Metal Halide Perovskites: a New Family of Semiconductors for Photovoltaics and Optoelectronics

Size: px
Start display at page:

Download "Metal Halide Perovskites: a New Family of Semiconductors for Photovoltaics and Optoelectronics"

Transcription

1 Metal Halide Perovskites: a New Family of Semiconductors for Photovoltaics and Optoelectronics Henry J. Snaith Department of Physics Clarendon Laboratory Parks Road Oxford OX1 3PU henry.snaith@physics.ox.ac.uk james.ball@physics.ox.ac.uk Photovoltaics and Optoelectronic Devices Group

2 Perovskites Perovskite is a calcium titanium oxide, with the chemical formula CaTiO 3. The mineral was discovered in the Ural Mountains of Russia by Gustav Rose in 1839 and is named after Russian mineralogist Count Lev Alekseevich Perovski ( ). All materials with the same crystal structure as CaTiO 3, namely ABX 3, are termed perovskites.

3 1892: 1 st paper on lead halide perovskites Structure deduced 1959: Kongelige Danske Videnskabernes Selskab, Matematisk-Fysike Meddelelser (1959) 32, p1-p17 Author: Moller, C.K. Title: The structure of cesium plumbo iodide Cs Pb I 3

4 First Solar Cells

5 Perovskite solar cells Meso-Al 2 O 3 η =10.9% Meso-TiO 2 η =7.6% Planar Junction η =1.8%

6 Efficient Planar Heterojunction Solar Cells M. Liu et al. Nature 2013

7 Publications on perovskites Perovskite solar cells High T c Superconductors

8 Publications Vs Efficiency Perovskite Solar Cells

9 Crystallisation of Perovskite Thin Films

10 W. Zhang et al Nature Communications Crystallisation of perovskite thin films PbX CH 3 NH 3 I CH 3 NH 3 PbI CH 3 NH 3 X (X= Cl, I, Ac)

11 XRD The more volatile the MAX component, the faster crystallisation occurs

12 Anti-solvent quenching crystallisation (a) (b) (c) (d) Routes developed by Seok et al. and Spiccia et al.

13 Anti-solvent + Excess organic

14 Excess organic + excess PbI 2 3MAI:(PbCl (2-2x) PbI (2x) ) 3MAI:PbCl 2 2% PbI 2 5% PbI 2 40% PbI 2 100% PbI 2 N. Saki et al. Small 2017 (in-press)

15 Excess organic + excess PbI 2 3MAI:PbCl 2 2% PbI 2 5% PbI 2 30% PbI 2 100% PbI 2

16 Control over nucleation and growth 19.1% Efficiency Formulation 1 Formulation 2 Formulation 3 Formulation 1 Formulation 2 Formulation 3 Formulation 1 Jsc Formulation 1 SPO Formulation 2 Jsc Formulation 2 SPO Formulation 3 Jsc Formulation 3 SPO

17 What are the cation options? G. Eperon et al Goldshmidt Tolerance factor

18 Adding a small amount of Cs to FAPb(I 1-x Br x ) 3 Ability to crystallise throughout the entire I-Br compositional range

19 Influence of Colloids In solution

20 Influence of Addition of Acid (HI and HBr)

21 Increased crystallinity and crystal orientation

22 Microstrain and Charge Carrier Mobility

23 Crystallinity Matters D. McMeekin et al Submitted

24 A new route for single crystal Growth

25 Breaking up of colloids

26 Breaking up of colloids

27 What we think about the mechanism

28 Solvent Mixtures Solvent needs to be polar and aprotic. H 2 O/MA EtOH/MA ACN ACN/MA

29 N. Noel et al. EES 2016 In-press

30 Devices from ACN/MA solvent mix annealed unannealed inverted N. Noel et al. EES 2016 In-press

31 Enhanced Stability Perovskite Solar Cells

32 Thermal stability good B Absorption (a.u.) MAPb(I 0.6 Br 0.4 ) 3 t = 0h t = 1h t = 2h t = 3h t = 4h t = 6h 5 C FA 0.83 Cs 0.17 Pb(I 0.6 Br 0.4 ) 3 Absorption (a.u.) t = 0h t = 1h t = 2h t = 3h t = 4h t = 6h Wavelength (nm) D. McMeekin et al. Science Wavelength (nm)

33 Champion Devices C 60 derivative 1.6eV gap PCBM n-type PCBCB n-type

34 Inverted Cell Architecture Ag/Au ZnO nanocrystal PCBM FA 0.85 Cs 0.15 Pb(I 0.9 Br 0.1 ) 3 SPO: 18.2% FA(MA)CsPb(I 0.9 Br 0.1 ) 3 NiO ITO Substrates FA 0.79 MA 0.16 Cs 0.05 Pb(I 0.9 Br 0.1 ) 3 SPO: 19.3% J SC (ma cm -2 ) V OC (V) FF PCE (%) FB-SC SC-FB J SC (ma cm -2 ) V OC (V) FF PCE (%) FB-SC SC-FB S. Bai et al. (In preparation) 2017

35 Non-encapsulated solar cells Burn-in t 80 = 1050 h t 80 = 694 h t 80 = 20.7 h The devices are aged under full spectrum simulated AM1.5, 76 mwcm -2 average irradiance at V OC in air without a UV filter, 53 C. The Suntest XLS+ aging box irradiates pulsed light.

36 Sealed vs unsealed

37

38 But

39 And cheaper

40 Best Way to Raise Efficiency Epitaxially Grown Single Crystal III-V Tandem 46% efficient >$40,000/m 2 Perovskite on Conventional Silicon Tandem Up to 33% efficient <$100/m 2 Image: US Naval Research Lab

41 Perovskite on Si Eg. See papers by Baliff et al and McGehee et al,

42 Simple 4-T configuration Glass FTO SnO 2 /PCBM Perovskite Spiro-OMeTAD Buffer layer ITO ITO (80 nm) (p)a-si:h (~10nm) + Ai - (i)a-si:h (<10nm) Demonstrates Feasibility for > 25% efficiency D. McMeekin et al. Science 2016 DOI /science.aad5845 (n)c-si (~200µm) (i)a-si:h (<10nm) (n + )a-si:h (~30nm) Al

43 EQE and 1-R (%) Perovskite-on-Si Tandem EQE and 1-R Wavelength (nm) EQE Sum IR HIT2 - Perovskite EQE mA IR HIT2 - Silicon EQE mA IR HIT 2-1-R In collaboration with m. McGehee et al. in Stanford University

44 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability Kevin A. Bush 1, Axel F. Palmstrom 1, Zhengshan J. Yu 2, Mathieu Boccard 2, Rongrong Cheacharoen 1, Jonathan P. Mailoa 3, David P. McMeekin 4, Robert L. Z. Hoye 3, Colin D. Bailie 1, Tomas Leijtens 1, Ian Marius Peters 3, Maxmillian C. Minichetti 1, Nicholas Rolston 1, Rohit Prasanna 1, Sarah Sofia 3, Duncan Harwood 5, Wen Ma 6, Farhad Moghadam 6, Henry J. Snaith 4, Tonio Buonassisi 3, Zachary C. Holman* 2, Stacey F. Bent 1, and Michael D. McGehee* 1 1 Stanford University, Stanford, 94305, USA. 2 Arizona State University, Tempe, 85281, USA. 3 Massachusetts Institute of Technology, Cambridge, 02139, USA. 4 University of Oxford, Oxford, UK. 5 D2 Solar LLC, San Jose, 95131, USA. 6 SunPreme, Sunnyvale, 94085, USA.

45 Can we go to All-Perovskite tandem We need a low band gap perovskite cell

46 1.2eV planar devices? Noel et al, EES :1 MAI:SnI2 in DMF? not so promising morphology. Tin-based materials seem to crystallise very rapidly, during spin-coating

47 Precursor-phase Antisolvent Immersion for high quality films 1. After spin-coating 2. After immersion in anisole bath 4. After annealing. 50um 10um 2um

48 FAPb 1-x Sn x I 3 : Photoluminescence PL counts (norm) Sn percentage 0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100% Wavelength (nm) Bandgap (ev) Eg from absorption(tauc) (ev) PL peak (BP measured - new samples) (ev) % 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100% Sn %

49 Cs addition enables a very high V OC for a 1.2 ev band gap material G. Eperon et al. Science 2016

50 All perovskite tandems G. Eperon et al. Science 2016

51 Sn-Pb devices show unprecedented stability

52 Is it worth going tandem without the low gap perovskites? Calculated EQE and JVs assuming KRICT record cell parameters A 22.1% APbX 3 single junction becomes a 25.9% APbX 3 /APbX 3 tandem Target: cell with a band gap of 2.06eV and V oc of 1.59V On Silicon, a 30.1% hybrid-tandem becomes a 33.6% triple junction (+ 0.7V Voc due to Si rear, and FF boost to 0.85)

53 Beyond Group XIV elements: G. Volonakis et al. JPCL 2016 ALSO See: Slavney, A. H et al. JACS 2016 McClure, E. T. et al. Chem. Matter. 2016

54 Calculated Band-gaps and effective mass

55 Single Crystal Data G. Volonakis et al. JPCL 2016

56 Commercialisation Device and mini-module development Present Target: Develop stable and efficient materials stack Develop processing methodology to deliver Efficient perovskite/silicon tandem cells at high yield Partner with existing Si-PV industry to manufacture

57 Test and reliability laboratory Requirements: Climatic testing to IEC C/85% RH >1000hrs +85 to -40 C cycling >200 cycles Full Spectrum Light soaking to AM1.5G 3000hrs (not IEC) High UV exposure Etc etc etc

58 IEC Stability testing 85 C for 1000 s of hrs 85 C 85% RH for 1000 s hrs High levels of UV light exposure Thermal Cycling from -40 to +85 C Full sun light exposure at 60 to 85C Important note: IEC = 1000hrs 25 years = 218,850 hrs

59 Proper Encapsulation of Cells Normalised perovskite Colour Intensity (%) Encapsulation selection using 1000hr 85 o C/85% baseline Moisture ingress accelerates degradation Control (140) Control (115) A B C Module 0 Glass Stressing Time (hours) Cover Glass Interlayer Perovskite Film 0 hrs Interlayer assembly only 350hrs Perovskite layer degradation by moisture ingress after early lamination failure

60 Stability: IEC61646 Results Thermal Cycling: Pass Full sun light soaking: Pass Damp heat: Pass

61 Next Steps: Development Through to Manufacturing

62 Oxford PV acquires thin-film development line for perovskite scale-up It has acquired the production site previously operated by Bosch Solar CISTech GmbH. The site, located in Brandenburg an der Havel, Germany, will be equipped to provide modern, pilot-scale capacity to scale-up Oxford PV s perovskite technology to industry-standard wafer size and to perfect the manufacturing processes necessary for commercial deployment.

63 qv hν qv operation(=mp) [ev] Evolution of Operational loss in perovskite cells 1.2 SQ- Limit Loss c-si GaAs CdTe 22.1% 9.7% a-si 14.1% 10.9% 17.9% 20.1% GaInP 0.2 S-Q from R.Milo,WIS Nayak et al. Adv. Mater., ,3-2014; updated Absorption Edge (ev)

64 Why are metal halide perovskites such good solar cell materials???

65 Sharp and strong absorption edge Urbach energy as low as 13 mev Steepness of absorption edge depicts quality of semiconductor Steeper = lower disorder = higher voltage Technology Urbach Energy (mev) GaAs 7 c-si 11 Perovskite 15 Christoph Baliff and co workers JPCL (6), pp CIGS 25 Organics 25-50

66 Electroluminescence vs Absorption onset.

67 PLQE and lasing!! Very High Photo Luminescent quantum yield Negligible nonradiative decay PLQE (%) Excitation power (mw/cm²) Counts (x10 6 ) Fluence ( J/cm 2 ) (scaled x25) PL Spectrum Wavelength (nm) Even room temperature lasing of as cast films within a cavity Felix Deschler et al. JPCL 2014

68

69 Acknowledgements Group Research group Collaborators: Oxford: Laura Herz, Michael Johnston, Robin Nicholas, Moritz Reide Cambridge: Richard Friend and co-workers Stanford: M. McGehee et al. GT: Seth Marder et al. Bordeaux: Guillaume Wantz et al. Funding EPSRC, ERC & FP7, Oxford John Fell Fund, Oxford Martin School, Royal Society.

Solar Energy A Journey with the Global Climate and Energy Project From 2003 to Now

Solar Energy A Journey with the Global Climate and Energy Project From 2003 to Now Solar Energy A Journey with the Global Climate and Energy Project From 2003 to Now Mike McGehee Material Science and Engineering 1 2 3 Solar Energy is Booming as Costs have Plummeted! We have passed a

More information

Metal-halide perovskites: the next evolution in photovoltaics

Metal-halide perovskites: the next evolution in photovoltaics Metal-halide perovskites: the next evolution in photovoltaics D r. C o l i n B a i l i e Po stdoc, Sta n fo rd U n i ve rs i t y Fo u n d e r, I r i s P V * D a t a i n t h i s p r e s e n t a t i o n

More information

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics PIs: Mike McGehee and Hema Karunadasa 1 Perovskite Solar Cells are Soaring Jul 2013 Grätzel, EPFL 15% Nov 2014 KRICT 20.1%! Seok,

More information

The Current Status of Perovskite Solar Cell Research at UCLA

The Current Status of Perovskite Solar Cell Research at UCLA The Current Status of Perovskite Solar Cell Research at UCLA Lijian Zuo, Sanghoon Bae, Lei Meng, Yaowen Li, and Yang Yang* Department of Materials Science and Engineering University of California, Los

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

Solliance. Perovskite based PV (PSC) Program. TKI Urban Energy Days l e d b y i m e c, E C N a n d T N O

Solliance. Perovskite based PV (PSC) Program. TKI Urban Energy Days l e d b y i m e c, E C N a n d T N O Solliance Perovskite based PV (PSC) Program TKI Urban Energy Days - 2017-06-21 l e d b y i m e c, E C N a n d T N O 2 Bringing together research and industry Providing insight and know-how to all partners

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

Halide perovskites - a game- changer for photovoltaics?

Halide perovskites - a game- changer for photovoltaics? Halide perovskites - a game- changer for photovoltaics? Giles Eperon Marie Curie Fellow Ginger Lab Department of Chemistry University of Washington Sea?le, WA USA eperon@uw.edu SOLAR POWER - OVERVIEW World

More information

Supporting Information

Supporting Information Supporting Information Blue-Green Colour Tunable Solution Processable Organolead Chloride- Bromide Mixed Halide Perovskites for Optoelectronic Applications Aditya Sadhanala, 1* Shahab Ahmad, 2 Baodan Zhao,

More information

Recent Developments in Perovskite Materials for Solar Cell Applications. Yu Sheng Min, Researcher of ITRI/MCL

Recent Developments in Perovskite Materials for Solar Cell Applications. Yu Sheng Min, Researcher of ITRI/MCL Recent Developments in Perovskite Materials for Solar Cell Applications Yu Sheng Min, Researcher of ITRI/MCL 2017.10.19 Outline Introduction of perovskite materials Major problems of perovskite solar cells

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201706023 Effective Carrier-Concentration Tuning of SnO 2 Quantum Dot

More information

Powering Big Data and the IoT s

Powering Big Data and the IoT s Powering Big Data and the IoT s a great challenge and an even greater opportunity for materials efficiency using low cost perovskite solar cells Reinhold H. Dauskardt (dauskardt@stanford.edu) by 2020,

More information

Supporting Information. The Potential of Multi-Junction Perovskite Solar Cells

Supporting Information. The Potential of Multi-Junction Perovskite Solar Cells Supporting Information The Potential of Multi-Junction Perovskite Solar Cells Maximilian T. Hörantner 1,4 *, Tomas Leijtens 2, Mark E. Ziffer 3, Giles E. Eperon 3,5, M. Greyson Christoforo 4, Michael D.

More information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 1 Low-temperature-processed inorganic perovskite solar cells via solvent engineering

More information

High efficiency silicon and perovskite-silicon solar cells for electricity generation

High efficiency silicon and perovskite-silicon solar cells for electricity generation High efficiency silicon and perovskite-silicon solar cells for electricity generation Ali Dabirian Email: dabirian@ipm.ir 1 From Solar Energy to Electricity 2 Global accumulative PV installed In Iran it

More information

Encapsulating perovskite solar cells to withstand damp heat and thermal cycling Figure S1

Encapsulating perovskite solar cells to withstand damp heat and thermal cycling Figure S1 Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Supplementary Information Title: Encapsulating perovskite solar cells to withstand

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Highly Efficient Flexible Solar Cells Based on Room-Temperature

Highly Efficient Flexible Solar Cells Based on Room-Temperature Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Please do 2018 not adjust margins Supporting Information Highly Efficient Flexible

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Impact of Cesium in Phase and Device Stability of

More information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the spiro-ometad from a perovskite-filled mesoporous TiO 2

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Graded bandgap perovskite solar cells Onur Ergen, 1,3,4 S.Matt Gilbert 1, 3,4,,Thang Pham 1, 3,4,Sally J. Turner, 1,2,4, Mark Tian Zhi Tan 1, Marcus A. Worsley 1, 3,4 and Alex Zettl 1 Department of Physics,

More information

Latest achievements in the field of dye sensitized and perovskite solar cells Anders Hagfeldt Laboratory of Photomolecular Sciences (LSPM)

Latest achievements in the field of dye sensitized and perovskite solar cells Anders Hagfeldt Laboratory of Photomolecular Sciences (LSPM) 15 e Congrès photovoltaïque national, Lausanne, March 23, 2017 Latest achievements in the field of dye sensitized and perovskite solar cells Anders Hagfeldt Laboratory of Photomolecular Sciences (LSPM)

More information

What will it take for organic solar cells to be competitive?

What will it take for organic solar cells to be competitive? What will it take for organic solar cells to be competitive? Michael D. McGehee Stanford University Director of the Center for Advanced Molecular Photovoltaics Efficiency (%) We will need 20-25 % efficiency

More information

Highly efficient hybrid perovskite solar cells by interface engineering

Highly efficient hybrid perovskite solar cells by interface engineering Highly efficient hybrid perovskite solar cells by interface engineering Maria Antonietta Loi Photophysics & OptoElectronics Zernike Institute for Advanced Materials University of Groningen The Netherlands

More information

Supporting Information Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells

Supporting Information Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells Supporting Information Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Solar Cells Caleb C. Boyd 1, Rongrong Cheacharoen 1, Kevin A. Bush 1, Rohit Prasanna 1, Tomas

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N.

More information

Severe Morphological Deformation of Spiro- Temperature

Severe Morphological Deformation of Spiro- Temperature Supplementary Information Severe Morphological Deformation of Spiro- OMeTAD in (CH 3 NH 3 )PbI 3 Solar Cells at High Temperature Ajay Kumar Jena, Masashi Ikegami, Tsutomu Miyasaka* Toin University of Yokohama,

More information

Supporting Information. Monolithic perovskite-homojunction silicon tandem solar cell with over 22% efficiency

Supporting Information. Monolithic perovskite-homojunction silicon tandem solar cell with over 22% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for Energy & Environmental Science

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

Left: ToF-SIMS 3D Oxygen ion plot of a MAPI film. Right: ToF-SIMS 3D Oxygen ion plot of a MAPIC film.

Left: ToF-SIMS 3D Oxygen ion plot of a MAPI film. Right: ToF-SIMS 3D Oxygen ion plot of a MAPIC film. C fresh fresh C aged Intensity (a. u.) Intensity 2 2 3 3 4 4 6 2 Theta / deg 2 2 3 3 4 4 6 2 Theta / deg Supplementary Figure 1. XRD Patterns Left: XRD patterns of CH 3 NH 3 PbI 3 and CH 3 NH 3 PbI 3 (Cl)

More information

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass substrate. Scale bar: 1 m. Supplementary Figure 2. Contact angle

More information

Impact of Rubidium and Cesium Cations on the. Moisture Stability of Multiple-Cation Mixed-

Impact of Rubidium and Cesium Cations on the. Moisture Stability of Multiple-Cation Mixed- Supporting Information Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed- Halide Perovskites Yinghong Hu, 1 Meltem F. Aygüler, 1 Michiel L. Petrus, 1 Thomas Bein,

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Electronic Supplementary Information. Benjia Dou,, Vanessa L. Pool, Michael F. Toney *,, Maikel F.A.M. van Hest *,

Electronic Supplementary Information. Benjia Dou,, Vanessa L. Pool, Michael F. Toney *,, Maikel F.A.M. van Hest *, Electronic Supplementary Information Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film

More information

All-Inorganic Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells Supporting Information for: All-Inorganic Perovskite Solar Cells Jia Liang, Caixing Wang, Yanrong Wang, Zhaoran Xu, Zhipeng Lu, Yue Ma, Hongfei Zhu, Yi Hu, Chengcan Xiao, Xu Yi, Guoyin Zhu, Hongling Lv,

More information

Supporting Information

Supporting Information Supporting Information ~800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells Zhongcheng Yuan,, Yingguo Yang, Zhongwei Wu, Sai Bai, Weidong Xu,

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/8/e1716/dc1 Supplementary Materials for Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells Lijian Zuo, Hexia

More information

Supplementary Information (SI)

Supplementary Information (SI) Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supplementary Information (SI) Large area efficient interface layer free

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION

POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION POROUS PEROVSKITE NANOCRYSTALS FOR PHOTOVOLTAIC APPLICATION, PhD student DIPARTIMENTO DI SCIENZE FISICHE E TECNOLOGIA DELLA MATERIA CNR-IOM - Istituto Officina dei Materiali Headquarters (Trieste, TASC)

More information

Polymers and Perovskites for Hybrid Tandem Photovoltaics

Polymers and Perovskites for Hybrid Tandem Photovoltaics Polymers and Perovskites for Hybrid Tandem Photovoltaics Michael D. McGehee Stanford University 1.2 V 1.2 V 0.6 V 0.6 V Tandem Photovoltaics 2 Goal: Inexpensive cells with efficiency 25% Efficiency Cost

More information

Capturing Energy from the Sun. Solar Cells Solar Thermal Solar Fuels Bioenergy

Capturing Energy from the Sun. Solar Cells Solar Thermal Solar Fuels Bioenergy Capturing Energy from the Sun Solar Cells Solar Thermal Solar Fuels Bioenergy Installed PV Cost Breakdown a Globally, module prices are between $0.60-0.90/W depending on tariffs In the US, non-module costs

More information

Supplementary Figure S1. Hole collection layer photovoltaic performance in perovskite solar cells. Current voltage curves measured under AM1.

Supplementary Figure S1. Hole collection layer photovoltaic performance in perovskite solar cells. Current voltage curves measured under AM1. Supplementary Figure S1. Hole collection layer photovoltaic performance in perovskite solar cells. Current voltage curves measured under AM1.5 simulated sun light at 100mWcm -2 equivalent irradiance for

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Supporting information

Supporting information Supporting information Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates - Mysterious Enhancement of Device Efficiency Overtime Discovered Cheng Bi, Xiaopeng Zheng, Bo Chen,

More information

Basic Limitations to Third generation PV performance

Basic Limitations to Third generation PV performance Basic Limitations to Third generation PV performance Pabitra K. Nayak Weizmann Institute of Science, Rehovot, Israel THANKS to my COLLEAGUES Lee Barnea and David Cahen. Weizmann Institute of Science Juan

More information

26% PK/silicon tandem solar cell with 1 cm 2 area H2020-LCE

26% PK/silicon tandem solar cell with 1 cm 2 area H2020-LCE H2020-LCE-205- CHEOPS Production Technology to Achieve Low Cost and Highly Efficient Photovoltaic Perovskite Solar Cells Deliverable WP4 PK/c-Si SHJ tandem device development Author: Arnaud Walter (CSEM)

More information

Supplementary information

Supplementary information Supplementary information Neutral Colour Semitransparent Microstructured Perovskite Solar Cells Giles E. Eperon, Victor M. Burlakov, Alain Goriely and Henry J. Snaith 1. Controlling dewetting to achieve

More information

Supplementary information for Understanding how excess lead iodide precursor improves halide perovskite solar cell performance

Supplementary information for Understanding how excess lead iodide precursor improves halide perovskite solar cell performance Supplementary information for Understanding how excess lead iodide precursor improves halide perovskite solar cell performance Byung-wook Park et. al. 1 (a) (b) Film Thickness (nm) type Au ~ 80 PTAA 20-50

More information

Perovskite solar cells

Perovskite solar cells IMO - IMOMEC INSTITUUT VOOR MATERIAALONDERZOEK Perovskite solar cells dr. ir. Bert Conings bert.conings@uhasselt.be state-of-the-art http://www.nrel.gov/ncpv/images/efficiency_chart.jpg outline! introduction!

More information

Perovskites: crystal structure, important compounds and properties. Peng Gao GMF Group Meeting 12,04,2016

Perovskites: crystal structure, important compounds and properties. Peng Gao GMF Group Meeting 12,04,2016 Perovskites: crystal structure, important compounds and properties Peng Gao GMF Group Meeting 12,04,2016 Solar energy resource PV instillations Global Power Demand Terrestrial sun light To start We have

More information

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Supporting Information Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells Taketo Handa, + Takumi Yamada, + Hirofumi Kubota,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 7 Supporting Information Interpretation and Evolution of Open- Circuit Voltage,

More information

Supporting Information

Supporting Information Supporting Information Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH 3 NH 3 SnI 3 Perovskite Elizabeth S. Parrott, Rebecca L. Milot, Thomas Stergiopoulos, Henry J.

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Electronic Supplementary Information. inverted organic solar cells, towards mass production Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Polyelectrolyte interlayers with a

More information

The role of surface passivation for efficient and photostable PbS quantum dot solar cells

The role of surface passivation for efficient and photostable PbS quantum dot solar cells ARTICLE NUMBER: 16035 DOI: 10.1038/NENERGY.2016.35 The role of surface passivation for efficient and photostable PbS quantum dot solar cells Yiming Cao 1,+, Alexandros Stavrinadis 1,+, Tania Lasanta 1,

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ and real-time ToF-SIMS analysis of light-induced chemical changes

More information

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2 Supporting Information Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH 3 NH 3 PbI 3 -Perovskite Films: Evidence for Passivation Effect of PbI 2 Lili Wang a, Christopher McCleese a, Anton

More information

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Supporting Information for Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Mingyang Cha,, Peimei Da,, Jun Wang, Weiyi Wang, Zhanghai Chen,

More information

Preparation of mixed-ion and inorganic perovskite solar cells using water and isopropanol as solvents for solar cell applications

Preparation of mixed-ion and inorganic perovskite solar cells using water and isopropanol as solvents for solar cell applications Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 217 Preparation of mixed-ion and inorganic perovskite solar cells using water and

More information

Photovoltaic cell and module physics and technology

Photovoltaic cell and module physics and technology Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 6/21/2012 1 Outlines Photovoltaic Effect Photovoltaic cell

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501170/dc1 Supplementary Materials for Efficient luminescent solar cells based on tailored mixed-cation perovskites Dongqin Bi, Wolfgang Tress, M. Ibrahim

More information

Hybrid Perovskite Solar Cells

Hybrid Perovskite Solar Cells 1 Hybrid Perovskite Solar Cells Annamaria Petrozza "ORGANIC ELECTRONICS : principles, devices and applications" Milan, Novembre 27 th, 2015 Perovskite Crystal with ABX 3 stoichiometry A X B I-V-O3, II-IV-O3

More information

CIGS und Perowskit Solarzellenforschung an der Empa

CIGS und Perowskit Solarzellenforschung an der Empa CIGS und Perowskit Solarzellenforschung an der Empa Dr. Stephan Buecheler Contact: stephan.buecheler@empa.ch Direct: +4158 765 61 07 Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Perovskite Solar Cells

Perovskite Solar Cells Perovskite Solar Cells Alfaz M.Bagawan 1, Kaveri S.Ghiwari 2 1,2 Physics Department. R.L.Science Institute, Belagavi. Karnataka, India) ABSTRACT A solar cell is a device that converts sunlight into electricity.

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement

Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement Università degli Studi di Ferrara Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement Internal supervisor: Vincenzo Guidi External supervisor: Giampiero

More information

Generalized picture 1

Generalized picture 1 one electron energy contact contact The Photovoltaic (PV) effect: Generalized picture 1 Absorber e - High energy state Metastable high and low energy states Absorber transfers charges into high and low

More information

Ambient air processed mixed-ion perovskite for high efficiency solar cells

Ambient air processed mixed-ion perovskite for high efficiency solar cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Ambient air processed mixed-ion perovskite for high efficiency solar cells

More information

Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: cm).

Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: cm). Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: 1.5 4.5 cm). 1 Supplementary Figure 2. Optical microscope images of MAPbI 3 films formed

More information

Supporting information. Supramolecular Halogen Bond Passivation of Organometal-Halide Perovskite Solar Cells

Supporting information. Supramolecular Halogen Bond Passivation of Organometal-Halide Perovskite Solar Cells Supporting information Supramolecular Halogen Bond Passivation of Organometal-Halide Perovskite Solar Cells Antonio Abate, a Michael Saliba, a Derek J. Hollman, a Samuel D. Stranks, a K. Wojciechowski,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

Perovskite/Silicon Tandem Solar Cells and Modules

Perovskite/Silicon Tandem Solar Cells and Modules Perovskite/Silicon Tandem Solar Cells and Modules Bernd Rech 1, Daniel Amkreutz 1, and Steve Albrecht 2 Helmholtz-Center Berlin 1 Institute for Silicon-Photovoltaics 2 Young Investigator Group Perovskite

More information

Two-dimensional homologous perovskites as light absorbing materials for solar cell applications

Two-dimensional homologous perovskites as light absorbing materials for solar cell applications Supporting Information for Two-dimensional homologous perovskites as light absorbing materials for solar cell applications Duyen H. Cao, Constantinos C. Stoumpos, Omar K. Farha,, Joseph T. Hupp, and Mercouri

More information

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague Photovoltaic cell and module physics and technology Vitezslav Benda, Prof Czech Technical University in Prague benda@fel.cvut.cz www.fel.cvut.cz 1 Outlines Photovoltaic Effect Photovoltaic cell structure

More information

Quantum Dots for Advanced Research and Devices

Quantum Dots for Advanced Research and Devices Quantum Dots for Advanced Research and Devices spectral region from 450 to 630 nm Zero-D Perovskite Emit light at 520 nm ABOUT QUANTUM SOLUTIONS QUANTUM SOLUTIONS company is an expert in the synthesis

More information

European PV Solar Energy Conference and Exhibition EU PVSEC, September 2017, Amsterdam, the Netherlands

European PV Solar Energy Conference and Exhibition EU PVSEC, September 2017, Amsterdam, the Netherlands PEROVSKITE/CRYSTALLINE SILICON TANDEMS: IMPACT OF PEROVSKITE BAND GAP AND CRYSTALLINE SILICON CELL ARCHITECTURE S.L. Luxembourg 1, D. Zhang 2, M. Najafi 2, V. Zardetto 3, S. Veenstra 2, L.J. Geerligs 1

More information

Mechanically-stacked Perovskite/CIGS Tandem Solar Cells with Efficiency of 23.9% and Reduced Oxygen Sensitivity

Mechanically-stacked Perovskite/CIGS Tandem Solar Cells with Efficiency of 23.9% and Reduced Oxygen Sensitivity Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Mechanically-stacked Perovskite/CIGS Tandem Solar Cells with Efficiency of

More information

Electronic Supplementary Information. Crystallographic Orientation Propagation in Metal Halide Perovskite Thin Films

Electronic Supplementary Information. Crystallographic Orientation Propagation in Metal Halide Perovskite Thin Films Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Crystallographic Orientation Propagation

More information

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13% All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency Exceeding 13% Chong Liu a,, Wenzhe Li a,, Cuiling Zhang b, Yunping Ma b, Jiandong Fan*,a, Yaohua Mai*,a,b a Institute of New Energy

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201602696 Stable Low-Bandgap Pb Sn Binary Perovskites for Tandem Solar

More information

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing Multi-junction cells MBE growth > 40% efficient Expensive Single crystal Si >20% efficient expensive Thin film cells >10% efficient Less expensive Toxic materials Polymers

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Enhanced Charge Collection with Passivation of

More information

Mesoscopic Perovskite Solar Cells and Modules

Mesoscopic Perovskite Solar Cells and Modules Proceedings of the 14th IEEE International Conference on Nanotechnology Toronto, Canada, August 18-1, 14 Mesoscopic Perovskite Solar Cells and Modules A. Di Carlo, Member, IEEE, F. Matteocci, S. Razza,

More information

Layered Mixed Tin-Lead Hybrid Perovskite Solar Cells with High Stability

Layered Mixed Tin-Lead Hybrid Perovskite Solar Cells with High Stability Supplementary information for: Layered Mixed Tin-Lead Hybrid Perovskite Solar Cells with High Stability Daniel Ramirez, a Kelly Schutt, b Zhiping Wang, b Andrew J. Pearson, c Edoardo Ruggeri, c Henry J.

More information

Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin Lead Triiodide Perovskites

Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin Lead Triiodide Perovskites FULL PAPER Mixed Tin-Lead Perovskites Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin Lead Triiodide Perovskites Elizabeth S. Parrott, Thomas Green, Rebecca L. Milot, Michael

More information

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Supporting Information The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Jason K. Cooper, a,b Soren B. Scott, a Yichuan Ling, c Jinhui Yang, a,b Sijie Hao, d Yat Li, c Francesca

More information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Supporting information For Nano Letters Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode Xiaobao Xu,,, Zonghao Liu,, Zhixiang Zuo, Meng Zhang, Zhixin Zhao, Yan Shen,

More information

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids Cherie R. Kagan, University of Pennsylvania in collaboration with the Murray group Density of Electronic States in Quantum Dot

More information

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Supporting information for Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Jing Cao 1,*,, Congping Li 1,, Xudong

More information

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea Supporting Information Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells Seong Sik Shin 1,2,, Woon Seok Yang 1,3,, Eun Joo Yeom 1,4, Seon Joo Lee 1, Nam

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 SUPPORTING INFORMATION Efficient Fully-Vacuum-Processed Perovskite Solar

More information

Achieving high-performance planar perovskite solar cells with

Achieving high-performance planar perovskite solar cells with Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Supporting Information for Achieving high-performance planar perovskite

More information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Supporting Information CsPbIBr 2 Perovskite Solar Cell by Spray Assisted Deposition Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Green, Shujuan Huang, Anita W.

More information