for example,

More information

Introduc)on to the famous Feynman diagrams and how to use them. Rosi Reed

Introduc)on to the famous Feynman diagrams and how to use them. Rosi Reed Introduc)on to the famous Feynman diagrams and how to use them Rosi Reed First Diagram Diagrams introduced at the the Pocono Conference in early April, 1948 An hours drive from here! Discussion over the

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Units and dimensions

Units and dimensions Particles and Fields Particles and Antiparticles Bosons and Fermions Interactions and cross sections The Standard Model Beyond the Standard Model Neutrinos and their oscillations Particle Hierarchy Everyday

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Lecture 11 Perturbative calculation

Lecture 11 Perturbative calculation M.Krawczyk, AFZ Particles and Universe 11 1 Particles and Universe Lecture 11 Perturbative calculation Maria Krawczyk, Aleksander F. Żarnecki Faculty of Physics UW I.Theory of elementary particles description

More information

UPDATE ON STATUS OF DVCS ANALYSIS FROM E1-6 DATA

UPDATE ON STATUS OF DVCS ANALYSIS FROM E1-6 DATA UPDATE ON STATUS OF ANALYSIS FROM E-6 DATA A. Movsisyan, H. Avakian, S. Pisano INFN-Ferrara Collaboration meeting 5..6 Introdution & Motivation e e p p Measurement of Cross Setion, via detetion of final

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Dalitz Decays of Pseudo-Scalar Mesons

Dalitz Decays of Pseudo-Scalar Mesons Dalitz Decays of Pseudo-calar Mesons Michael Kunkel On behalf on the CLA collaboration Outline 1 Introduction Constituent Quark Model Form Factors 2 CLA etup 3 G12 Experiment 4 Current tate of the Art

More information

involve: 1. Treatment of a decaying particle. 2. Superposition of states with different masses.

involve: 1. Treatment of a decaying particle. 2. Superposition of states with different masses. Physics 195a Course Notes The K 0 : An Interesting Example of a Two-State System 021029 F. Porter 1 Introuction An example of a two-state system is consiere. involve: 1. Treatment of a ecaying particle.

More information

Implementing the Law of Sines to solve SAS triangles

Implementing the Law of Sines to solve SAS triangles Implementing the Law of Sines to solve SAS triangles June 8, 009 Konstantine Zelator Dept. of Math an Computer Siene Rhoe Islan College 600 Mount Pleasant Avenue Proviene, RI 0908 U.S.A. e-mail : kzelator@ri.eu

More information

PHL424: Feynman diagrams

PHL424: Feynman diagrams PHL424: Feynman diagrams In 1940s, R. Feynman developed a diagram technique to describe particle interactions in space-time. Feynman diagram example Richard Feynman time Particles are represented by lines

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

SISSA entrance examination (2007)

SISSA entrance examination (2007) SISSA Entrance Examination Theory of Elementary Particles Trieste, 18 July 2007 Four problems are given. You are expected to solve completely two of them. Please, do not try to solve more than two problems;

More information

arxiv:math/ v1 [math.ca] 27 Nov 2003

arxiv:math/ v1 [math.ca] 27 Nov 2003 arxiv:math/011510v1 [math.ca] 27 Nov 200 Counting Integral Lamé Equations by Means of Dessins d Enfants Sander Dahmen November 27, 200 Abstrat We obtain an expliit formula for the number of Lamé equations

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1 15. Nuclear Decay Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 15. Nuclear Decay 1 In this section... Radioactive decays Radioactive dating α decay β decay γ decay Dr. Tina Potter 15. Nuclear

More information