Version A (01) Question. Points


 Amie Cornelia Knight
 1 years ago
 Views:
Transcription
1 Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4 20 a a 4 21 e e 8 22 b b 8 23 d d 8 24 d d 8 25 b b 4 Points
2 True/False Section: each question worth 3 points. 1. Two solid balls with different mass and different radii are released from rest simultaneously at the top of a ramp. The balls then roll down the ramp without slipping (neglect air resistance). The two balls reach the bottom of the ramp at the same time. 2. A wheel is spinning clockwise and slowing down. The wheel s angular velocity and angular acceleration vectors point in opposite directions. 3. A wheel is spinning with constant angular acceleration. The net torque on the wheel is zero. 4. Two cars of equal mass are traveling at the same speed. One car crashes into a wall and stops suddenly. The other car applies its brakes and gradually slows to a stop. The impulse imparted to each car while stopping is the same in magnitude. 5. Consider two parallel rotation axes, only one of which passes through the center of mass of a particular object. The object s moment of inertia around the centerofmass axis is larger than its moment of inertia around the other axis. 6. Two balls of equal mass are dropped from the same initial height and bounce off the ground to the same final height. During the bounce, the first ball is in contact with the ground for twice as long as the second. The average force exerted by the ground is twice as much for the first ball than the second. 7. Newton s cradle is a toy with five steel balls suspended vertically by strings in a single line. Collisions between the balls are completely elastic. When one ball is lifted to the side and released two balls swing outward on the other side after the collision. 8. A bomb that is initially stationary will have zero net momentum immediately after it explodes. 9. A massive bus and a light bullet have the same kinetic energy (not equal to zero). The bus has more momentum. 10. Before a collision, the total kinetic energy of two isolated objects is greater than zero. After the objects collide, the total kinetic energy cannot be zero.
3 Scenario 1: This simple experimental setup can be used to measure the moment of inertia of a rolling object. The object shown has a round facet, which allows it to roll smoothly down the ramp without slipping. The specific distribution of mass within the object is unknown: its moment of inertia is not necessarily one with which we are already familiar. Use the following values: H 1 m ; M 5 kg; 5 cm 11. [MC5 select up to 2 answers] The object starts from rest at height H. When it reaches the bottom of the ramp, the object continues to roll without slipping with constant angular speed, ω 70 rad/s. What is the moment of inertia of the object? a. I /0 kgm 2 b. I /0 kgm 2 c. I /0 kgm 2 d. I /0 kgm 2 e. I /0 kgm 2 MgH 1 2 I! MV I! M!2 2 I 2MgH M!2 2! 2 2MgH! 2 M [MC5 select up to 2 answers] A different object has the same mass and radius, but a different moment of inertia, I /0 kgm 2. This object is released from rest from the same height, H, and it rolls without slipping down the ramp. What is the translational speed of the object at the bottom of the ramp? a. V m/s b. V m/s c. V m/s d. V m/s e. V m/s MgH 1 2 I! MV I V MV 2 V 2 I M s 2MgH V + M I [MC3 select only 1 answer] If a particular object rolls without slipping down a steeper ramp (larger θ) from the same height H, how does its translational speed at the bottom of the ramp change? a. The translation speed in both cases will be the same. b. The translational speed will be larger for the steeper ramp. c. The translational speed will be smaller for the steeper ramp.
4 Scenario 2: An unidentified flying object (UFO) hovers in the sky above Salt Lake City. Initially, the UFO is not spinning; at a particular time, it starts to spin and the angular speed increases until reaching a particular value, after which it stays constant. Since it is large and hovering at a low altitude, we cannot neglect drag (air resistance), which always acts to slow the UFO s angular speed. The torque due to drag is linearly proportional to the UFO s angular speed: τ :;< κω, where κ is a proportionality constant (with the correct units) and ω is the angular speed of the spinning UFO, which depends on time. 14. [MC5 select up to 2 answers] To obtain a constant angular speed, rotation thrusters located a distance from the axis of rotation exert a total force, F in a direction perpendicular to a radial line extending from the axis of rotation to the outer rim of the UFO. If an observer on the ground measures a time T for one rotation of the UFO, what is the magnitude of F when it is rotating at a constant speed? a. F T κ 2π b. F 2π T c. F 2π T κ κ d. F T 2π κ e. F π κ 2T I UFO 0 ) thrust drag F tot apple! F tot apple! apple(2 /T ) 2 T apple g 15. [MC5 select up to 2 answers] An alien inside the UFO sits at /2 (half way between the UFO s axis of rotation and its outer rim). How fast does the UFO need to rotate so that the alien experiences a centripetal force equal to its weight? a. ω 4g b. ω 4πg c. ω 2g d. ω g 2 e. ω 2πg F cent ma cent mg m! 2 r 2 2g! 16. [MC3 select only 1 answer] All the aliens inside the UFO move from near the axis of rotation to near the UFO s outer radius, but the UFO continues to rotate with the same angular speed. When this happens: a. The kinetic energy increases. b. The kinetic energy decreases. c. The kinetic energy stays the same.
5 Scenario 3: A window cleaner stands on a scaffold suspended from the top of a tall building. The scaffold consists of a wooden plank suspended by four ropes, one on each corner. There is also a large bucket of water on the scaffold. The window cleaner can stand anywhere on the scaffold and can also place the bucket at any location. Use the following values: L 3 m M H<I 85 kg M 20 kg M OP<IM 120 kg 17. [MC5 select up to 2 answers] The man stands 1 meter from the left edge of the scaffold and he places the bucket 0.5 meters from the right edge. Considering the two ropes on the left side of the scaffold, what is the average of the tension in each of these two ropes? a. 120 N b. 96 N c. 72 N d. 60 N e. 48 N Note: As discussed during the exam, the answer choices above were mistakenly NOT multiplied by g and are therefore erroneous. This was corrected during the exam. 18. [MC5 select up to 2 answers] With the bucket in the same location as above, where should the man stand to equalize the tension in all four ropes? (Assume the bucket and man are both positioned along a line midway between the front and back edges of the plank.) a m from left edge b m from left edge c m from left edge d m from left edge e m from left edge Axis of rotation at right end of plank: 2T L (L) M man (L 1)g M plank (L/2)g M bucket (0.5)g 0 T L [M man(3 1) + M plank (1.5) + M bucket (0.5)] g 6 [85(2) + 120(1.5) + 20(0.5)] g 6 60g N Axis of rotation at center of plank: 2T L (L/2) M man g(d) 2T (L/2) + M bucket g(1) 0 2T L 2T ) M man (d) M bucket (1) d M bucket M man cm 19. [MC3 select only 1 answer] Now the man stands at the center of the plank and the bucket is still 0.5 meters from the right edge. Suddenly, a bird knocks the bucket and all its water off the scaffold. How does the tension in the ropes change after the bird knocks over the bucket? a. The tension in all four ropes decreases. b. The tension in the righthand ropes decreases, but the tension in the lefthand ropes stays the same. c. The tension in the righthand ropes decreases, but the tension in the lefthand ropes increases.
6 Scenario 4: A uniform rod is attached to a wall with a frictionless pivot at one end and a horizontal string attached to the other end. Initially, the rod makes an angle θ with respect to the wall. Use the following value: L 3 m 20. [MC3 select only 1 answer] How does the tension in the string compare for two different values of θ: 10 and 80? (The string is readjusted to horizontal for each value of θ.) a. As θ increases, tension also increases b. As θ increases, tension decreases c. As θ increases, tension remains constant q g 21. [MC5 select up to 2 answers] When θ 30, the tension in the string is T 170 N. What is the mass of the rod? a. 20 kg b. 30 kg c. 35 kg d. 50 kg e. 60 kg X 0 T (L cos ) Mg( L sin ) 0 2 Mg sin T cos 2 2T cos M g sin 22. [MC5 select up to 2 answers] The rod is initially held at θ 30 as above. The string is then cut and the rod begins to rotate. When the rod passes through horizontal (θ 90 ), what is its angular speed? a. ω 2.2 rad/s b. ω 2.9 rad/s c. ω 3.5 rad/s d. ω 4.1 rad/s e. ω 5.8 rad/s MgH 1 2 I!2 r 2MgH! I s r 2MgH 6gH 1 3 ML2 L 2 r r 6g(L/2) cos 3g cos L 2 L
7 Scenario 5: In bowling, a heavy ball (7.5 kg) travels down a horizontal lane toward 10 pins (1.5 kg each) arranged in a triangle. The ball collides elastically head on with the first pin at the point of the triangle. 23. [MC5 select up to 2 answers] A player rolls the ball with speed v 7.5 m/s straight down the lane toward the first pin (at the point of the triangle). What is the speed of the first pin immediately after being hit by the ball (before it hits other pins)? a. 5 m/s b m/s c. 10 m/s d m/s e. 15 m/s 24. [MC5 select up to 2 answers] As the ball passes through the pins, it collides with 3 (and only 3) separate pins in close succession (neglect time between collisions) and its speed decreases from 7.5 m/s (before hitting the first pin) to 2.2 m/s (after hitting the third pin). This entire triple collision takes approximately 0.2 seconds in total. Estimate the average force exerted on the ball by each pin during each collision assuming that each collision takes the same amount of time: a. 8 N b. 40 N c. 66 N d. 200 N e. 600 N Since the ball collides consecutively with each pin, this is the average force for each of the three collisions. Each collision takes 1/3 of the total time, accounting for 1/3 of the total impulse. 25. [MC3 select only 1 answer] When the player initially releases the ball, it slides down the lane for some time and then eventually begins to roll without sliding. What equation below correctly predicts the translational speed of the ball when it begins to roll without sliding? a. V J<PP 1 2 ω J<PP J<PP b. V J<PP ω J<PP J<PP c. V J<PP 2 ω J<PP J<PP
Exam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More information[1] (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light
1 (a) Define the newton... [1] (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light... [1] (c) Fig. 3.1 shows the horizontal forces acting
More informationr r Sample Final questions for PS 150
Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationChapter 910 Test Review
Chapter 910 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationTorque. Introduction. Torque. PHY torque  J. Hedberg
Torque PHY 207  torque  J. Hedberg  2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationBig Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular
Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only
More informationChapter 10 Practice Test
Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What
More informationName: Class: Date: so sliding friction is better so sliding friction is better d. µ k
Name: Class: Date: Exam 2PHYS 101F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More information1 of 16 3/23/2016 3:09 PM Practice Exam Chapters 69 (Ungraded) (3103258) Due: Wed Apr 6 2016 06:00 PM EDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Description This will
More informationTorque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.
Warm up A remotecontrolled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationPhysics 6A Winter 2006 FINAL
Physics 6A Winter 2006 FINAL The test has 16 multiple choice questions and 3 problems. Scoring: Question 116 Problem 1 Problem 2 Problem 3 55 points total 20 points 15 points 10 points Enter the solution
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationChapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:
CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationExam #2, Chapters 57 PHYS 1014M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam #2, Chapters 57 Name PHYS 1014M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.
More informationTHE TWENTYSECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 2007 MECHANICS TEST. g = 9.
THE TWENTYSECOND ANNUAL SLAPT PHYSICS CONTEST SOUTHERN ILLINOIS UNIVERSITY EDWARDSVILLE APRIL 21, 27 MECHANICS TEST g = 9.8 m/s/s Please answer the following questions on the supplied answer sheet. You
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationPractice Problems for Exam 2 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A springloaded toy dart gun
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationExercise Torque Magnitude Ranking Task. Part A
Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationWork and kinetic Energy
Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg
More informationPHY131H1S  Class 20. Preclass reading quiz on Chapter 12
PHY131H1S  Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Preclass reading quiz on Chapter 12 1 Last
More informationPhysics 130: Questions to study for midterm #1 from Chapter 7
Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be onehalf the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationPhysics 106 Common Exam 2: March 5, 2004
Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2008
8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may
More informationPhysicsMC Page 1 of 29 Inertia, Force and Motion 1.
PhysicsMC 20067 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationLecture 18. Newton s Laws
Agenda: Review for exam Lecture 18 Assignment: For Tuesday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of
More informationExam 2: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity
More informationChapter 8 Rotational Motion
Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationUnit 2: Vector Dynamics
Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationBase your answers to questions 5 and 6 on the information below.
1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.second
More informationAP Physics C Summer Assignment Kinematics
AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationPractice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)
Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationAAPT UNITED STATES PHYSICS TEAM AIP F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS
2014 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2014 2014 F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this
More informationExam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You want to swim straight across a river that is 76 m wide. You find that you can do
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More information3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?
Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More information1 Forces. 2 Energy & Work. GS 104, Exam II Review
1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 14, 013 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT
More informationQuiz Number 4 PHYSICS April 17, 2009
Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given
More informationPHYSICS 107 FINAL EXAMINATION
PRINTED NAME: Problem Score 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 Total /120 PHYSICS 107 FINAL EXAMINATION January 24, 2001 8:30 11:30 am When you are told to begin, check that this examination booklet contains
More informationt = g = 10 m/s 2 = 2 s T = 2π g
Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the
More information= constant of gravitation is G = N m 2 kg 2. Your goal is to find the radius of the orbit of a geostationary satellite.
Problem 1 Earth and a Geostationary Satellite (10 points) The earth is spinning about its axis with a period of 3 hours 56 minutes and 4 seconds. The equatorial radius of the earth is 6.38 10 6 m. The
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationName: AP Physics C: Kinematics Exam Date:
Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationChapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction
Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction 1. The distance between a turning axis and the
More informationDynamics Test K/U 28 T/I 16 C 26 A 30
Name: Dynamics Test K/U 28 T/I 16 C 26 A 30 A. True/False Indicate whether the sentence or statement is true or false. 1. The normal force that acts on an object is always equal in magnitude and opposite
More informationAfternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.
Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiplechoice
More informationNewton s 3 Laws of Motion
Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of
More informationReading Quiz. Chapter 5. Physics 111, Concordia College
Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic
More information1. What three dimensions are used to derive most measurements in physics?
Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations roundedoff
More informationExtra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.
Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2016
216 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 216 216 F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.
More informationMidterm 3 Thursday April 13th
Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 122 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures
More informationPHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)
PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x  x 0 = v 0 t + ½ at 2 2a(x  x
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8kg block attached to a spring executes simple harmonic motion on a frictionless
More informationPS 11 GeneralPhysics I for the Life Sciences
PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationBumper Cars. Question
Bumper Cars 1 You are riding on the edge of a spinning playground merrygoround. If you pull yourself to the center of the merrygoround, what will happen to its rotation? A. It will spin faster. B. It
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More information