Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

Size: px
Start display at page:

Download "Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1"

Transcription

1 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 1

2 Physics 301: Physics Today Prof. Wesley Smith, Undergraduate Physics Colloquium! Discussions of current research topics in physics by the scientists involved in those studies! You are encouraged to contact these researchers to find out more about, and possibly participate in their research programs. Coursework! Paper describing a particular piece of physics research being actively pursued this year.! Outline due April 7! Paper (7-10 pages) due on May 5! More information on course web page Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 2

3 Physics 301 Schedule Wesley Smith Introduction/Particle Physics Jan. 20, 2015 Matt Herndon The Higgs Boson Jan. 27, 2015 Mark Rzchowski Building new physics with atomic-level design Feb. 3, 2015 Franz Himpsel Photovoltaics Feb. 10, 2015 Albrecht Karle High Energy Neutrino Astrophysics with Ice Cube Feb. 17, 2015 Duncan Carlsmith Direct Search for Dark Matter Feb. 24, 2015 Peter Timbie Physics of the Early Universe March 3, 2015 John Kelley South Pole Ultra-high-energy neutrinos w/ara March 10, 2015 Maxim Vavilov Quantum Information March 17, 2015 Mark Saffman Atoms and Computers March 24, 2015 Clint Sprott Chaos April 7, 2015 Yang Bai Puzzles for Particle Physics April 14, 2015 Mark Eriksson Semiconductor Quantum Dot-Based Qubits April 21, 2015 Dan McCammon X-ray Astronomy April 28, 2015 Bob Joynt Superconductivity May 5, 2015 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 3

4 Particle Physics Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 4

5 Interactions between matter particles Matter particles interact via exchange of force particles Nuclei- need a strong interaction to overcome coulomb repulsion of the protons. Gluons are the force carriers Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 5

6 Electromagnetic Force Normal electromagnetic force comes about from exchange of photons. Electromagnetic repulsion via emission of a photon electron photons Exchange of many photons allows for a smooth force (EM field)! For a very quick interaction we can see individual photon exchanges electron Probability proportional to coupling strength divided by momentum Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 6

7 Annihilation The new EM Theory has one very interesting additional feature Can rotate diagrams in any direction electron positron photon positron photon electron electron Time goes from left to right. What is an electron going backward in time? electron Antiparticles! Anti-electron or positron. This is going to be a useful way to make new particles. Also learned from studying EM force that the proton and neutron were made of smaller particles. up and down quarks. p=uud, n=udd Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 7

8 Forces and Field Particles Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 8

9 Many particles discovered Leptons Electron, neutrino, and 4 others Paired with 6 antiparticles Fundamental don t subdivide Relatively light mass Hadrons Proton, neutron, and many others Paired with antiparticles Interact through the strong force Can decay through weak force Not fundamental subdivide into quarks Two groups: Mesons made of 2 quarks intermediate mass Baryons made of 3 quarks heavier mass Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 9

10 Many particles discovered Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 10

11 Quarks Since 1969, many other experiments have been conducted to determine the underlying structure of protons/neutrons. (~GeV) All the experiments come to the same conclusion.! Protons and neutrons are composed of smaller constituents. 1x m (at most) "!Protons 2 up quarks 1 down quark (1.6 x m) "!Neutrons 1 up charge 2/3 2 down -1/3 Are there any other quarks other than UP and DOWN? Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 11

12 Three Families of Quarks Generations Note: fractionally charged particles! Charge = -1/3 Charge = +2/3 I II III d (down) u (up) Increasing mass s (strange) c (charm) b (bottom) t (top) u,d,s,... Also, each quark has a corresponding antiquark The antiquarks have opposite charge to the quarks Many hadrons possible: 3 quarks baryons, 1 quark +1 antiquark mesons Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 12

13 Leptons: Muon The muon was discovered in cosmic ray experiments (1937). It was also used in the experimental test of time dilation. We find that a muon behaves almost identical to an electron, except its mass is about 200 times more than the electron s mass. em=0.51 MeV/c2 µm=106 MeV/c2 Also neutral leptons: neutrinos Neither bind to form hadrons. Don t feel strong force Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 13

14 Three happy families! In 1975, researchers at the Stanford Linear Accelerator discovered a third charged lepton, with a mass about 3500 times that of the electron. It was named the!-lepton.! In 2000, first evidence of the! s partner, the tau-neutrino ("! ) was announced at Fermi National Accelerator Lab. Family Leptons Q = -1 Q = 0 Q = +1 Anti-Lepton Q = 0 1 e - " e 2 µ " µ 3! "! e + µ +! + " e " µ "! 3 families, just like the quarks interesting!!! Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 14

15 Conservation Law: Baryon Number Whenever a baryon is created in a reaction or a decay, an antibaryon is also created B is the Baryon Number! B = +1 for baryons! B = -1 for antibaryons! B = 0 for all other particles The sum of the baryon numbers before a reaction or a decay must equal the sum of baryon numbers after the process Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 15

16 Conservation of Lepton Number There are three conservation laws, one for each variety of lepton Law of Conservation of Electron-Lepton Number states that the sum of electron-lepton numbers before a reaction or a decay must equal the sum of the electronlepton number after the process Assigning electron-lepton numbers! L e = 1 for the electron and the electron neutrino! L e = -1 for the positron and the electron antineutrino! L e = 0 for all other particles Similarly, when a process involves muons, muon-lepton number must be conserved and when a process involves tau particles, tau-lepton numbers must be conserved! Muon- and tau-lepton numbers are assigned similarly to electron-lepton numbers Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 16

17 Strange Particles Some particles discovered in the 1950 s were found to exhibit unusual properties in their production and decay and were given the name strange particles! These include K,!, ". Peculiar features include! Always produced in pairs! Although produced by the strong interaction, they do not decay into particles that interact via the strong interaction, but instead into particles that interact via weak interactions! They decay much more slowly than particles decaying via strong interactions To explain these unusual properties, a new law, conservation of strangeness, was introduced! Also needed a new quantum number, S The Law of Conservation of Strangeness states that the sum of strangeness numbers before a reaction or a decay must equal the sum of the strangeness numbers after the process Strong and electromagnetic interactions obey the law of conservation of strangeness, but the weak interactions do not Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 17

18 Charge u Electric charge = +2/3 e Electric charge = -1 What does it really mean for a particle to have electric charge? It means the particle has an attribute which allows it to talk to (or couple to ) the photon, the mediator of the electromagnetic interaction. The strength of the interaction depends on the amount of charge. Which of these might you expect experiences a larger electrical repulsion? u e u e Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 18

19 Weak Force Proposed a massive force-carrying particle for the weak force P! F 2! e 4 /(p 2 +M B2 ) 2!!!!!!! Coupling strength: Same as EM force p momentum of the W or Z bosons If the mass of the W boson was large compared to the momentum the probability of a weak interaction could be very low! Same formula for electric and weak forces: Put in M B large for the W boson Put in M B =0 for the photon W - Unified the forces! M W = 80GeV Later seen directly n d u d e - " e u u d p Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 19

20 The Forces Revisited E M Weak Strong Gravity Couples to: Particles with electric charge Weak charge: quarks and leptons Color charge: quarks All particles with mass Example Attraction between protons and electrons Nuclear beta decay and nuclear fission Holds protons and neutrons together the nucleus Only attractive Quanta: Force Carrier Photon W and Z Boson Gluon Graviton Mass 0 80 and 91 GeV 0 0 Strength in an Atom F = 2.3x10-8 N Decays can take thousands of years F = 2.3x10 2 N F = 2.3x10-47 N Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 20

21 Fermions and Bosons A fermion is any particle that has an odd half-integer (like 1/2, 3/2, and so forth) spin. Quarks and leptons, as well as most composite particles, like protons and neutrons, are fermions. A consequence of the odd half-integer spin is that fermions obey the Pauli Exclusion Principle and therefore cannot co-exist in the same state at same location at the same time. Bosons are those particles which have an integer spin (0, 1, 2...). All the force carrier particles are bosons, as are those composite particles with an even number of fermion particles (like mesons). *Graviton has spin 2 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 21

22 The Standard Model What is the Standard Model?! Explains the hundreds of common particles: atoms - protons, neutrons and electrons! Explains the interactions between them Basic building blocks! 6 quarks: up, down! 6 leptons: electrons! Bosons: force carrier particles All common matter particles are composites of the quarks and leptons and interact by exchange of the bosons Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 22

23 Origin of mass - the Higgs mechanism Simplest theory all particles are massless!! A field pervades the universe Particles interacting with this field acquire mass the stronger the interaction the larger the mass The field is a quantum field the quantum is the Higgs boson Finding the Higgs particle establishes the presence of the field Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 23

24 Higgs Mechanism Which of these falls more slowly?! An unopened parachute! Fully opened parachute The greater the interaction with the medium (air) the lower the falling speed. Higgs field permeates all space, particles interact with differing strengths with the Higgs field. The higher the interaction the larger the mass of the particle. The simplest theory with Higgs fields results in a new self-interacting particle: the Higgs boson, which itself has a mass but, theory can t predict its mass. Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 24

25 Further investigations: The Problems of Standard Model Higgs self energy corrections! Higgs couples to itself! However, this coupling becomes infinite!! Contributions ot this from fermions (leptons and quarks) and vector bosons (W, Z) come with opposite sign! SM particles can mitigate to about 1 TeV energy scale! However, new physics should show up at! few TeV Super-symmetry! What if there are equal number of fermions and bosons in the real theory at high masses (~few TeV)?! Many new fundamental scalar and fermionic fields # must be massive to fit observations! But, this could solve the problem of Higgs divergences # Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 25

26 Supersymmetry A new physics theory which doubles known particles again but the new particles have very large mass LHC may be able to produce them Dark matter candidates Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 26

27 Outstanding Mysteries Dark Matter Gravitational lensing The Bullet Cluster (1E ). Two galaxies colliding. Red shows concentration of visible matter. Blue shows dark matter inferred by gravitational lensing. What is dark matter composed of?!supersymmetric particles perhaps? The lightest supersymmetric particle predicted by theory has all the right properties! Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 27

28 Dark Matter & Energy? The calculated makeup of the Universe We only understand 4.6% of it after 100s of years of trying!! Don t know what Dark Matter is Don t know what Dark Energy is but SOMETHING is accelerating the expansion of our Universe Supersymmetry? The Neutralino particle? A new force field particle, like the Higgs, Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 28

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Physics 7730: Particle Physics

Physics 7730: Particle Physics Physics 7730: Particle Physics! Instructor: Kevin Stenson (particle physics experimentalist)! Office: Duane F317 (Gamow tower)! Email: kevin.stenson@colorado.edu! Phone: 303-492-1106! Web page: http://www-hep.colorado.edu/~stenson/!

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Particles. Constituents of the atom

Particles. Constituents of the atom Particles Constituents of the atom For Z X = mass number (protons + neutrons), Z = number of protons Isotopes are atoms with the same number of protons number but different number of neutrons. charge Specific

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 Particles and Interactions Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 What is the world made of? In the ancient time: 4 elements 19 century atoms Beginning 20 th century

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Bosons in the Zoo of Elementary Particles

Bosons in the Zoo of Elementary Particles Bosons in the Zoo of Elementary Particles Daniele Sasso * Abstract In this paper we want to raise the question concerning the physical identity of bosons and the function that they perform in the Non-Standard

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does? The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com OR K π 0 + µ + v ( µ ) M. (a) (i) quark antiquark pair OR qq OR named quark antiquark pair 0 (iii) us (b) (i) Weak any of the following also score mark: weak interaction weak interaction force weak nuclear

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

The ATLAS Experiment and the CERN Large Hadron Collider

The ATLAS Experiment and the CERN Large Hadron Collider The ATLAS Experiment and the CERN Large Hadron Collider HEP101-2 January 28, 2013 Al Goshaw 1 HEP 101-2 plan Jan. 14: Introduction to CERN and ATLAS DONE Today: 1. Comments on grant opportunities 2. Overview

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Chapter 46. Particle Physics and Cosmology

Chapter 46. Particle Physics and Cosmology Chapter 46 Particle Physics and Cosmology Atoms as Elementary Particles Atoms From the Greek for indivisible Were once thought to be the elementary particles Atom constituents Proton, neutron, and electron

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson IX April 12, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

The Standard Model of Particle Physics

The Standard Model of Particle Physics The Standard Model of Particle Physics Jesse Chvojka University of Rochester PARTICLE Program Let s s look at what it is Description of fundamental particles quarks and leptons Three out of Four (Forces)

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory Neutrino Physics Kam-Biu Luk Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory 4-15 June, 2007 Outline Brief overview of particle physics Properties of

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

The Scale-Symmetric Theory as the Origin of the Standard Model

The Scale-Symmetric Theory as the Origin of the Standard Model Copyright 2017 by Sylwester Kornowski All rights reserved The Scale-Symmetric Theory as the Origin of the Standard Model Sylwester Kornowski Abstract: Here we showed that the Scale-Symmetric Theory (SST)

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Intro to Particle Physics and The Standard Model. Robert Clare UCR

Intro to Particle Physics and The Standard Model. Robert Clare UCR Intro to Particle Physics and The Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960 s Timeline

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

The Standard Model, Supersymmetry and ZooFinder at CDF. Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006

The Standard Model, Supersymmetry and ZooFinder at CDF. Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006 The Standard Model, Supersymmetry and ZooFinder at CDF Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006 1 Outline The Standard Model of Particle Physics Supersymmetry

More information

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007 Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Physics 424: Dr. Justin Albert (call me Justin!)

Physics 424: Dr. Justin Albert (call me Justin!) Physics 424: Dr. Justin Albert (call me Justin!) A Brief History of Particle Physics Discoveries (Or: Figuring out What the Universe is Made Of ) Looking Inside the Atom: e -, p, and n! 1897: J.J. Thomson

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 1 Matter Particles Quarks: Leptons: Anti-matter Particles Anti-quarks: Anti-leptons: Hadrons Stable bound states of quarks Baryons:

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

Chapter 5. Par+cle Physics

Chapter 5. Par+cle Physics Chapter 5 Par+cle Physics Types of Forces Force Range (m) Relative Strength Force Carrier Gravitational! 10-38 Graviton Weak 10-18 10-5 W ±, Z 0 Electromagnetic! =1/137 Photon Strong 10-15 1 Gluon What

More information

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson XI November 19, 2015

Modern Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson XI November 19, 2015 Modern Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson XI November 19, 2015 L. A. Anchordoqui (CUNY) Modern Physics 11-19-2015 1 / 23

More information

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM. Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe Mysteries of the Universe Quarks Leptons Higgs Bosons Supersymmetric Particles SuperString Theory Dark Matter Dark Energy and the cosmological

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course?

Particle Physics. Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 1: The Mysteries of Particle Physics, or Why should I take this course? Contents: Review of the Standard Model! What we know! What we don

More information

LECTURE 7 The Standard Model. Instructor: Shih-Chieh Hsu

LECTURE 7 The Standard Model. Instructor: Shih-Chieh Hsu LECTURE 7 The Standard Model Instructor: Shih-Chieh Hsu Announcement 2 ATLAS Virtual Visit (PAB A110) Sep 7 Vidyo connection will start from 9:20am At least one question for CERN host from each group http://atlas-

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc.

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc. Chapter 29 Lecture Particle Physics Prepared by Dedra Demaree, Georgetown University Particle Physics What is antimatter? What are the fundamental particles and interactions in nature? What was the Big

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Chapter 30. Nuclear Energy and Elementary Particles

Chapter 30. Nuclear Energy and Elementary Particles Chapter 30 Nuclear Energy and Elementary Particles Processes of Nuclear Energy Fission A nucleus of large mass number splits into two smaller nuclei Fusion Two light nuclei fuse to form a heavier nucleus

More information

Phys 102 Lecture 28 Life, the universe, and everything

Phys 102 Lecture 28 Life, the universe, and everything Phys 102 Lecture 28 Life, the universe, and everything 1 Today we will... Learn about the building blocks of matter & fundamental forces Quarks and leptons Exchange particle ( gauge bosons ) Learn about

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011 First Discovery of Dark Matter As you get farther away from the main central mass of a galaxy, the acceleration from

More information

Some fundamental questions

Some fundamental questions Some fundamental questions What is the standard model of elementary particles and their interactions? What is the origin of mass and electroweak symmetry breaking? What is the role of anti-matter in Nature?

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Dark Side of the Universe

Dark Side of the Universe Dark Side of the Universe Bhaskar Dutta Department of Physics & Astronomy Texas A&M University Dark Side of the Universe 1 Content of the Universe 4% The 23% is still unobserved in the laboratory.. (This

More information

Introduction. Read: Ch 1 of M&S

Introduction. Read: Ch 1 of M&S Introduction What questions does this field address? Want to know the basic law of nature. Can we unify all the forces with one equation or one theory? Read: Ch 1 of M&S K.K. Gan L1: Introduction 1 Particle

More information

Cosmology and particle physics

Cosmology and particle physics Fedora GNU/Linux; LATEX 2ɛ; xfig Cosmology and particle physics Mark Alford Washington University Saint Louis, USA Outline I Particle physics: What the universe is made of. quarks, leptons, and the forces

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

First some Introductory Stuff => On The Web.

First some Introductory Stuff => On The Web. First some Introductory Stuff => On The Web http://hep.physics.utoronto.ca/~orr/wwwroot/phy357/phy357s.htm PHY357 = What is the Universe Made Of? Is the Universe Made of These? Proton = (u u d) held

More information

Properties of Elementary Particles

Properties of Elementary Particles and of Elementary s 01/11/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 Consider the world at different scales... Cosmology - only gravity matters XXXXX Input: Mass distributions

More information

The Uncertainty Principle and the Quarks

The Uncertainty Principle and the Quarks The Uncertainty Principle and the Quarks Andrei Gritsan Johns Hopkins University August, 2007 JHU Quarknet Meeting Outline The Uncertainty Principle quantum mechanics with elementary particles The Quarks

More information

Chapter 22: Cosmology - Back to the Beginning of Time

Chapter 22: Cosmology - Back to the Beginning of Time Chapter 22: Cosmology - Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Future of universe depends on the total amount of dark and normal matter Amount of matter

More information

Introduction to CERN and CMS

Introduction to CERN and CMS Introduction to CERN and CMS and background for the CMS analysis Jamie Gainer University of Hawaii at Manoa April 1, 2017 What do I do? I am a postdoc at UH Manoa I am a theorist In physics there are theorists:

More information