# Version A (01) Question. Points

Save this PDF as:

Size: px
Start display at page: ## Transcription

1 Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4 20 a a 4 21 e e 8 22 b b 8 23 d d 8 24 d d 8 25 b b 4 Points

2 True/False Section: each question worth 3 points. 1. Two solid balls with different mass and different radii are released from rest simultaneously at the top of a ramp. The balls then roll down the ramp without slipping (neglect air resistance). The two balls reach the bottom of the ramp at the same time. 2. A wheel is spinning clockwise and slowing down. The wheel s angular velocity and angular acceleration vectors point in opposite directions. 3. A wheel is spinning with constant angular acceleration. The net torque on the wheel is zero. 4. Two cars of equal mass are traveling at the same speed. One car crashes into a wall and stops suddenly. The other car applies its brakes and gradually slows to a stop. The impulse imparted to each car while stopping is the same in magnitude. 5. Consider two parallel rotation axes, only one of which passes through the center of mass of a particular object. The object s moment of inertia around the center-of-mass axis is larger than its moment of inertia around the other axis. 6. Two balls of equal mass are dropped from the same initial height and bounce off the ground to the same final height. During the bounce, the first ball is in contact with the ground for twice as long as the second. The average force exerted by the ground is twice as much for the first ball than the second. 7. Newton s cradle is a toy with five steel balls suspended vertically by strings in a single line. Collisions between the balls are completely elastic. When one ball is lifted to the side and released two balls swing outward on the other side after the collision. 8. A bomb that is initially stationary will have zero net momentum immediately after it explodes. 9. A massive bus and a light bullet have the same kinetic energy (not equal to zero). The bus has more momentum. 10. Before a collision, the total kinetic energy of two isolated objects is greater than zero. After the objects collide, the total kinetic energy cannot be zero.

3 Scenario 1: This simple experimental setup can be used to measure the moment of inertia of a rolling object. The object shown has a round facet, which allows it to roll smoothly down the ramp without slipping. The specific distribution of mass within the object is unknown: its moment of inertia is not necessarily one with which we are already familiar. Use the following values: H 1 m ; M 5 kg; 5 cm 11. [MC5 select up to 2 answers] The object starts from rest at height H. When it reaches the bottom of the ramp, the object continues to roll without slipping with constant angular speed, ω 70 rad/s. What is the moment of inertia of the object? a. I /0 kg-m 2 b. I /0 kg-m 2 c. I /0 kg-m 2 d. I /0 kg-m 2 e. I /0 kg-m 2 MgH 1 2 I! MV I! M!2 2 I 2MgH M!2 2! 2 2MgH! 2 M [MC5 select up to 2 answers] A different object has the same mass and radius, but a different moment of inertia, I /0 kg-m 2. This object is released from rest from the same height, H, and it rolls without slipping down the ramp. What is the translational speed of the object at the bottom of the ramp? a. V m/s b. V m/s c. V m/s d. V m/s e. V m/s MgH 1 2 I! MV I V MV 2 V 2 I M s 2MgH V + M I [MC3 select only 1 answer] If a particular object rolls without slipping down a steeper ramp (larger θ) from the same height H, how does its translational speed at the bottom of the ramp change? a. The translation speed in both cases will be the same. b. The translational speed will be larger for the steeper ramp. c. The translational speed will be smaller for the steeper ramp.

4 Scenario 2: An unidentified flying object (UFO) hovers in the sky above Salt Lake City. Initially, the UFO is not spinning; at a particular time, it starts to spin and the angular speed increases until reaching a particular value, after which it stays constant. Since it is large and hovering at a low altitude, we cannot neglect drag (air resistance), which always acts to slow the UFO s angular speed. The torque due to drag is linearly proportional to the UFO s angular speed: τ :;< κω, where κ is a proportionality constant (with the correct units) and ω is the angular speed of the spinning UFO, which depends on time. 14. [MC5 select up to 2 answers] To obtain a constant angular speed, rotation thrusters located a distance from the axis of rotation exert a total force, F in a direction perpendicular to a radial line extending from the axis of rotation to the outer rim of the UFO. If an observer on the ground measures a time T for one rotation of the UFO, what is the magnitude of F when it is rotating at a constant speed? a. F T κ 2π b. F 2π T c. F 2π T κ κ d. F T 2π κ e. F π κ 2T I UFO 0 ) thrust drag F tot apple! F tot apple! apple(2 /T ) 2 T apple g 15. [MC5 select up to 2 answers] An alien inside the UFO sits at /2 (half way between the UFO s axis of rotation and its outer rim). How fast does the UFO need to rotate so that the alien experiences a centripetal force equal to its weight? a. ω 4g b. ω 4πg c. ω 2g d. ω g 2 e. ω 2πg F cent ma cent mg m! 2 r 2 2g! 16. [MC3 select only 1 answer] All the aliens inside the UFO move from near the axis of rotation to near the UFO s outer radius, but the UFO continues to rotate with the same angular speed. When this happens: a. The kinetic energy increases. b. The kinetic energy decreases. c. The kinetic energy stays the same.

5 Scenario 3: A window cleaner stands on a scaffold suspended from the top of a tall building. The scaffold consists of a wooden plank suspended by four ropes, one on each corner. There is also a large bucket of water on the scaffold. The window cleaner can stand anywhere on the scaffold and can also place the bucket at any location. Use the following values: L 3 m M H<I 85 kg M 20 kg M OP<IM 120 kg 17. [MC5 select up to 2 answers] The man stands 1 meter from the left edge of the scaffold and he places the bucket 0.5 meters from the right edge. Considering the two ropes on the left side of the scaffold, what is the average of the tension in each of these two ropes? a. 120 N b. 96 N c. 72 N d. 60 N e. 48 N Note: As discussed during the exam, the answer choices above were mistakenly NOT multiplied by g and are therefore erroneous. This was corrected during the exam. 18. [MC5 select up to 2 answers] With the bucket in the same location as above, where should the man stand to equalize the tension in all four ropes? (Assume the bucket and man are both positioned along a line midway between the front and back edges of the plank.) a m from left edge b m from left edge c m from left edge d m from left edge e m from left edge Axis of rotation at right end of plank: 2T L (L) M man (L 1)g M plank (L/2)g M bucket (0.5)g 0 T L [M man(3 1) + M plank (1.5) + M bucket (0.5)] g 6 [85(2) + 120(1.5) + 20(0.5)] g 6 60g N Axis of rotation at center of plank: 2T L (L/2) M man g(d) 2T (L/2) + M bucket g(1) 0 2T L 2T ) M man (d) M bucket (1) d M bucket M man cm 19. [MC3 select only 1 answer] Now the man stands at the center of the plank and the bucket is still 0.5 meters from the right edge. Suddenly, a bird knocks the bucket and all its water off the scaffold. How does the tension in the ropes change after the bird knocks over the bucket? a. The tension in all four ropes decreases. b. The tension in the right-hand ropes decreases, but the tension in the left-hand ropes stays the same. c. The tension in the right-hand ropes decreases, but the tension in the left-hand ropes increases.

6 Scenario 4: A uniform rod is attached to a wall with a frictionless pivot at one end and a horizontal string attached to the other end. Initially, the rod makes an angle θ with respect to the wall. Use the following value: L 3 m 20. [MC3 select only 1 answer] How does the tension in the string compare for two different values of θ: 10 and 80? (The string is readjusted to horizontal for each value of θ.) a. As θ increases, tension also increases b. As θ increases, tension decreases c. As θ increases, tension remains constant q g 21. [MC5 select up to 2 answers] When θ 30, the tension in the string is T 170 N. What is the mass of the rod? a. 20 kg b. 30 kg c. 35 kg d. 50 kg e. 60 kg X 0 T (L cos ) Mg( L sin ) 0 2 Mg sin T cos 2 2T cos M g sin 22. [MC5 select up to 2 answers] The rod is initially held at θ 30 as above. The string is then cut and the rod begins to rotate. When the rod passes through horizontal (θ 90 ), what is its angular speed? a. ω 2.2 rad/s b. ω 2.9 rad/s c. ω 3.5 rad/s d. ω 4.1 rad/s e. ω 5.8 rad/s MgH 1 2 I!2 r 2MgH! I s r 2MgH 6gH 1 3 ML2 L 2 r r 6g(L/2) cos 3g cos L 2 L

7 Scenario 5: In bowling, a heavy ball (7.5 kg) travels down a horizontal lane toward 10 pins (1.5 kg each) arranged in a triangle. The ball collides elastically head on with the first pin at the point of the triangle. 23. [MC5 select up to 2 answers] A player rolls the ball with speed v 7.5 m/s straight down the lane toward the first pin (at the point of the triangle). What is the speed of the first pin immediately after being hit by the ball (before it hits other pins)? a. 5 m/s b m/s c. 10 m/s d m/s e. 15 m/s 24. [MC5 select up to 2 answers] As the ball passes through the pins, it collides with 3 (and only 3) separate pins in close succession (neglect time between collisions) and its speed decreases from 7.5 m/s (before hitting the first pin) to 2.2 m/s (after hitting the third pin). This entire triple collision takes approximately 0.2 seconds in total. Estimate the average force exerted on the ball by each pin during each collision assuming that each collision takes the same amount of time: a. 8 N b. 40 N c. 66 N d. 200 N e. 600 N Since the ball collides consecutively with each pin, this is the average force for each of the three collisions. Each collision takes 1/3 of the total time, accounting for 1/3 of the total impulse. 25. [MC3 select only 1 answer] When the player initially releases the ball, it slides down the lane for some time and then eventually begins to roll without sliding. What equation below correctly predicts the translational speed of the ball when it begins to roll without sliding? a. V J<PP 1 2 ω J<PP J<PP b. V J<PP ω J<PP J<PP c. V J<PP 2 ω J<PP J<PP

### Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

### Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

### Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

### 1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

### Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

### = y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

### The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

### Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

### Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

### AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

### Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

### PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

### Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

### Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133 Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

### Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

### P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

### Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

### Unless otherwise specified, use g = 9.80 m/s2 Phy 111 Exam 2 March 10, 2015 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

### PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

### Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

### Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared.

### Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

### Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

### Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see

### Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

### Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw Coordinator: Dr. M. Al-Kuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the

### Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

### Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure

### Gravitational potential energy Gravitational potential energ m1 Consider a rigid bod of arbitrar shape. We want to obtain a value for its gravitational potential energ. O r1 1 x The gravitational potential energ of an assembl of N point-like

### PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

### Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

### = o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

### Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

### Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

###  (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light 1 (a) Define the newton...  (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light...  (c) Fig. 3.1 shows the horizontal forces acting

### On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

### PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I PY205N Spring 2013 Final exam, practice version MODIFIED This practice exam is to help students prepare for the final exam to be given at the end of the semester. Please note that while problems on this

### St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

### r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

### PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

### Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

### Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

### PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14 Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

### A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

### Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

### 11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

### 1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward. Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder

### FINAL EXAM CLOSED BOOK Physics 7A- Section 2, Fall 2008. Instructor Lanzara FINAL EXAM CLOSED BOOK GOOD LUCK! Print Name Discussion Section# or Time Signature Discussion Section GSI Student ID# Problem Points Score 1 20 2 20

### Practice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20

### Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

### is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

### AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

### Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

### Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

### Physics P201 D. Baxter/R. Heinz. EXAM #2 October 18, :00 9:00 PM INSTRUCTIONS Seat # Physics P201 D. Baxter/R. Heinz EXAM #2 October 18, 2001 7:00 9:00 PM INSTRUCTIONS 1. Sit in SEAT # given above. 2. DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO. 3. Print your name (last name

### PHYSICS 221 SPRING 2014 PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

### Physics 53 Exam 3 November 3, 2010 Dr. Alward 1. When the speed of a rear-drive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all 第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

### Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

### Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of: The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

### REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

### Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

### . d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

### 1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

### UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 5.3 FINAL EXAMINATION NAME: (Last) Please Print (Given) Time: 80 minutes STUDENT NO.: LECTURE SECTION (please check): 0 1 of 16 3/23/2016 3:09 PM Practice Exam Chapters 69 (Ungraded) (3103258) Due: Wed Apr 6 2016 06:00 PM EDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Description This will

### Exam 3--PHYS 101--F15 Name: Exam 3--PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. It takes 00 m to stop a car initially moving at 25.0 m/s. The distance required

### EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

### Physics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N

### Physics I (Navitas) FINAL EXAM Fall 2015 95.141 Physics I (Navitas) FINAL EXAM Fall 2015 Name, Last Name First Name Student Identification Number: Write your name at the top of each page in the space provided. Answer all questions, beginning

### I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2 Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

### Energy Conservation AP Energy Conservation AP Manicouagan Reservoir seen from space shuttle; formed almost 1 million years ago when a large meteorite hit Earth Earth did work on meteorite to change its kinetic energy energy

### PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

### Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

### Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

### PHYSICS 111 SPRING EXAM 2: March 6, 2018; 8:15-9:45 pm PHYSICS 111 SPRING 2018 EXAM 2: March 6, 2018; 8:15-9:45 pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 20 multiple-choice questions plus 1 extra credit question,

### Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

### 2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

### Rolling, Torque, and Angular Momentum AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where

### Rolling, Torque, and Angular Momentum AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where

### Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

### PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

### End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

### Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

### Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

### AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

### Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

### Plane Motion of Rigid Bodies: Momentum Methods Plane Motion of Rigid Bodies: Momentum Methods Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

### Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

### PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer: PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show SQ1: A 0.05-kg tennis ball moving to the right with a speed of 10 m/s is struck by a tennis racket, causing it to move to the left with a speed of 10 m/s. If the ball remains in contact with the racquet