Physics 101 Lecture 11 Torque


 Corey Bell
 1 years ago
 Views:
Transcription
1 Physics 101 Lecture 11 Torque Dr. Ali ÖVGÜN EMU Physics Department
2 Force vs. Torque q Forces cause accelerations q What cause angular accelerations? q A door is free to rotate about an axis through O q There are three factors that determine the effectiveness of the force in opening the door: n n n The magnitude of the force The position of the application of the force The angle at which the force is applied
3 Torque Definition q Torque, τ, is the tendency of a force to rotate an object about some axis q Let F be a force acting on an object, and let r be a position vector from a rotational center to the point of application of the force, with F perpendicular to r. The magnitude of the torque is given by τ = rf
4 Torque Units and Direction q The SI units of torque are N. m q Torque is a vector quantity q Torque magnitude is given by τ = rf sinθ = Fd q Torque will have direction n n If the turning tendency of the force is counterclockwise, the torque will be positive If the turning tendency is clockwise, the torque will be negative
5 Net Torque q The force F r will tend to 1 cause a counterclockwise rotation about O q The force F r will tend to 2 cause a clockwise rotation about O q Στ = τ 1 + τ 2 = F 1 d 1 F 2 d 2 q If Στ 0, starts rotating q If Στ = 0, rotation rate does not change q Rate of rotation of an object does not change, unless the object is acted on by a net torque
6 General Definition of Torque q The applied force is not always perpendicular to the position vector q The component of the force perpendicular to the object will cause it to rotate q When the force is parallel to the position vector, no rotation occurs q When the force is at some angle, the perpendicular component causes the rotation
7 General Definition of Torque q Let F be a force acting on an object, and let r be a position vector from a rotational center to the point of application of the force. The magnitude of the torque is given by τ = rf sinθ q θ = 0 or θ = 180 : torque are equal to zero q θ = 90 or θ = 270 :magnitude of torque attain to the maximum
8 Understand sinθ q The component of the force (F cos θ ) has no tendency to produce a rotation q The moment arm, d, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force d = r sinθ τ = rf sinθ = Fd
9 Ex: The Swinging Door q Three forces are applied to a door, as shown in figure. Suppose a wedge is placed 1.5 m from the hinges on the other side of the door. What minimum force must the wedge exert so that the force applied won t open the door? Assume F 1 = 150 N, F 2 = 300 N, F 3 = 300 N, θ = 30 F 3 F 2 θ 2.0m F 1
10 Newton s Second Law for a Rotating Object q When a rigid object is subject to a net torque ( 0), it undergoes an angular acceleration Σ τ = I α q The angular acceleration is directly proportional to the net torque q The angular acceleration is inversely proportional to the moment of inertia of the object q The relationship is analogous to F = ma
11 Strategy to use the Newton 2 nd Law Draw or sketch system. Adopt coordinates, indicate rotation axes, list the known and unknown quantities, Draw free body diagrams of key parts. Show forces at their points of application. Find torques about a (common) axis May need to apply Second Law twice, once to each part Ø Translation: Ø Rotation: F! τ net net = F! = =! ma Make sure there are enough (N) equations; there may be constraint equations (extra conditions connecting unknowns) Simplify and solve the set of (simultaneous) equations. Find unknown quantities and check answers i! τ i! = Iα Note: can have F net = 0 but τ net 0
12 Ex: The Falling Object q A solid, frictionless cylindrical reel of mass M = 2.5 kg and radius R = 0.2 m is used to draw water from a well. A bucket of mass m = 1.2 kg is attached to a cord that is wrapped around the cylinder. q (a) Find the tension T in the cord and acceleration a of the object. q (b) If the object starts from rest at the top of the well and falls for 3.0 s before hitting the water, how far does it fall?
13 Newton 2nd Law for Rotation q Draw free body diagrams of each object q Only the cylinder is rotating, so apply Σ τ = Iα q The bucket is falling, but not rotating, so apply Σ F = ma q Remember that a = αr and solve the resulting equations a mg r
14 Cord wrapped around disk, hanging weight Cord does not slip or stretch à constraint Disk s rotational inertia slows accelerations Let m = 1.2 kg, M = 2.5 kg, r =0.2 m For mass m: T y T mg FBD for disk, with axis at o : N Mg F = ma= mg T y T = m( g a) Unknowns: T, a τ0 = + Tr = Iα So far: 2 Equations, 3 unknowns àneed a constraint: Substitute and solve: 2mgr 2mα r α = 2 2 Mr Mr I = 1 2 Mr Tr m( g a) r α = = Unknowns: a, α I Mr 2 m α 1+ 2 = M 2mg Mr 2 a a mg = αr support force at axis O has zero torque r from no slipping assumption α = mg ( 24 rad / s 2 ) rm ( + M/2) =
15 Cord wrapped around disk, hanging weight Cord does not slip or stretch à constraint Disk s rotational inertia slows accelerations Let m = 1.2 kg, M = 2.5 kg, r =0.2 m For mass m: y T mg F = ma= mg T y T = m( g a) Unknowns: T, a α = mg ( 24 rad/s 2 ) rm ( + M/2) = mg a = ( 4.8 m/s 2 ) ( m+ M /2) = a r support force at axis O has zero torque T = m( g a) = 1.2( ) = 6 N mg xf xi = vt i + at = 0 + (4.8 m/s )(3 s) = 21.6m 2 2
16 Torque! τ =! r! F q The torque is the cross product of a force vector with the position vector to its point of application τ = rf sinθ = r r F F = q The torque vector is perpendicular to the plane formed by the position vector and the force vector (e.g., imagine drawing them tailtotail) q Right Hand Rule: curl fingers from r to F, thumb points along torque. q q Superposition:!!! τ net = τ i = ri F! i all i all i (vector sum) Can have multiple forces applied at multiple points. Direction of τ net is angular acceleration axis
17 Ex3: Calculate torque given a force and its location Solution:!! F = ( 2ˆ i + 3 ˆ) j N r = (4ˆ i + 5 ˆj ) m!!! τ = r F = (4ˆ i + 5 ˆ) j (2ˆ i + 3 ˆ) j = 4ˆ i 2ˆ i + 4ˆ i 3 ˆj + 5 ˆj 2ˆ i + 5 ˆj 3 ˆj = 0 + 4ˆ i 3 ˆj + 5 ˆj 2ˆ i + 0 = 12kˆ 10kˆ = r r A B= 2kˆ (Nm) iˆ ˆj kˆ i j k
18 P1: P2:
19 P3:
20 P4: P5:
21
22
23
24
25
26
27
28
29
Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationApplication of Forces. Chapter Eight. Torque. Force vs. Torque. Torque, cont. Direction of Torque 4/7/2015
Raymond A. Serway Chris Vuille Chapter Eight Rotational Equilibrium and Rotational Dynamics Application of Forces The point of application of a force is important This was ignored in treating objects as
More informationare (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g)
Rotational Motion Problems Solutions.. Model: A spinning skater, whose arms are outstretched, is a rigid rotating body. Solve: The speed v rω, where r 40 / 0.70 m. Also, 80 rpm (80) π/60 rad/s 6 π rad/s.
More informationPhysics 1A Lecture 10B
Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. Davis Barton Cross Products Another way to
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More informationGeneral Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10
Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking
More informationDEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS
DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS AP PHYSICS LSN 85: ROTATIONAL DYNAMICS; TORQUE AND ROTATIONAL INERTIA LSN 86: SOLVING PROBLEMS IN ROTATIONAL DYNAMICS Questions From Reading Activity? Big Idea(s):
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics
Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationRotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia
Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How
More informationAngular Momentum. Physics 1425 Lecture 21. Michael Fowler, UVa
Angular Momentum Physics 1425 Lecture 21 Michael Fowler, UVa A New Look for τ = Iα We ve seen how τ = Iα works for a body rotating about a fixed axis. τ = Iα is not true in general if the axis of rotation
More informationChapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and
Chapter 8 Rotational Equilibrium and Rotational Dynamics Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related Torque The door is free to rotate about
More informationProf. Rupak Mahapatra. Physics 218, Chapter 15 & 16
Physics 218 Chap 14 & 15 Prof. Rupak Mahapatra Physics 218, Chapter 15 & 16 1 Angular Quantities Position Angle θ Velocity Angular Velocity ω Acceleration Angular Acceleration α Moving forward: Force Mass
More informationChapter 17 Two Dimensional Rotational Dynamics
Chapter 17 Two Dimensional Rotational Dynamics 17.1 Introduction... 1 17.2 Vector Product (Cross Product)... 2 17.2.1 Righthand Rule for the Direction of Vector Product... 3 17.2.2 Properties of the Vector
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationChapter 8 Lecture Notes
Chapter 8 Lecture Notes Physics 2414  Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationRotation. Rotational Variables
Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationMoment of Inertia & Newton s Laws for Translation & Rotation
Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I
More informationPlease read this introductory material carefully; it covers topics you might not yet have seen in class.
b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object
More informationRotation. I. Kinematics  Angular analogs
Rotation I. Kinematics  Angular analogs II. III. IV. Dynamics  Torque and Rotational Inertia Work and Energy Angular Momentum  Bodies and particles V. Elliptical Orbits The student will be able to:
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure
More informationChapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics
Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1 Force vs. Torque Forces cause accelerations Torques cause angular accelerations Force and torque are related 2 Torque The door is free to rotate
More informationTorque. Introduction. Torque. PHY torque  J. Hedberg
Torque PHY 207  torque  J. Hedberg  2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem
More informationPhysics 8 Wednesday, October 30, 2013
Physics 8 Wednesday, October 30, 2013 HW9 (due Friday) is 7 conceptual + 8 calculation problems. Of the 8 calculation problems, 4 or 5 are from Chapter 11, and 3 or 4 are from Chapter 12. 7pm HW sessions:
More informationPhysics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium
Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Takehome quizzes this week. See Elaine Schulte s email. HW
More informationLecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.
Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:
More informationHandout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum
Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a
More informationFigure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while the rod rotates about the center of mass.
17.1 Introduction A body is called a rigid body if the distance between any two points in the body does not change in time. Rigid bodies, unlike point masses, can have forces applied at different points
More informationPHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1
PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque
More informationEquilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:
Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass
More informationRotational N.2 nd Law
Lecture 0 Chapter 1 Physics I Rotational N. nd Law Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics Today
More informationRotational N.2 nd Law
Lecture 19 Chapter 12 Rotational N.2 nd Law Torque Newton 2 nd Law again!? That s it. He crossed the line! Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will
More informationIII. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 28 with rotatiing objects. Eqs. of motion. Energy.
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION
More informationTorque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque
More informationAngular Momentum L = I ω
Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationDefinition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)
Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationRotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics
Lecture 17 Chapter 10 Physics I 11.13.2013 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF
More informationRotational Dynamics continued
Chapter 9 Rotational Dynamics continued 9.1 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :
More informationChapter 10: Rotation
Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ
More informationRotational Kinematics and Dynamics. UCVTS AIT Physics
Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,
More informationRotational Motion and Torque
Rotational Motion and Torque Introduction to Angular Quantities Sections 8 to 82 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More information1.1. Rotational Kinematics Description Of Motion Of A Rotating Body
PHY 19 PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description
More informationStatic Equilibrium; Torque
Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force
More informationAngular Momentum L = I ω
Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with
More informationTorque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.
Warm up A remotecontrolled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics
More informationRotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics
Lecture 17 Chapter 10 Physics I 04.0.014 otational Motion Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html
More informationModule 24: Angular Momentum of a Point Particle
24.1 Introduction Module 24: Angular Momentum of a Point Particle When we consider a system of objects, we have shown that the external force, acting at the center of mass of the system, is equal to the
More informationPhysics 8 Wednesday, October 25, 2017
Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane
More informationPhysics 4A Solutions to Chapter 10 Homework
Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 04 (a) positive (b) zero (c) negative (d) negative Q 06
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics
Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion To understand the concept of torque. To relate angular acceleration and torque. To work and power in rotational motion. To understand angular momentum. To understand
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationRotational Kinematics
Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe
More informationChapter 11 Rolling, Torque, and Angular Momentum
Prof. Dr. I. Nasser Chapter11I November, 017 Chapter 11 Rolling, Torque, and Angular Momentum 111 ROLLING AS TRANSLATION AND ROTATION COMBINED Translation vs. Rotation General Rolling Motion General
More informationChapter 10. Rotation of a Rigid Object about a Fixed Axis
Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationPhysics 218 Lecture 21
Physics 218 Lecture 21 Dr. David Toback Physics 218, Lecture XXI 1 Checklist for Today Things due Yesterday Chapters 12 & 13 in WebCT Things that are due for today Read Chapters 1416 Things that are due
More informationChap10. Rotation of a Rigid Object about a Fixed Axis
Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration  A rigid object rotating about a fixed axis through O perpendicular
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationPHY 111L Activity 9 Moments of Inertia
PHY 111L Activity 9 Moments of Inertia Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce moment of inertia for different objects 2. Understand the moment of inertia apparatus
More informationWorksheet for Exploration 10.1: Constant Angular Velocity Equation
Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the
More information( )( ) ( )( ) Fall 2017 PHYS 131 Week 9 Recitation: Chapter 9: 5, 10, 12, 13, 31, 34
Fall 07 PHYS 3 Chapter 9: 5, 0,, 3, 3, 34 5. ssm The drawing shows a jet engine suspended beneath the wing of an airplane. The weight W of the engine is 0 00 N and acts as shown in the drawing. In flight
More informationPhysics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More informationRotational Equilibrium
Rotational Equilibrium 61 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationPhysics Kinematics, Projectile Motion, FreeBody Diagrams, and Rotational Motion
Physics Kinematics, Projectile Motion, FreeBody Diagrams, and Rotational Motion Kinematics and Projectile Motion Problem Solving Steps 1. Read and ReRead the whole problem carefully before trying to
More information16. Rotational Dynamics
6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational
More informationPhysics 101 Lecture 12 Equilibrium and Angular Momentum
Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external
More informationGeneral Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,
More informationEQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body
EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil
More informationChapter 12 Static Equilibrium
Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions
More informationCircular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics
Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationA Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at
Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationChapter 8. Centripetal Force and The Law of Gravity
Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration
More informationRolling, Torque, Angular Momentum
Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a
More informationChapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.
Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium
More information