Problem Set 11: Angular Momentum, Rotation and Translation

Size: px
Start display at page:

Download "Problem Set 11: Angular Momentum, Rotation and Translation"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physis Physis 80T Fall Term 004 Problem Set : Angular Momentum, Rotation and Translation Available on-line November ; Due: November 3 at 4:00 pm Please write your name, subjet, leture setion, table, and the name o the reitation instrutor on the top right orner o the irst page o your homework solutions Please plae your solutions in your leture setion table box Nov Hour One: Problem Solving Session 6: Angular Momentum Problem Set 0: Due Tues Nov 6 at 4:00 pm Nov 5 Hour One: Experiment 9: Angular Momentum Reading: Experiment 9 Hour Two: Planetary Motion Reading Class Notes: Planetary Orbits: The Kepler Problem, Energy Diagrams Readings: YF 7, 75, 3-5 Nov 7 Hour One: Problem Solving Session 7: Rotation and Translation Galati Blak Hole Reading: YF 03 Hour Two: Test Review Nov 8 QUIZ THREE: Energy, Momentum, and Rotational Motion 7:30-9:30 pm Nov 9 No Class Problem Set : Due Tues Nov 3 at 4:00 pm Nov Hour One: Kineti Theory Reading: YF 8-86 Hour Two: Problem Solving Session 8: Ideal Gas Law Reading: YF 8-86

2 Nov 4 Hour One: Arhimedes Priniple Reading: YF 4-43 Hour Two: Arhimedes Priniple PRS Contest Nov 6 No Class Problem Set : Due Fri De 3 at 4:00 pm Problem : Bohr hydrogen atom The Bohr hydrogen atom models the atom as an eletron orbiting the proton under the inluene o an eletri ore produing uniorm irular motion with radius a 0 The mass o the eletron is m = kg ; the eletri harge is e = e C ; the Plank onstant is h = J s, and the magnitude o the eletri ore is given by Coulomb s Law r F = ke r where k = N m C The angular momentum is quantized aording to L= nh π where n =,, a) Write down the equation that arises rom the appliation o Newton s nd Law to the eletron b) What is the angular momentum o the eletron about the enter o the atom? ) Using your results rom parts a) and b) derive an equation or the radius a 0 o the atom as a untion o nehm,,, e, and k d) What is the energy E n or the atom? Express your answer in terms o nehm,,, e, and k e) A hydrogen atom emits a photon whih arise rom an energy transition rom the n = 3 to n = energy level Calulate the requeny o the light emitted = Eh= (E E 3 ) h ) What is the wavelength o the emitted light rom part e)? Problem : Experiment Angular Momentum: Analysis Part One: Rotor Moment o Inertia Enter the results rom your experiment report into the table below

3 α down rad s α rad s a m s T [ N ] τ [ N m] Note: The rotational dynamis or the two stages are given by RT τ = Iα Note that α down < 0 The irst two equations above imply that The ore equation or the irst stage is given by τ = Iα down RT + Iα down = Iα mg T = ma The linear aeleration and angular aeleration are onstrained by a = Rα Combining these last two equations and solving or the tension yields T = mg mα R 3

4 Substituting the tension into the ombined torque equation yields We an solve this or the moment o inertia (mg mα R R + Iα ) down = Iα mgr mα R mgr mα R I = = α α down α + α down (Here m = 0055 kg is the mass o the weight, r = 007 m, α and α are obtained rom down your measurements) What is your numerial value or I R? Part Two: Inelasti Collision: Write your measurement results into the table below - ω rad s ω rad s - δ t [ s] What is your numerial value or I W = m r 0 + r ) w ( i? Use the moments o inertia I R and I W along with ω and ω to alulate the angular i momentum beore and ater the ollision and ompare them Use the values you ound or the rition torque τ and δt to estimate the angular impulse o τ during the ollision Compare it to the angular momentum dierene that you just alulated 3 Calulate the rotational kineti energies K = I ater the ollision R w, beore, and K = (I + I R W )w, Part Three: Slow Inelasti Collision: Write your measurement results into the table below 4

5 ω rad s - ω rad s - δt [ s ] α rad s - Use the moments o inertia I R and I W along with ω and ω to alulate the angular momentum beore and ater the ollision and ompare them Use the value you ound or the rition torque τ and δt to estimate the angular impulse o τ during the ollision Compare it to the dierene in angular momentum beore and ater the ollision 3 Use the value you ound or the angular aeleration during the ollision, α, to estimate the total torque τ on the rotor during the ollision 4 The torque τ is made o two parts: the rition torque τ rom the bearings and the torque τ due exerted by the washer you dropped on the rotor By the 3 rd RW law, the rotor exerts an equal and opposite torque on the washer Sine you know τ, subtrat it rom τ to ind an estimate or τ RW 5

6 6

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1

Rolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1 Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-5: ROTATIONAL DYNAMICS; TORQUE AND ROTATIONAL INERTIA LSN 8-6: SOLVING PROBLEMS IN ROTATIONAL DYNAMICS Questions From Reading Activity? Big Idea(s):

More information

Practice Exam 2 Solutions

Practice Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physis Physis 801T Fall Term 004 Problem 1: stati equilibrium Pratie Exam Solutions You are able to hold out your arm in an outstrethed horizontal position

More information

Modern Physics I Solutions to Homework 4 Handout

Modern Physics I Solutions to Homework 4 Handout Moern Physis I Solutions to Homework 4 Hanout TA: Alvaro Núñez an33@sires.nyu.eu New York University, Department of Physis, 4 Washington Pl., New York, NY 0003. Bernstein, Fishbane, Gasiorowiz: Chapter

More information

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Course Information. Topics to be discussed today: A

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Sept 30 QUIZ ONE: Fundamental Concepts; Kinematics; Newton s Laws. 7:30-9:30 pm Oct 1 No class

Sept 30 QUIZ ONE: Fundamental Concepts; Kinematics; Newton s Laws. 7:30-9:30 pm Oct 1 No class MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Problem Set 4: Uniform Circular Motion Available on-line September 24; Due: October 5 at 4:00 p.m. Please write

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Problem Set 9: Momentum and Collision Theory. Nov 1 Hour One: Conservation Laws: Momentum and Collision Theory. Reading: YF

Problem Set 9: Momentum and Collision Theory. Nov 1 Hour One: Conservation Laws: Momentum and Collision Theory. Reading: YF MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 9: Momentum and Collision Theory Available on-line October 29; Due: November 9 at 4:00 p.m. Please write

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative.

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative. Department of Natural Sienes Physis 3650 Quiz 1 August 5, 008 1. Whih one of the statements below is orret? a. Elasti potential energy an be negative but the kineti energy annot. b. Kineti energy an be

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Name SOLUTION Student ID Score Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless

Name SOLUTION Student ID Score Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless Name SOLUTION Student ID Score last first Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless v o incline with initial speed v o, as shown, while a hand pushes with

More information

f 2 f n where m is the total mass of the object. Expression (6a) is plotted in Figure 8 for several values of damping ( ).

f 2 f n where m is the total mass of the object. Expression (6a) is plotted in Figure 8 for several values of damping ( ). F o F o / k A = = 6 k 1 + 1 + n r n n n RESONANCE It is seen in Figure 7 that displaement and stress levels tend to build up greatly when the oring requeny oinides with the natural requeny, the buildup

More information

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester Physics 121, March 25, 2008. Rotational Motion and Angular Momentum. Physics 121. March 25, 2008. Course Information Topics to be discussed today: Review of Rotational Motion Rolling Motion Angular Momentum

More information

Particle Properties of Wave

Particle Properties of Wave 1 Chapter-1 Partile Properties o Wave Contains: (Blakbody radiation, photoeletri eet, Compton eet).1: Blakbody radiation A signiiant hint o the ailure o lassial physis arose rom investigations o thermalradiation

More information

Physics 101 Lecture 11 Torque

Physics 101 Lecture 11 Torque Physics 101 Lecture 11 Torque Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Force vs. Torque q Forces cause accelerations q What cause angular accelerations? q A door is free to rotate about an axis

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 8-8: ANGULAR MOMENTUM AND ITS CONSERVATION Questions From Reading Activity? Big Idea(s): The interactions of an object with other objects can be

More information

, an inverse square law.

, an inverse square law. Uniform irular motion Speed onstant, but eloity hanging. and a / t point to enter. s r θ > θ s/r t / r, also θ in small limit > t/r > a / r, entripetal aeleration Sine a points to enter of irle, F m a

More information

Physics 2A Chapter 10 - Rotational Motion Fall 2018

Physics 2A Chapter 10 - Rotational Motion Fall 2018 Physics A Chapter 10 - Rotational Motion Fall 018 These notes are five pages. A quick summary: The concepts of rotational motion are a direct mirror image of the same concepts in linear motion. Follow

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

From Last Time. Summary of Photoelectric effect. Photon properties of light

From Last Time. Summary of Photoelectric effect. Photon properties of light Exam 3 is Tuesday Nov. 25 5:30-7 pm, 203 Ch (here) Students w / scheduled academic conflict please stay after class Tues. Nov. 8 (TODAY) to arrange alternate time. From Last Time Photoelectric effect and

More information

CHAPTER 9 ROTATIONAL DYNAMICS

CHAPTER 9 ROTATIONAL DYNAMICS CHAPTER 9 ROTATIONAL DYNAMICS PROBLEMS. REASONING The drawing shows the forces acting on the person. It also shows the lever arms for a rotational axis perpendicular to the plane of the paper at the place

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

Physics 43 Exam 2 Spring 2018

Physics 43 Exam 2 Spring 2018 Physics 43 Exam 2 Spring 2018 Print Name: Conceptual Circle the best answer. (2 points each) 1. Quantum physics agrees with the classical physics limit when a. the total angular momentum is a small multiple

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

Chapter 17 Two Dimensional Rotational Dynamics

Chapter 17 Two Dimensional Rotational Dynamics Chapter 17 Two Dimensional Rotational Dynamics 17.1 Introduction... 1 17.2 Vector Product (Cross Product)... 2 17.2.1 Right-hand Rule for the Direction of Vector Product... 3 17.2.2 Properties of the Vector

More information

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004 Quiz is This Friday Quiz will over Setions.-.6 (inlusive) Remaining material will be arried over to Quiz Bring Blue Book, hek alulator battery Write all answers in indelible ink else no grade! Write answers

More information

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light Class Test (0-) Sujet Code :Applied Physis (70/707/70) Total Marks :5 Sem. :Seond Model Answer Q Attempt any FOUR of the following 8 a State the properties of photon Ans:.Photon is eletrially neutral.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC-W08D2-11 Jumping Off as Flatcar Solution

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics IC-W08D2-11 Jumping Off as Flatcar Solution N eole, eah o mass MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deartment o Physis Physis 8.01 IC-W08D2-11 Juming O as Flatar Solution m, stand on a railway latar o mass m. They jum o one end o the latar with

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

Chapter 1 The Bohr Atom

Chapter 1 The Bohr Atom Chapter 1 The Bohr Atom 1 Introduction Niels Bohr was a Danish physicist who made a fundamental contribution to our understanding of atomic structure and quantum mechanics. He made the first successful

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy

More information

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle Pysis 07 Problem 25 O A Pringle 3 663 0 34 700 = 284 0 9 Joules ote I ad to set te zero tolerane ere e 6 0 9 ev joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle 663 0 34 3 ev

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Physics 221 Quiz 6 chapters 7-9, Form: A

Physics 221 Quiz 6 chapters 7-9, Form: A Physics 1 Quiz 6 chapters 7-9, Form: A Name: Date: An apparatus consists of three balls each of mass M = 0.6 kg mounted on the ends of low-mass rods of length R = 0.4 m. The whole apparatus rotates clockwise

More information

PHY 396 T: SUSY Solutions for problem set #12.

PHY 396 T: SUSY Solutions for problem set #12. PHY 396 T: SUSY Solutions or problem set #. Problem a: In priniple the non-perturbative superpotential o the theory may depend on the dual quark and antiquark ields q and q as well as the singlets Φ but

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom)

-- Angular momentum. -- Equilibrium. Final Exam. During class (1-3:55 pm) on 6/27, Mon Room: 412 FMH (classroom) inal Exam During class (1-3:55 pm) on 6/27, Mon Room: 412 MH (classroom) Bring scientific calculators No smart phone calculators l are allowed. Exam covers everything learned in this course. tomorrow s

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

AP Physics 1 Second Semester Final Exam Review

AP Physics 1 Second Semester Final Exam Review AP Physics 1 Second Semester Final Exam Review Chapter 7: Circular Motion 1. What does centripetal mean? What direction does it indicate?. Does the centripetal force do work on the object it is rotating?

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.a: What is the direction of < 0, 0, 3> x < 0, 4, 0>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.b: What is the direction of < 0, 4, 0> x < 0, 0, 3>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7)

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Broward County Schools AP Physics 1 Review

Broward County Schools AP Physics 1 Review Broward County Schools AP Physics 1 Review 1 AP Physics 1 Review 1. The Basics of the Exam Important info: No penalty for guessing. Eliminate one or two choices and then take a shot. Multi-select questions

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

Course Review. Physics 2210 Fall Semester 2014

Course Review. Physics 2210 Fall Semester 2014 Course Review Physics 2210 Fall Semester 2014 Announcements Unit 21 Simple and Physical Pendula (Nov 24th) HW Due 11/25th as usual No new material Wednesday November 26th. In-class discussion of problems

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Physics 30 Lesson 32 x-rays and the Compton Effect

Physics 30 Lesson 32 x-rays and the Compton Effect I. Disovery of x-rays Physis 30 Lesson 32 x-rays and the Compton ffet During all the researh on athode rays, several sientists missed their hane at some glory. Hertz narrowly missed disovering x-rays during

More information

Center of Gravity Pearson Education, Inc.

Center of Gravity Pearson Education, Inc. Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point

More information

PHY2020 Test 2 November 5, Name:

PHY2020 Test 2 November 5, Name: 1 PHY2020 Test 2 November 5, 2014 Name: sin(30) = 1/2 cos(30) = 3/2 tan(30) = 3/3 sin(60) = 3/2 cos(60) = 1/2 tan(60) = 3 sin(45) = cos(45) = 2/2 tan(45) = 1 sin(37) = cos(53) = 0.6 cos(37) = sin(53) =

More information

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters III. letromagneti Radiation -- Photons. Mehanisms a. Photoeletri ffet: γ photon disappears b. Compton Sattering: γ photon satters. Pair Prodution: γ e ± pair produed C. Photoeletri ffet e Sine photon is

More information

Rotation. I. Kinematics - Angular analogs

Rotation. I. Kinematics - Angular analogs Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Physics 111: Week 8 10 Review

Physics 111: Week 8 10 Review Physics 111: Week 8 10 Review Bin Chen NJIT Physics Department Announcements q Common Exam #3 on Nov 19 (Next Monday) from 4:15 pm to 5:45 pm in KUPF 107 q Must bring your NJIT ID q Cell phone and electronic

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Lab 9 - Rotational Dynamics

Lab 9 - Rotational Dynamics 145 Name Date Partners Lab 9 - Rotational Dynamics OBJECTIVES To study angular motion including angular velocity and angular acceleration. To relate rotational inertia to angular motion. To determine kinetic

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Kinematics and Projectile Motion Problem Solving Steps 1. Read and Re-Read the whole problem carefully before trying to

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1 Physics 3650 Quiz 1 October 1, 009 Name SOLUTION 1. If the displacement of the object, x, is related to velocity, v, according to the relation x = A v, the constant, A, has the dimension of which of the

More information

Announcements Oct 27, 2009

Announcements Oct 27, 2009 Announcements Oct 7, 009 1. HW 14 due tonight. Reminder: some of your HW answers will need to be written in scientific notation. Do this with e notation, not with x signs. a. 6.57E33 correct format b.

More information

Welcome back to PHYS 3305

Welcome back to PHYS 3305 Welcome back to PHYS 3305 Otto Stern 1888-1969 Walther Gerlach 1889-1979 Today s Lecture: Angular Momentum Quantization Stern-Gerlach Experiment AnNouncements Reading Assignment for Nov 14th: Harris 8.2-8.5.

More information

Version A (01) Question. Points

Version A (01) Question. Points Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

More information

Rotation Angular Momentum Conservation of Angular Momentum

Rotation Angular Momentum Conservation of Angular Momentum Rotation Angular Momentum Conservation of Angular Momentum Lana Sheridan De Anza College Nov 29, 2017 Last time Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) Lab 2 Determination of Rotational Inertia 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) Lab 2 Determination of Rotational Inertia 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum 5 1/26/16 Rotational tatics

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

LAB 8: ROTATIONAL DYNAMICS

LAB 8: ROTATIONAL DYNAMICS Name Date Partners LAB 8: ROTATIONAL DYNAMICS 133 Examples of rotation abound throughout our surroundings OBJECTIVES To study angular motion including angular velocity and angular acceleration. To relate

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom Announcements! HW7 : Chap.7 18, 20, 23, 32, 37, 38, 45, 47, 53, 57, 60! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz 2 (average: 9), Quiz 3: 4/19 *** Course

More information

are (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g)

are (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g) Rotational Motion Problems Solutions.. Model: A spinning skater, whose arms are outstretched, is a rigid rotating body. Solve: The speed v rω, where r 40 / 0.70 m. Also, 80 rpm (80) π/60 rad/s 6 π rad/s.

More information