Challenges in advanced imaging with radio interferometric telescopes. S.Bhatnagar NRAO, Socorro April 08, 2005

Size: px
Start display at page:

Download "Challenges in advanced imaging with radio interferometric telescopes. S.Bhatnagar NRAO, Socorro April 08, 2005"

Transcription

1 Challenges in advanced imaging with radi interfermetric telescpes S.Bhatnagar NRAO, Scrr April 08, 2005

2 Basic Interfermetry Terminlgy: Visibility: V=<EiE*j>, Ei is the electric field Baseline: Length f the prjected separatin between the antennas (B). Only relative separatin matters fr incherent emissin C rdinates: (u,v,w ) u=ui uj <EiE*j> An N element array instantaneusly measures N (N 1)/2 baselines (cmplex values)

3 Basic Interfermetry In terms f the sky brightness distributin (I(l,m)) V u, v, w = I l, m S u, v, w e dl dm N n 2 u l v m w n 1 S : uv sampling functin, (l,m): directin in the sky 2 2 n= 1 l m Fr l2+m2<<1 r small w, sky is the 2D Furier transfrm f the Visibility functin (van Cittert Zernike Therem) I =FT [V ] and V =S V I d =PSF I PSF =FT [ S ]: The Dirty Beam

4 Sampling in the Furier plane N element array instantaneusly measures O(N2) Furier cmpnents. As earth rtates the prjected baseline changes ==> each baseline measures a new Furier cmpnent V = S. V

5 Image plane PSF =FT [ S ] I =FT [V ] Sampling functin d I =FT [V ]=PSF I

6 Imaging The easurement Eq.: V = AI AN where A is the measurement matrix, V, I and N are the Visibility, Image and nise vectrs. A=FS where F is the Furier Transfrm peratr and S is a diagnal matrix f weights (w). Due t finite Furier plane sampling, A is singular and in general rectangular Image recnstructin: Slve fr I T T A V=BI BN where B= A A B: The Teplitz Beam atrix ATA=Id: The Dirty Image vectr

7 Data crruptin The full easurement Eq.: V, t =G, t [ X, t I l, m e Data Crruptins 2 lu mv dl dm] Sky G are the directin independent crruptins (e.g., multiplicative cmplex gains, etc.) X are the directin dependent crruptins (e.g., inspheric/atmspheric effects, Primary beam effects, etc.) Often G, X are separable int antenna based quantities as G=GiG*j V =G.[E V ] j where E =E i E and E i =FT [ X i ]

8 Data analysis peratins V =J AI Calibratin: Keeping I fixed, determine Ji's. Calibrate the data: V Crrected 1 =J V Fr directin independent crrectins: Incrprate directin dependent crrectins in imaging Imaging: Keeping J fixed Estimate I such that V Crrected AI is nise like

9 Calibratin V =J.V Fr full plarizatin treatment: V=[VRR,VRL,VLR,VLL] Image using Crrected V 1 g R i d d R i g =J V Fr single plarizatin: min:{ V L i L i V J.V is nise like Given I, slve fr Jis such that J i= J =J i J j V i j g g }

10 Imaging Use f FFT requires re sampling the Vis. (V(u,v) is nt measured n a regular grid) G crrected V = GCF V d G ake the Dirty Image as: I =FFT [V ] Cnvlutinal gridding: k u Decnvlve the PSF t estimate I General structure f decnvlutin algrithms: ajr cycle: Cmpute the mdel and the residual vis as AI and V AI inr cycle: Update the mdel image

11 Decnvlutin: 2D gemetry General frmulatin T 2 =[V AI ] W [V AI ] 2 I = k a k P p k R = I P The Clean algrithm: I = k a k x x k Image representatin in the pixel basis. 2 = I R Steepest descent inr cycle: Step size: s=max{ 2 } I i =I i 1 s ajr cycle: Update using FFT: V ir=v AI i

12 Example I AT(V AI) I V AI

13 Sme bservatins Expensive functin evaluatin is simplified: Cnvlutin becmes a shift and add peratin. Clean (and its variants) ignre inherent pixel level crrelatin in I (each pixel is a DOF) errrs are crrelated with extended emissin. Search space is assumed t be rthgnal. T many DOFs fr extended emissin (n. f pixels). Search space cnstrained by user defined bxes.

14 Image plane crrectins V u, v, w = X l, m, w I l, m e 2 lu mv dl dm V u, v, w =E u, v, w V u, v A is mre cmplicated (nt a FT peratr) General apprach: ajr cycle invlves: V AI and AT V AI Use E as the GCF t predict the mdel data (AI) Cmpute VR at high accuracy. Use an apprximatin fr AT: Use ET as the GCF

15 Primary Beam Effects E as functin f directin is measured a priri V =G.[E V ] where E l i,l j,u ; pi, p j Primary beam effects i E =E E i where E =FT [ easured PB i ] Plarized primary beam: Beam squint j Fr full beam plarimetry (EVLA) Pinting ffset calibratin Fr msaicing (EVLA, ALA) GCF different fr each visibility!

16 Example Residual image befre and after pinting crrectin. IV=PB(IRR ILL) Peak ~4% IV=PBRIRR PBLILL Peak ~0.2%

17 Scale sensitive decnvlutin Pixel t pixel nise is crrelated at the scale f the PSF supprt I d =BI BI N (Pixn methds nt applicable they are patented anyway!). The scale f the emissin fundamentally separates the signal (I) frm nise (IN). Use a pixel mdel with finite supprt Cnvlutin is n mre a shift n add peratin. Functin evaluatin becmes very expensive. V R=FT [I d PSF I ]

18 Scale sensitive decnvlutin Search space is nn rthgnal The ttal DOFs decrease, but cmputing cst is a strng functin f the number f parameters. Asp Clean (Adaptive Scale Pixel mdel) [A&A, 2004] Use I = k a k P p k Find the lcal scale by fitting e.g., where P p k =Gaussian Fr emissin cvering 100,000 pixels, required 1000 Pks Cmputing cst prhibitive fr mre ~100 active parameters. Sub spaces

19 Example

20 Challenges Fast and accurate frward and backward transfrm in the presence f image plane effects min:v E [ AI ] Slve fr directin dependent effects: Primary beam effects (pinting, squint, variable beam shape,...) [EVLA, ALA] Wide band imaging: E =E [EVLA] Need mre sphisticated parametrizatin f E [EVLA,ALA,LWA,SKA...] E =E,t Inspheric/atmspheric calibratin [LWA, SKA] Simple functinal representatin may be difficult

21 Challenges Cmpnent based image mdel Gridding errrs limit the highest dynamic range achievable. FFT based inversin f the E may nt be usable. Image sizes and visibility data sets will be large 100s f GB 1TB f data, 15K X 15K images transfrms between image and data Parallelizatin f cmputing as well as I/O

22 Challenges Scale sensitive decnvlutin Pixel mdel parameterized by the amplitude, (lcal) scale, psitin, frequency, and perhaps plarizatin. Ttal n. f parameters: ~10K Fast algrithm fr parameter estimatin Handle the cupling between pixels (nn rthgnal search space) Adaptively cntrl n the dimensinality f the search space.

23 References Interfermetry and Synthesis in Radi Astrnmy Thmpsn, ran and Swensn, 2001, Jhn Wiley&Sns Clean: Hgbm, J.A., 1974, A&AS,15,417 E: Crnwell,T.J, &Evans, K.J.,1985,A&A,143,77 Review f varius methds: Narayan, R. & Nityananda, R.,1986, ARA&A,24,127 ath. analysis f the Clean Alg.: Schwarz, U.J., 1978, A&A, 65,345 Asp Clean: Bhatnagar,S., & Crnwell, T.J., 2004,A&A,436,747 W prjectin: Crnwell,T.J., Glap,K., & Bhatnagar,S.,2005,A&A,in press Pinting cal: Bhatnagar,S., Crnwell,T.J.,&Glap, K., 2004, EVLA em #84 Ninth Synthesis Imaging Summer Schl lectures,

Wide-Field Imaging: I

Wide-Field Imaging: I Wide-Field Imaging: I S. Bhatnagar NRAO, Socorro Twelfth Synthesis Imaging Workshop 010 June 8-15 Wide-field imaging What do we mean by wide-field imaging W-Term: D Fourier transform approximation breaks

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Principal Components

Principal Components Principal Cmpnents Suppse we have N measurements n each f p variables X j, j = 1,..., p. There are several equivalent appraches t principal cmpnents: Given X = (X 1,... X p ), prduce a derived (and small)

More information

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction

T Algorithmic methods for data mining. Slide set 6: dimensionality reduction T-61.5060 Algrithmic methds fr data mining Slide set 6: dimensinality reductin reading assignment LRU bk: 11.1 11.3 PCA tutrial in mycurses (ptinal) ptinal: An Elementary Prf f a Therem f Jhnsn and Lindenstrauss,

More information

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels

k-nearest Neighbor How to choose k Average of k points more reliable when: Large k: noise in attributes +o o noise in class labels Mtivating Example Memry-Based Learning Instance-Based Learning K-earest eighbr Inductive Assumptin Similar inputs map t similar utputs If nt true => learning is impssible If true => learning reduces t

More information

SAMPLING DYNAMICAL SYSTEMS

SAMPLING DYNAMICAL SYSTEMS SAMPLING DYNAMICAL SYSTEMS Melvin J. Hinich Applied Research Labratries The University f Texas at Austin Austin, TX 78713-8029, USA (512) 835-3278 (Vice) 835-3259 (Fax) hinich@mail.la.utexas.edu ABSTRACT

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

Application of Image Restoration Technique in Flow Scalar Imaging. Experiment

Application of Image Restoration Technique in Flow Scalar Imaging. Experiment Final Reprt Applicatin f Image Restratin Technique in Flw Scalar Imaging Experiment Guanghua Wang Abstract Center fr Aermechanics Research Department f Aerspace Engineering and Engineering Mechanics The

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Formal Uncertainty Assessment in Aquarius Salinity Retrieval Algorithm

Formal Uncertainty Assessment in Aquarius Salinity Retrieval Algorithm Frmal Uncertainty Assessment in Aquarius Salinity Retrieval Algrithm T. Meissner Aquarius Cal/Val Meeting Santa Rsa March 31/April 1, 2015 Outline 1. Backgrund/Philsphy 2. Develping an Algrithm fr Assessing

More information

NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN. Junjiro Ogawa University of North Carolina

NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN. Junjiro Ogawa University of North Carolina NOTE ON THE ANALYSIS OF A RANDOMIZED BLOCK DESIGN by Junjir Ogawa University f Nrth Carlina This research was supprted by the Office f Naval Research under Cntract N. Nnr-855(06) fr research in prbability

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

A Matrix Representation of Panel Data

A Matrix Representation of Panel Data web Extensin 6 Appendix 6.A A Matrix Representatin f Panel Data Panel data mdels cme in tw brad varieties, distinct intercept DGPs and errr cmpnent DGPs. his appendix presents matrix algebra representatins

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

The blessing of dimensionality for kernel methods

The blessing of dimensionality for kernel methods fr kernel methds Building classifiers in high dimensinal space Pierre Dupnt Pierre.Dupnt@ucluvain.be Classifiers define decisin surfaces in sme feature space where the data is either initially represented

More information

What is Statistical Learning?

What is Statistical Learning? What is Statistical Learning? Sales 5 10 15 20 25 Sales 5 10 15 20 25 Sales 5 10 15 20 25 0 50 100 200 300 TV 0 10 20 30 40 50 Radi 0 20 40 60 80 100 Newspaper Shwn are Sales vs TV, Radi and Newspaper,

More information

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD

Particle Size Distributions from SANS Data Using the Maximum Entropy Method. By J. A. POTTON, G. J. DANIELL AND B. D. RAINFORD 3 J. Appl. Cryst. (1988). 21,3-8 Particle Size Distributins frm SANS Data Using the Maximum Entrpy Methd By J. A. PTTN, G. J. DANIELL AND B. D. RAINFRD Physics Department, The University, Suthamptn S9

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

7 TH GRADE MATH STANDARDS

7 TH GRADE MATH STANDARDS ALGEBRA STANDARDS Gal 1: Students will use the language f algebra t explre, describe, represent, and analyze number expressins and relatins 7 TH GRADE MATH STANDARDS 7.M.1.1: (Cmprehensin) Select, use,

More information

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw:

In SMV I. IAML: Support Vector Machines II. This Time. The SVM optimization problem. We saw: In SMV I IAML: Supprt Vectr Machines II Nigel Gddard Schl f Infrmatics Semester 1 We sa: Ma margin trick Gemetry f the margin and h t cmpute it Finding the ma margin hyperplane using a cnstrained ptimizatin

More information

Experimental Design Initial GLM Intro. This Time

Experimental Design Initial GLM Intro. This Time Eperimental Design Initial GLM Intr This Time GLM General Linear Mdel Single subject fmri mdeling Single Subject fmri Data Data at ne vel Rest vs. passive wrd listening Is there an effect? Linear in

More information

Rigid Body Dynamics (continued)

Rigid Body Dynamics (continued) Last time: Rigid dy Dynamics (cntinued) Discussin f pint mass, rigid bdy as useful abstractins f reality Many-particle apprach t rigid bdy mdeling: Newtn s Secnd Law, Euler s Law Cntinuus bdy apprach t

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Sectin Q Fall 2017 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCurseWare http://cw.mit.edu 2.161 Signal Prcessing: Cntinuus and Discrete Fall 2008 Fr infrmatin abut citing these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. Massachusetts Institute

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

FT- cal reconstruction: energy corrections

FT- cal reconstruction: energy corrections FT- cal recnstructin: energy crrectins Lucilla Lanza, Ph. D. student Advisr: prf. Annalisa D Angel University f Rme, Tr Vergata INFN 3 Octber 15 Outline Optimizatin the FT- Cal cluster recnstructin algrithm

More information

IAML: Support Vector Machines

IAML: Support Vector Machines 1 / 22 IAML: Supprt Vectr Machines Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester 1 2 / 22 Outline Separating hyperplane with maimum margin Nn-separable training data Epanding the input int

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Math 302 Learning Objectives

Math 302 Learning Objectives Multivariable Calculus (Part I) 13.1 Vectrs in Three-Dimensinal Space Math 302 Learning Objectives Plt pints in three-dimensinal space. Find the distance between tw pints in three-dimensinal space. Write

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM

The general linear model and Statistical Parametric Mapping I: Introduction to the GLM The general linear mdel and Statistical Parametric Mapping I: Intrductin t the GLM Alexa Mrcm and Stefan Kiebel, Rik Hensn, Andrew Hlmes & J-B J Pline Overview Intrductin Essential cncepts Mdelling Design

More information

Chapter 2. Coulomb s Law and Electric Field Intensity

Chapter 2. Coulomb s Law and Electric Field Intensity Chapter. Culmb s Law and lectric Field Intensit Hat; 9/9/009; -1.1 The perimental Law f Culmb Frm the eperiment the frce between tw charged bjects is QQ F k : Frce in Newtn (N) where Q1 and Q : Charges

More information

Appendix A Radio Measurements at Tunka

Appendix A Radio Measurements at Tunka Appendix A Radi Measurements at Tunka The Tunka experiment measures Cherenkv light emitted by air shwers []. It is lcated clse t Irkutsk, Siberia, Russia, and cnsists f 33 phtmultiplier detectrs (with

More information

Graduate AI Lecture 16: Planning 2. Teachers: Martial Hebert Ariel Procaccia (this time)

Graduate AI Lecture 16: Planning 2. Teachers: Martial Hebert Ariel Procaccia (this time) Graduate AI Lecture 16: Planning 2 Teachers: Martial Hebert Ariel Prcaccia (this time) Reminder State is a cnjunctin f cnditins, e.g., at(truck 1,Shadyside) at(truck 2,Oakland) States are transfrmed via

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

Chapter 9 Vector Differential Calculus, Grad, Div, Curl Chapter 9 Vectr Differential Calculus, Grad, Div, Curl 9.1 Vectrs in 2-Space and 3-Space 9.2 Inner Prduct (Dt Prduct) 9.3 Vectr Prduct (Crss Prduct, Outer Prduct) 9.4 Vectr and Scalar Functins and Fields

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017

Resampling Methods. Cross-validation, Bootstrapping. Marek Petrik 2/21/2017 Resampling Methds Crss-validatin, Btstrapping Marek Petrik 2/21/2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins in R (Springer, 2013) with

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

Versatility of Singular Value Decomposition (SVD) January 7, 2015

Versatility of Singular Value Decomposition (SVD) January 7, 2015 Versatility f Singular Value Decmpsitin (SVD) January 7, 2015 Assumptin : Data = Real Data + Nise Each Data Pint is a clumn f the n d Data Matrix A. Assumptin : Data = Real Data + Nise Each Data Pint is

More information

How do we solve it and what does the solution look like?

How do we solve it and what does the solution look like? Hw d we slve it and what des the slutin l lie? KF/PFs ffer slutins t dynamical systems, nnlinear in general, using predictin and update as data becmes available. Tracing in time r space ffers an ideal

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Comparison of hybrid ensemble-4dvar with EnKF and 4DVar for regional-scale data assimilation

Comparison of hybrid ensemble-4dvar with EnKF and 4DVar for regional-scale data assimilation Cmparisn f hybrid ensemble-4dvar with EnKF and 4DVar fr reginal-scale data assimilatin Jn Pterjy and Fuqing Zhang Department f Meterlgy The Pennsylvania State University Wednesday 18 th December, 2013

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

The challenges of Linearized Physics (LP) in Data Assimilation (DA)

The challenges of Linearized Physics (LP) in Data Assimilation (DA) The challenges f Linearized Physics (LP) in Data Assimilatin (DA) Philippe Lpez, ECMWF with thanks t Marta aniskvá (ECMWF). Outline Brief reminder f what DA is abut. Physics in (4D-Var) DA: Why, where

More information

Testing Groups of Genes

Testing Groups of Genes Testing Grups f Genes Part II: Scring Gene Ontlgy Terms Manuela Hummel, LMU München Adrian Alexa, MPI Saarbrücken NGFN-Curses in Practical DNA Micrarray Analysis Heidelberg, March 6, 2008 Bilgical questins

More information

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001)

CN700 Additive Models and Trees Chapter 9: Hastie et al. (2001) CN700 Additive Mdels and Trees Chapter 9: Hastie et al. (2001) Madhusudana Shashanka Department f Cgnitive and Neural Systems Bstn University CN700 - Additive Mdels and Trees March 02, 2004 p.1/34 Overview

More information

Drought damaged area

Drought damaged area ESTIMATE OF THE AMOUNT OF GRAVEL CO~TENT IN THE SOIL BY A I R B O'RN EMS S D A T A Y. GOMI, H. YAMAMOTO, AND S. SATO ASIA AIR SURVEY CO., l d. KANAGAWA,JAPAN S.ISHIGURO HOKKAIDO TOKACHI UBPREFECTRAl OffICE

More information

Real-time inverse scattering for optical coherence tomography

Real-time inverse scattering for optical coherence tomography Real-time inverse scattering fr ptical cherence tmgraphy Tyler S. Ralstn a, Daniel L. Mars a, P. Sctt Carney a, and Stephen A. Bppart a,b a Becman Institute fr Advanced Science and Technlgy and Department

More information

Multiple Source Multiple. using Network Coding

Multiple Source Multiple. using Network Coding Multiple Surce Multiple Destinatin Tplgy Inference using Netwrk Cding Pegah Sattari EECS, UC Irvine Jint wrk with Athina Markpulu, at UCI, Christina Fraguli, at EPFL, Lausanne Outline Netwrk Tmgraphy Gal,

More information

Lecture 3: Principal Components Analysis (PCA)

Lecture 3: Principal Components Analysis (PCA) Lecture 3: Principal Cmpnents Analysis (PCA) Reading: Sectins 6.3.1, 10.1, 10.2, 10.4 STATS 202: Data mining and analysis Jnathan Taylr, 9/28 Slide credits: Sergi Bacallad 1 / 24 The bias variance decmpsitin

More information

Time-domain lifted wavelet collocation method for modeling nonlinear wave propagation

Time-domain lifted wavelet collocation method for modeling nonlinear wave propagation Lee et al.: Acustics Research Letters Online [DOI./.] Published Online 8 August Time-dmain lifted wavelet cllcatin methd fr mdeling nnlinear wave prpagatin Kelvin Chee-Mun Lee and Wn-Seng Gan Digital Signal

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Video Encoder Control

Video Encoder Control Vide Encder Cntrl Thmas Wiegand Digital Image Cmmunicatin 1 / 41 Outline Intrductin Encder Cntrl using Lagrange multipliers Lagrangian ptimizatin Lagrangian bit allcatin Lagrangian Optimizatin in Hybrid

More information

On the Correct Estimate of the Probability of False Detection of the Matched Filter in Weak-Signal Detection Problems

On the Correct Estimate of the Probability of False Detection of the Matched Filter in Weak-Signal Detection Problems Astrnmy & Astrphysics manuscript n. FalseDetectin c ESO 2016 February 9, 2016 On the Crrect Estimate f the Prbability f False Detectin f the Matched Filter in Weak-Signal Detectin Prblems R. Vi 1 and P.

More information

COMP9444 Neural Networks and Deep Learning 3. Backpropagation

COMP9444 Neural Networks and Deep Learning 3. Backpropagation COMP9444 Neural Netwrks and Deep Learning 3. Backprpagatin Tetbk, Sectins 4.3, 5.2, 6.5.2 COMP9444 17s2 Backprpagatin 1 Outline Supervised Learning Ockham s Razr (5.2) Multi-Layer Netwrks Gradient Descent

More information

NOTE ON A CASE-STUDY IN BOX-JENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974

NOTE ON A CASE-STUDY IN BOX-JENKINS SEASONAL FORECASTING OF TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPORT NO. 16 APRIL 1974 NTE N A CASE-STUDY IN B-JENKINS SEASNAL FRECASTING F TIME SERIES BY STEFFEN L. LAURITZEN TECHNICAL REPRT N. 16 APRIL 1974 PREPARED UNDER CNTRACT N00014-67-A-0112-0030 (NR-042-034) FR THE FFICE F NAVAL

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Vibratins Matti Htkka Department f Physical Chemistry Åb Akademi University Harmnic scillatr V(r) Schrödinger s equatin Define q = r - r e V ( q) = 1 2 fq 2 α = f hν r e r 2 2 h d + V ( q) Ψ( q) = EΨ(

More information

NWACC Dept of Mathematics Dept Final Exam Review for Trig - Part 3 Trigonometry, 9th Edition; Lial, Hornsby, Schneider Fall 2008

NWACC Dept of Mathematics Dept Final Exam Review for Trig - Part 3 Trigonometry, 9th Edition; Lial, Hornsby, Schneider Fall 2008 NWACC Dept f Mathematics Dept Final Exam Review fr Trig - Part Trignmetry, 9th Editin; Lial, Hrnsby, Schneider Fall 008 Departmental Objectives: Departmental Final Exam Review fr Trignmetry Part : Chapters

More information

Mass Production Rate. Solid Propellant Burning Rate

Mass Production Rate. Solid Propellant Burning Rate Mass Prductin Rate Prpellant cnverted t gas at rate given by m r (VI.) s b (Surface) Regressin Rate r r dx smetimes r b standard mdel (Burning Rate Law r St. Rbert s Law, als Vielle s Law) n (VI.2) r ap

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Predictive Coding. U n " S n

Predictive Coding. U n  S n Intrductin Predictive Cding The better the future f a randm prcess is predicted frm the past and the mre redundancy the signal cntains, the less new infrmatin is cntributed by each successive bservatin

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Linear Methods for Regression

Linear Methods for Regression 3 Linear Methds fr Regressin This is page 43 Printer: Opaque this 3.1 Intrductin A linear regressin mdel assumes that the regressin functin E(Y X) is linear in the inputs X 1,...,X p. Linear mdels were

More information

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES

ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES ANALYTICAL SOLUTIONS TO THE PROBLEM OF EDDY CURRENT PROBES CONSISTING OF LONG PARALLEL CONDUCTORS B. de Halleux, O. Lesage, C. Mertes and A. Ptchelintsev Mechanical Engineering Department Cathlic University

More information

Lecture 20a. Circuit Topologies and Techniques: Opamps

Lecture 20a. Circuit Topologies and Techniques: Opamps Lecture a Circuit Tplgies and Techniques: Opamps In this lecture yu will learn: Sme circuit tplgies and techniques Intrductin t peratinal amplifiers Differential mplifier IBIS1 I BIS M VI1 vi1 Vi vi I

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

Keysight Technologies Understanding the Kramers-Kronig Relation Using A Pictorial Proof

Keysight Technologies Understanding the Kramers-Kronig Relation Using A Pictorial Proof Keysight Technlgies Understanding the Kramers-Krnig Relatin Using A Pictrial Prf By Clin Warwick, Signal Integrity Prduct Manager, Keysight EEsf EDA White Paper Intrductin In principle, applicatin f the

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

Characterisation of a Pyramid WFS: an experimental study

Characterisation of a Pyramid WFS: an experimental study Characterisatin f a Pyramid WFS: an experimental study Charltte Bnd, C. M. Crreia, J.-F. Sauvage, K. El Hadi, Y. Abautret, B. Neichel, T. Fusc, J.-P. Véran, G. Herrit, D. Andersen. M. Lamb, M. Van Kten.

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

Chapter 3. Mathematical analysis of the ordinary reflectance scanning microscope. 3.1 The ordinary reflectance scanning microscope

Chapter 3. Mathematical analysis of the ordinary reflectance scanning microscope. 3.1 The ordinary reflectance scanning microscope Mathematical analsis f the rdinar reflectance scanning micrscpe Chapter 3 Mathematical analsis f the rdinar reflectance scanning micrscpe In this chapter the mathematical framewrk fr mdelling the reflectance

More information

ABSOLUTE STRESS DETERMINATION FROM ANGULAR DEPENDENCE

ABSOLUTE STRESS DETERMINATION FROM ANGULAR DEPENDENCE ABSOLUTE STRESS DETERMINATION FROM ANGULAR DEPENDENCE OF ULTRASONIC VELOCITIES IN ORTHOTROPIC MATERIALS A. D. Degtyar and S. I. Rkhlin The Ohi State University Nndestructive Evaluatin Prgram Clumbus, Ohi

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms

Early detection of mining truck failure by modelling its operation with neural networks classification algorithms RU, Rand GOLOSINSKI, T.S. Early detectin f mining truck failure by mdelling its peratin with neural netwrks classificatin algrithms. Applicatin f Cmputers and Operatins Research ill the Minerals Industries,

More information

Performance Comparison of Nonlinear Filters for Indoor WLAN Positioning

Performance Comparison of Nonlinear Filters for Indoor WLAN Positioning Perfrmance Cmparisn f Nnlinear Filters fr Indr WLAN Psitining Hui Wang Andrei Szab Jachim Bamberger Learning Systems Infrmatin and Cmmunicatins Crprate Technlgy Siemens AG Munich Germany Email: {hui.wang.ext.andrei.szab.jachim.bamberger}@siemens.cm

More information

Ray tracing equations in transversely isotropic media Cosmin Macesanu and Faruq Akbar, Seimax Technologies, Inc.

Ray tracing equations in transversely isotropic media Cosmin Macesanu and Faruq Akbar, Seimax Technologies, Inc. Ray tracing equatins in transversely istrpic media Csmin Macesanu and Faruq Akbar, Seimax Technlgies, Inc. SUMMARY We discuss a simple, cmpact apprach t deriving ray tracing equatins in transversely istrpic

More information

RADIATED EM FIELDS FROM A ROTATING CURRENT- CARRYING CIRCULAR CYLINDER: 2-DIMENSIONAL NUMERICAL SIMULATION

RADIATED EM FIELDS FROM A ROTATING CURRENT- CARRYING CIRCULAR CYLINDER: 2-DIMENSIONAL NUMERICAL SIMULATION Prgress In Electrmagnetics Research M, Vl. 18, 103 117, 2011 RADIATED EM FIELDS FROM A ROTATING CURRENT- CARRYING CIRCULAR CYLINDER: 2-DIMENSIONAL NUMERICAL SIMULATION M. H Department f Electrnic Engineering

More information

Chapter 3 Digital Transmission Fundamentals

Chapter 3 Digital Transmission Fundamentals Chapter 3 Digital Transmissin Fundamentals Errr Detectin and Crrectin CSE 3213, Winter 2010 Instructr: Frhar Frzan Mdul-2 Arithmetic Mdul 2 arithmetic is perfrmed digit y digit n inary numers. Each digit

More information

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany

Evaluating enterprise support: state of the art and future challenges. Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Evaluating enterprise supprt: state f the art and future challenges Dirk Czarnitzki KU Leuven, Belgium, and ZEW Mannheim, Germany Intrductin During the last decade, mircecnmetric ecnmetric cunterfactual

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY COMPUTER DIVISION INTERNAL REPORT

NATIONAL RADIO ASTRONOMY OBSERVATORY COMPUTER DIVISION INTERNAL REPORT NATIONAL RADIO ASTRONOMY OBSERVATORY COMPUTER DIVISION INTERNAL REPORT COMMENTS ON THE FREQUENCY TO VELOCITY CONVERSION IN THE 413 CHANNEL AUTOCORRELATION RECEIVER PROGRAMS BY PETER STUMPFF Reprt N. 6

More information

SINGLE CHANNEL SIGNAL SEPARATION USING MAXIMUM LIKELIHOOD SUBSPACE PROJECTION

SINGLE CHANNEL SIGNAL SEPARATION USING MAXIMUM LIKELIHOOD SUBSPACE PROJECTION th Internatinal Sympsium n ICA and BSS (ICA), April -, Nara, Japan 59 SINGLE CHANNEL SIGNAL SEPARATION USING MAXIMUM LIKELIHOOD SUBSPACE PROJECTION Gil-Jin Jang, Te-Wn Lee, and Yung-Hwan Oh Cmputer Science

More information

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light

POLARISATION VISUAL PHYSICS ONLINE. View video on polarisation of light VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT POLARISATION View vide n plarisatin f light While all the experimental evidence s far that supprts the wave nature f light, nne f it tells us whether light

More information

Statistics, Numerical Models and Ensembles

Statistics, Numerical Models and Ensembles Statistics, Numerical Mdels and Ensembles Duglas Nychka, Reinhard Furrer,, Dan Cley Claudia Tebaldi, Linda Mearns, Jerry Meehl and Richard Smith (UNC). Spatial predictin and data assimilatin Precipitatin

More information