OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

Size: px
Start display at page:

Download "OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion"

Transcription

1 Weak Interactions

2 OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa (CKM) Matrix NEUTRAL WEAK INTERACTION - Elastic Neutrino-Electron Scattering - Electron-Positron Scattering Near the Z 0 Pole ELECTROWEAK UNIFICATION - Chiral Fermion States - Weak Isospin and Hypercharge - Electro-Weak Mixing

3 THE WEAK FORCE

4 Characteristics of the WEAK FORCE The time scale of the decay is long. Radioactive decays must proceed by the weak force since the timescale ranges from 10-8 s to years E.g. neutron β decay Weak decays often involve neutrinos do not interact by the EM force or the strong force cannot detect in conventional detectors can infer existence from conservation of E, p (Pauli, 1930) Neutrinos would not be directly detected for 25 years: Reines & Cowan, using Savannah River nuclear reactor

5 DECAY OF THE NEUTRON

6 HELICITY Helicity is the component of the (spin) angular momentum along momentum vector. For fermions, the value is 1/2 or +1/2, depending on whether spin S is antiparallel or parallel to direction of motion p Solutions of the Dirac equation: where are helicity eigenstates: For antiparticles the relation is reversed (because v(p) ~ u(-p)):

7 HELICITY with In the limit m=0 (E>>m): obeys Thus the following chirality projection operators are also helicity projection operators for m=0: For m=0, P L projects onto helicity 1/2 fermions but helicity +1/2 anti-fermions.

8 HELICITY and EM INTERACTION We can use the projection operators to split the electromagnetic current into 2 pieces: where Since we have and

9 HELICITY and EM INTERACTION Helicity is conserved in the electromagnetic interaction in high energy (m=0) limit Allowed QED vertices in high energy limit mirror reflection Helicity is reversed under parity: Equalities are due to parity

10 CHARGED LEPTONIC WEAK INTERACTION The mediators of weak interactions are intermediate vector bosons, which are extremely heavy: The propagator for massive spin-1 particles is:, where M is M W or M Z In practice very often: The propagator for W or Z in this case:

11 WEAK INTERACTION Lorentz condition ε µ p µ = 0

12 FEYNMAN RULES also 3 and 4 boson vertices exist

13 CHARGED LEPTONIC WEAK INTERACTION The theory of charged interactions is simpler than that for neutral ones. We start by considering coupling of W s to leptons. The fundamental leptonic vertex is : The Feynman rules are the same as for QED, except for the vertex factor : ( the weak vertex factor ) Weak coupling constant (analogous to g e in QED and g s in QCD) :

14 CHARGED WEAK INTERACTION The charged weak interaction violates parity maximally By analogy to EM we associate the charged weak interactions with a current, which is purely left-handed: also The charged weak interaction only couples to left-handed leptons (e,µ,τ,ν i ). (Also, only couples to left-handed quarks.) It couples only to right-handed anti-fermions.

15 Example: Inverse Muon Decay ( lowest order diagram ) When the amplitude is : Simplifies because M W = 80 GeV much larger than q< (100 MeV).

16 Example: Inverse Muon Decay Applying Casimir s trick we find : trace theorems trace theorems using :

17 Example: Inverse Muon Decay In CM frame, and neglect the mass of the electron : where E is the incident electron (or neutrino) energy. The differential scattering cross section is : The total cross section :

18 DECAY OF THE MUON The amplitude : As before :

19 DECAY OF THE MUON In the muon rest frame : Let : Plug in :

20 DECAY OF THE MUON The decay rate given by Golden Rule * : where : * a lot of work, since this is a three body decay

21 DECAY OF THE MUON Perform integral : where : Next we will do the integral. Setting the polar axis along (which is fixed, for the purposes of the integration), we have :

22 DECAY OF THE MUON Also : The integral is trivial. For the integration, let : and :

23 DECAY OF THE MUON integration : where : The limits of E 2 and E 4 integrals :

24 DECAY OF THE MUON Using:

25 DECAY OF THE MUON

26 DECAY OF THE MUON

27 DECAY OF THE MUON

28 DECAY OF THE MUON The total decay rate : Lifetime :

29 DECAY OF THE MUON g W and M W do not appear separately, only in the ratio. Let s introduce Fermi coupling constant : The muon lifetime : = s

30 DECAY OF THE MUON In Fermi s original theory of the beta decay there was no W; the interaction was a direct four-particle coupling. Using the observed muon lifetime and mass : and : Weak fine structure constant : Larger than electromagnetic fine structure constant!

31 WEAK INTERACTIONS Weak force is weak because boson propagator is massive, not because coupling strength is weak.

32 DECAY OF THE NEUTRON ( the same as in previous case )

33 DECAY OF THE NEUTRON In the rest frame of the neutron : As before : We can t ignore the mass of the electron. where :

34 DECAY OF THE NEUTRON The integral yields : and : Setting the z-axis along (which is fixed, for the purposes of the integral), we have : and :

35 DECAY OF THE NEUTRON where : and :

36 DECAY OF THE NEUTRON The range of E 2 integral : E is the electron energy ( exact equation)

37 DECAY OF THE NEUTRON Approximations : Expanding to lowest order :

38 DECAY OF THE NEUTRON

39 DECAY OF THE NEUTRON (picture from Griffiths)

40 DECAY OF THE NEUTRON Putting in the numbers : where :

41 DECAY OF THE NEUTRON But the proton and neutron are not point particles. Replacement in the vertex factor: c V is the correction to the vector weak charge c A is the correction to the axial vector weak charge

42 DECAY OF THE NEUTRON Another correction, the quark vertex carries a factor of is the Cabibbo angle. cosθ C = 0.97 Lifetime :

43 CHOICE OF WEAK EIGENSTATES

44 4-Fermion INTERACTION

45

46

47

48 DECAY OF THE PION The decay of the pion is really a scattering event in which the incident quarks happen to be bound together. We do not know how the W couples to the pion. Use the form factor. form factor

49 DECAY OF THE PION

50 DECAY OF THE PION

51 DECAY OF THE PION

52 DECAY OF THE PION The decay rate : The following ratio could be computed without knowing the decay constant : Experimental value :

53 DECAY OF THE PION

54 CHARGED WEAK INTERACTIONS OF QUARKS For leptons, the coupling to W + and W - takes place strictly within a particular generation : For example : There is no cross-generational coupling as : There are 3 generations of quarks : Coupling within a generation : There exist cross-generational coupling as :

55 CHARGED WEAK INTERACTIONS OF QUARKS (Cabibbo, 1963) (extra cos or sin in the vertex factor)

56 Example : Leptonic Decays l is an electron or muon. The quark vertex : Using a previous result : The branching ratio : Corresponding to a Cabibbo angle :

57 Example : Semileptonic Decays (semileptonic decay) (non-leptonic weak decay)

58 Example: Semileptonic Decays Neutron decay : Quark process : There are two d quarks in n, and either one could couple to the W. The net amplitude for the process is the sum. Using the quark wave functions The overall coefficient is simply cos, as claimed before. In the decay: But : the quark process is the same we get an extra factor

59 Example : Semileptonic Decays The decay rate :

60 GIM MECHANISM

61 Cabibbo-GIM Mechanism The decay is allowed by Cabibbo theory. Amplitude :, far greater. GIM introduced the fourth quark c (1970). The couplings with s and d : GIM = GLASHOW, ILIOPOULOS, MAIANI

62 Cabibbo-GIM mechanism Now the diagrams cancel.

63 Cabibbo-GIM mechanism The Cabibbo-GIM mechanism : Instead of the physical quarks d and s, the correct states to use in the weak interactions are d and s : In matrix form : The W s couple to the Cabibbo-rotated states :

64 Cabibbo-Kobayashi-Maskawa (CKM) Matrix CKM is a generalization of Cabibbo-GIM for three generations of quarks. The weak interaction quark generations are related to the physical quarks states by Kobayashi-Maskawa (KM) matrix For example : Canonical form of KM matrix depend only on three generalized Cabibbo angles and one phase factor.

65 Kobayashi-Maskawa (KM) matrix The full matrix : Using the experimental values :

66 THE CKM MATRIX

67 NEUTRAL WEAK INTERACTIONS Neutral weak interaction mediated by the Z 0 boson f stands for any lepton or quark Not allowed :

68 NEUTRAL WEAK INTERACTIONS It doesn t matter if we use physical states or Cabibbo rotated states.

69 NEUTRAL WEAK INTERACTIONS First process mediated by Z 0 (Bubble chamber photograph at CERN, 1973)

70 NEUTRAL WEAK INTERACTIONS In the same series of experiments : Neutrino-quark process in the form of inclusive scattering The cross sections were three times smaller than the correspondent charged events : Indication of a new kind of interaction, and not simply a high order process. (which correspond to a far smaller cross section)

71 NEUTRAL WEAK INTERACTIONS The coupling to Z 0 : where : ( Weak mixing angle or Weinberg angle )

72 NEUTRAL WEAK INTERACTIONS Neutral vector and axial vector coupling in GWS model :

73 NEUTRAL WEAK INTERACTIONS ( Z 0 propagator ) When : the propagator is simply : The masses of the bosons are related by the formula :

74 Example : Elastic Neutrino-Electron Scattering

75 Example : Elastic Neutrino-Electron Scattering Now compute in CM frame and let : (mass of the electron)

76 Example : Elastic Neutrino-Electron Scattering ( E is the electron or neutrino energy ) Using :

77 Example : Elastic Neutrino-Electron Scattering The total cross section : Compare to : (computed in the earlier) (0.08, experimental)

78 Example : Elastic Neutrino-Electron Scattering Most neutral processes are masked by electromagnetic ones.

79 Example : Electron-Positron Scattering Near the Z 0 Pole f is any quark or lepton (except electron we must include one more diagram) We are interested in the regime : The amplitude : where :

80 Example : Electron-Positron Scattering Near the Z 0 Pole ( since we are working in the vicinity of 90 GeV ) Ignore the mass of quark or lepton Finally :

81 Example : Electron-Positron Scattering Near the Z 0 Pole problems at Z 0 pole

82 Example : Electron-Positron Scattering Near the Z 0 Pole Z 0 is not a stable particle. Its lifetime has the effect of smearing out the mass. Replacement in the propagator : = decay rate The cross section : Because : the above correction is negligible outside Z 0 pole.

83 Example : Electron-Positron Scattering Near the Z 0 Pole Cross section for the same process, mediated by a photon : ( Q f is the charge of f in units of e ) The ratio :

84 Example : Electron-Positron Scattering Near the Z 0 Pole

85 Example : Electron-Positron Scattering Near the Z 0 Pole Well below the Z 0 pole : Right on the Z 0 pole :

86 Example : Electron-Positron Scattering Near the Z 0 Pole

87 CHIRAL FERMION STATES To unify the weak and electromagnetic interaction, let s move the matrix into the particle spinor. ( L stands for left-handed ) (But u L is not, in general, a helicity eigenstate)

88 CHIRAL FERMION STATES If the particle is massless : helicity where : projection operator Using : we can compute the following table è

89 CHIRAL FERMION STATES

90 CHIRAL FERMION STATES (inverse beta decay) The contribution to the amplitude from this vertex : Negatively charged weak current and e stand for the particle spinors. Rewrite as : (coupling between left-handed particles only) Note that : Electromagnetic current :

91 WEAK ISOSPIN AND HYPERCHARGE Negatively charged weak current Positively charged weak current

92 WEAK ISOSPIN AND HYPERCHARGE We can express both by introducing the left handed doublet : and the matrices :

93 WEAK ISOSPIN AND HYPERCHARGE We could have a full weak isospin symmetry if only there is a third weak current, neutral weak current. Weak analog of hypercharge (Y) in the Gell-Mann Nishijima formula : Weak hypercharge :

94 WEAK ISOSPIN AND HYPERCHARGE Everything could be extended to the other leptons and quarks : Weak isospin currents : Weak hypercharge current : where :

95 ELECTRO-WEAK MIXING GWS model asserts that the three weak isospin currents couple to a weak Isotriplet of intermediate vector bosons, whereas the weak hypercharge current couples to an isosinglet intermediate vector boson. wave functions representing the particles.

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Lecture 10: Weak Interaction. 1

Lecture 10: Weak Interaction.   1 Lecture 10: Weak Interaction http://faculty.physics.tamu.edu/kamon/teaching/phys627/ 1 Standard Model Lagrangian http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf Standard Model Lagrangian

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

Lecture 16 V2. October 24, 2017

Lecture 16 V2. October 24, 2017 Lecture 16 V2 October 24, 2017 Recap: gamma matrices Recap: pion decay properties Unifying the weak and electromagnetic interactions Ø Recap: QED Lagrangian for U Q (1) gauge symmetry Ø Introduction of

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Elementarteilchenphysik. Weak interaction

Elementarteilchenphysik. Weak interaction Elementarteilchenphysik Antonio Ereditato LHEP University of Bern Weak interaction 1 Weak Interaction Weak interaction is the only interaction that does not produce fermion bound states: weakness and short

More information

Organisatorial Issues: Exam

Organisatorial Issues: Exam Organisatorial Issues: Exam Date: - current date: Tuesday 24.07.2012-14:00 16:00h, gr. HS - alternative option to be discussed: - Tuesday 24.07.2012-13:00 15:00h, gr. HS - Friday 27.07.2012-14:00 16:00h,

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &. An Introductory Course of PARTICLE PHYSICS Palash B. Pal Saha Institute of Nuclear Physics Kolkata, India W CRC Press Taylor &. Francis Croup Boca Raton London New York CRC Press is an imprint of the &

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Weak Interactions: towards the Standard Model of Physics

Weak Interactions: towards the Standard Model of Physics Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental

More information

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia)

NEUTRINOS. Concha Gonzalez-Garcia. San Feliu, June (Stony Brook-USA and IFIC-Valencia) NEUTRINOS (Stony Brook-USA and IFIC-Valencia San Feliu, June 2004 Plan of Lectures I. Standard Neutrino Properties and Mass Terms (Beyond Standard II. Neutrino Oscillations III. The Data and Its Interpretation

More information

Introduction. Read: Ch 1 of M&S

Introduction. Read: Ch 1 of M&S Introduction What questions does this field address? Want to know the basic law of nature. Can we unify all the forces with one equation or one theory? Read: Ch 1 of M&S K.K. Gan L1: Introduction 1 Particle

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Physics 222 UCSD/225b UCSB. Lecture 2 Weak Interactions. Intro and Overview V-A nature of weak current Nuclear beta decay

Physics 222 UCSD/225b UCSB. Lecture 2 Weak Interactions. Intro and Overview V-A nature of weak current Nuclear beta decay Physics 222 UCSD/225b UCSB Lecture 2 Weak Interactions Intro and Overview V-A nature of weak current Nuclear beta decay Weak Interactions Some of the most surprising & mysterious phenomena in particle

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

Introduction to particle physics Lecture 12: Weak interactions

Introduction to particle physics Lecture 12: Weak interactions Introduction to particle physics Lecture 12: Weak interactions Frank Krauss IPPP Durham U Durham, Epiphany term 2010 1 / 22 Outline 1 Gauge theory of weak interactions 2 Spontaneous symmetry breaking 3

More information

FYS3510 Subatomic Physics. Exam 2016

FYS3510 Subatomic Physics. Exam 2016 FYS3510 Subatomic Physics VS 2015 Farid Ould-Saada Exam 2016 In addition to the items marked in blue, don t forget all examples and related material given in the slides, including the ones presented during

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Neutrino Interactions

Neutrino Interactions Neutrino Interactions Natasja Ybema Nathan Mol Overview EM interaction Fermi s WI Parity violation Lefthandedness of neutrinos V-A interaction Cross sections of elastic scattering Quasi elastic scattering

More information

Remainder of Course. 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM

Remainder of Course. 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM Remainder of Course 4/22 Standard Model; Strong Interaction 4/24 Standard Model; Weak Interaction 4/27 Course review 5/01 Final Exam, 3:30 5:30 PM Practice Final on Course Web Page See HW #12 (not to be

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

Electroweak Unification. H. A. Tanaka

Electroweak Unification. H. A. Tanaka Electroweak Unification H. A. Tanaka Outlook PS 4 due next Tuesday No class on 8 December Will have extended office hours thereafter (will keep updated on website) very helpful if you can let me know in

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

Testing universality of lepton couplings

Testing universality of lepton couplings Department for physics Seminar I b - 1st year, nd cycle Testing universality of lepton couplings Author: Andraž Lipanje Mentor: prof. dr. Svjetlana Fajfer Co-Mentor: asist. dr. Nejc Košnik Ljubljana, 14th

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 ecture: Standard Model of Particle Physics Heidelberg SS 013 (Weak) Neutral Currents 1 Contents Theoretical Motivation for Neutral Currents NC Processes Experimental Discovery Measurement of the Weinberg

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

The Standard Model (part I)

The Standard Model (part I) The Standard Model (part I) Speaker Jens Kunstmann Student of Physics in 5 th year at Greifswald University, Germany Location Sommerakademie der Studienstiftung, Kreisau 2002 Topics Introduction The fundamental

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Neutrinos Lecture Introduction

Neutrinos Lecture Introduction Neutrinos Lecture 16 1 Introduction Neutrino physics is discussed in some detail for several reasons. In the first place, the physics is interesting and easily understood, yet it is representative of the

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Weak Interactions Cabbibo Angle and Selection Rules

Weak Interactions Cabbibo Angle and Selection Rules Particle and s Cabbibo Angle and 03/22/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 Helicity Helicity: Spin quantization along direction of motion. Helicity Helicity: Spin

More information

Quark flavour physics

Quark flavour physics Quark flavour physics Michal Kreps Physics Department Plan Kaon physics and SM construction (bit of history) Establishing SM experimentally Looking for breakdown of SM Hard to cover everything in details

More information

Introduction to Particle Physics. Sreerup Raychaudhuri TIFR. Lecture 5. Weak Interactions

Introduction to Particle Physics. Sreerup Raychaudhuri TIFR. Lecture 5. Weak Interactions Introduction to Particle Physics Sreerup Raychaudhuri TIFR Lecture 5 Weak Interactions Pauli s neutrino hypothesis 1 2 Fermi s theory of beta decay 1 1 0n 1 p + e 1 0 0 + 0νe p + n The decay must take

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Leptons and Weak interactions

Leptons and Weak interactions PHY771, 8/28/2014 Tomasz Skwarnicki 1 Historical introduction to Elementary Particles: Leptons and Weak interactions Tomasz Skwarnicki Syracuse University Griffiths, 2 nd ed., 1.3-1.5,1.10 PHY771, 8/28/2014

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012 Neutron Beta-Decay Christopher B. Hayes December 6, 2012 Abstract A Detailed account of the V-A theory of neutron beta decay is presented culminating in a precise calculation of the neutron lifetime. 1

More information

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble Electroweak interactions of quarks Benoit Clément, Université Joseph Fourier/LPSC Grenoble HASCO School, Göttingen, July 15-27 2012 1 PART 1 : Hadron decay, history of flavour mixing PART 2 : Oscillations

More information

The Weak Interaction April 29, 2014

The Weak Interaction April 29, 2014 The Weak Interaction April 9, 04 0. Introduction The nuclear β-decay caused a great deal of anxiety among physicists. Both α- and γ-rays are emitted with discrete spectra, simply because of energy conservation.

More information

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix Particle Physics Lecture 12: Hadron Decays!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix 1 From Friday: Mesons and Baryons Summary Quarks are confined to colourless bound states,

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Lecture 11: Weak Interactions

Lecture 11: Weak Interactions Lecture 11: Weak Interactions Cross-Section and the W Coupling The Cabibbo Angle and the CKM Matrix Parity Violation Kaons and Mixing CP Violation Useful Sections in Martin & Shaw: Sections 4.51, 8.1,

More information

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 Particles and Interactions Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 What is the world made of? In the ancient time: 4 elements 19 century atoms Beginning 20 th century

More information

Topics in Standard Model. Alexey Boyarsky Autumn 2013

Topics in Standard Model. Alexey Boyarsky Autumn 2013 Topics in Standard Model Alexey Boyarsky Autumn 2013 New particles Nuclear physics, two types of nuclear physics phenomena: α- decay and β-decay See Introduction of this article for the history Cosmic

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Particle physics: what is the world made of?

Particle physics: what is the world made of? Particle physics: what is the world made of? From our experience from chemistry has told us about: Name Mass (kg) Mass (atomic mass units) Decreasing mass Neutron Proton Electron Previous lecture on stellar

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Particle Physics Status and Perspectives

Particle Physics Status and Perspectives Particle Physics Status and Perspectives 142.095 Claudia-Elisabeth Wulz Institute of High Energy Physics Austrian Academy of Sciences c/o CERN/PH, CH-1211 Geneva 23 Tel. 0041 22 767 6592, GSM: 0041 75

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

The Standard Model of Particle Physics

The Standard Model of Particle Physics The Standard Model of Particle Physics Jesse Chvojka University of Rochester PARTICLE Program Let s s look at what it is Description of fundamental particles quarks and leptons Three out of Four (Forces)

More information

Fundamental Symmetries - l

Fundamental Symmetries - l National Nuclear Physics Summer School MIT, Cambridge, MA July 18-29 2016 Fundamental Symmetries - l Vincenzo Cirigliano Los Alamos National Laboratory Goal of these lectures Introduce the field of nuclear

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information