For higher resolution, can try to match drive and sense axis another to avoid output drift. Drive Electrode. Tuning. Electrodes. Response Amplitude

Size: px
Start display at page:

Download "For higher resolution, can try to match drive and sense axis another to avoid output drift. Drive Electrode. Tuning. Electrodes. Response Amplitude"

Transcription

1 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 MEMSBase Fork Gyrosoe Moe Mathng for Hgher Resoluton an sense axes must be stable or at least trak one For hgheesoluton, an try to math re an sense axs another to ao outut rft resonane frequenes an beneft from Q amlfaton Problem: Problem: ff re re frequeny frequeny hanges hanges relate relate to to sense sense frequeny, frequeny, outut outut hanges bas hanges bas rft rft Eletroe Nee: Nee: small small or or mathe mathe re re an an sense sense axs axs temerature temerature oeffents oeffents to to suress suress rft rft EE C45: Introuton to MEMS Desgn Quarature Canellaton T1 fo (@ C. Nguyen LeM 15 T1) fo (@ T) 11/18/08 1 Nee: Nee: small small or or mathe mathe re re an an sense sense axs axs temerature temerature oeffents oeffents to to make make ths ths work work EE C45: Introuton to MEMS Desgn Imbalanes n the system an lea to zero rate bas error Quarature Canellaton mbalane mbalane offaxs offaxsmoton moton of ofthe theroof roofmass mass EE C45: Introuton to MEMS Desgn 0º 0º Eletroe Mass Massmbalane mbalane offaxs offaxsmoton moton of the roof of the roofmass mass sgnal sgnaln n hase hasewth wththe the Corols Corolsaeleraton aeleraton LeM 15 11/18/08 T1) fo (@ T) 11/18/08 13 Better Betterffths thsssaanoble noblegas gasnuleus nuleus (rather (ratherthan thane), e),sne snenule nuleare are heaer less susetble to heaer less susetble tobbfel fel 19 Soln: Soln:Sn Snolarze olarzexe Xe19nule nuleby by 87 frst frstolarzng olarzngeeof ofrb Rb87(a (ala la CSAC), CSAC),then thenallowng allowngsn snexhange exhange Laser Polarzer 0º Rb/Xe Cell 0º Quarature Quaratureoutut outut sgnal sgnalthat thatan anbe be onfuse onfusewth wththe the Corols Corolsaeleraton aeleraton C. Nguyen fo (@ C. Nguyen LeM 15 ª from CSAC, we may now hae the tehnology to o ths 0º T The ultmate n mnaturze snnng gyrosoes? Quarature Canellaton Eletroe Nulear Magnet Res. Gyrosoe Issue: Zero Rate Bas Error T1 T Problem: Problem: msmath msmath between between re re an an sense sense frequenes frequenes een een larger largeft! rft! Eletroe Amltue Eletroe Quarature Canellaton Amltue Eletroe 14 Coyrght 009 Regents of the Unersty of Calforna Photooe 0º Atoms Algne Nulear Sns EE C45: Introuton to MEMS Desgn θ&t 3. mm Challenge: Challenge:suressng suressng the theeffets effetsof ofbbfel fel LeM 15 C. Nguyen 1 mm 1 mm 11/18/08 15

2 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 MEMSBase Fork Gyrosoe Ω r z Voltage Sgnal () Current (+) Current Eletroe EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 16 [Zaman, Ayaz, et al, MEMS 06] Osllaton Sustanng Amlfer Dfferental TransR Amlfer Determnng Resoluton EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 MEMSBase Fork Gyrosoe Axs Equalent Crut Ω r z Voltage Sgnal 180 o 1:η e x () Current (+) Current Eletroe EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman, Ayaz, et al, MEMS 06] Osllaton Sustanng Amlfer Dfferental TransR Amlfer o Osllaton Sustanng Amlfer C o1 180 o x Generates re slaement eloty x to whh the Corols fore s roortonal Voltage Sgnal EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 19 C o To Amlfer (for synhronzaton) Coyrght 009 Regents of the Unersty of Calforna

3 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 x& to Transfer Funton Moe Ω x& = x n Veloty Amltue / Setra: f o (@ T 1 ) F = ma F x Gyro Reaout Equalent Crut (for a sngle tne) Soures = m ( x o a x 0 a f x& s Moe x& s = x s Veloty s EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 0 Gyro Element Crut Sgnal Contonng Crut (Transresstane Amlfer) Easest to analyze f all nose soures are summe at a ommon noe EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 1 Mnmum Detetable Sgnal (MDS) Mnmum Detetable Sgnal (MDS): Inut sgnal leel when the sgnaltonose rato (SNR) s equal to unty Sgnal Sale Fator Crut Gan Crut Sgnal Contonng Crut The sensor sale fator s goerne by the sensor tye The effet of nose s best etermne a analyss of the equalent rut for the system Inlues esre outut lus nose EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 Moe Soures to a Common Pont Moe nose soures so that all sum at the nut to the amlfer rut (.e., at the outut of the sense element) Then, an omare the outut of the sense sgnal retly to the nose at ths noe to get the MDS Sgnal Sale Fator Crut Gan Crut Inut Referre Sgnal Contonng Crut Inlues esre outut lus nose EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 3 Coyrght 009 Regents of the Unersty of Calforna

4 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 F = ma Gyro Reaout Equalent Crut (for a sngle tne) Soures = m ( x f F = ma Gyro Reaout Equalent Crut (for a sngle tne) = m ( x Soures less F x o a x 0 a x o F x 0 eq C eq + Gyro Element Crut Sgnal Contonng Crut (Transresstane Amlfer) Easest to analyze f all nose soures are summe at a ommon noe EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 4 Gyro Element Crut Sgnal Contonng Crut (Transresstane Amlfer) Here, eq an eq are equalent nutreferre oltage an urrent nose soures EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 5 : Ranom flutuaton of a gen arameter I(t) In aton, a nose waeform has a zero aerage alue Ag. alue (e.g. oul be DC urrent) I D I(t) t EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 6 We an t hanle nose at nstantaneous tmes But we an hanle some of the aerage effets of ranom flutuatons by gng nose a ower setral ensty reresentaton Thus, reresent nose by ts meansquare alue: Let ( t) = I( t) I D Then T ( I I ) = lm I 1 = D T D EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 7 T 0 I t Coyrght 009 Regents of the Unersty of Calforna

5 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 Setral Densty We an lot the setral ensty of ths meansquare alue: Twose setral ensty (1/ the onese) Often use n systems ourses Δf [unts /Hz] Onese setral ensty use n ruts measure by setrum analyzers = ntegrate meansquare nose setral ensty oer all frequenes (area uner the ure) EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 8 Inuts Ranom Determnst: o j) = Ranom: o( ) = H ( j Crut Calulatons Determnst s ( j) o ( j) H ( j) S () S o () Lnear TmeInarant System o (t) S o (t) ( H ( j) ( j) EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 9 π o t t o ( j) ο S o ( j) ο Mean square setral ensty * [ ) H ( j) ] S ( ) H ( j) S ( ) S = S ( ) = H ( j) S ( ) o Root mean square amltues How s t we an o ths? Hanlng Determnstally Can o ths for nose n a tny banwth (e.g., 1 Hz) 1 S1 ( f n = Δf ο S n ( j) ο B ) n 1 = S f ) B S S [Ths s atually the rnle by whh osllators work osllators are just nose gong through a tny banwth flter] o 1 ( o (t) A oso t EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 30 o B Can aroxmate ths by a snusoal oltage generator (eseally for small B, say 1 Hz) 1 τ ~ B Why? Nether the amltue nor the hase of a sgnal an hange areably wthn a tme ero 1/B. t Systemat Calulaton Proeure General Crut Wth Seeral Soures n n1 n3 H( j) n5 n4 n6 Assume nose soures are unorrelate 1. For n1, relae w/ a etermnst soure of alue n1 n1 = Δf (1Hz) H5( j) on H1( j) EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 31 Coyrght 009 Regents of the Unersty of Calforna

6 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 Systemat Calulaton Proeure. Calulate on 1( ) = n1( ) H ( j) (treatng t lke a etermnst sgnal) 3. Determne on1 = n1 H ( j) 4. Reeat for eah nose soure: n1, n, n3 5. A nose ower (mean square alues) ontot = on1 + on + on3 + on4 +L Determnng Resoluton ontot = on1 + on + on3 + on4 +L Total rms alue EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 3 EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 33 F = ma Examle: Gyro MDS Calulaton = m ( x x o eq F x& 0 s eq less Examle: Gyro MDS Calulaton (ont) F = ma = m ( x x o eq F x& 0 s eq less The gyro sense resents a large effete soure meane Currents are the mortant arable; oltages are oene out Must omare o wth the total urrent nose eqtot gong nto the amlfer rut Frst, fn the rotaton to o transfer funton: EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 34 EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 35 Coyrght 009 Regents of the Unersty of Calforna

7 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 Examle: Gyro MDS Calulaton (ont) Examle: Gyro MDS Calulaton (ont) F = ma = m ( x x o eq F x& 0 s eq less Now, fn the eqtot enterng the amlfer nut: EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 36 EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 37 Examle: Gyro MDS Calulaton (ont) LF356 O Am Data Sheet EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 38 EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 39 Coyrght 009 Regents of the Unersty of Calforna

8 EE 45: Introuton to MEMS Leture 7: Gyros, & MDS CTN 1/3/09 Examle ARW Calulaton Examle ARW Calulaton (ont) Examle Desgn: Element: m = (100μm)(100μm)(0μm)(300kg/m 3 ) = 4.6x10 10 kg s = π(15khz) = π(10khz) k s = s m = 4.09 N/m x = 0 μm Q s = 50,000 V P = 5V h = 0 μm = 1 μm Sensng Crutry: = 100kΩ a = 0.01 A/ Hz a = 1 nv/ Hz z Eletroe EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 40 Ω r EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 41 Examle ARW Calulaton (ont) What f = s? EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 4 EE C45: Introuton to MEMS Desgn LeM 15 C. Nguyen 11/18/08 43 Coyrght 009 Regents of the Unersty of Calforna

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California MEMSBase Fork Gyrosoe Ω r z Volage Deermnng Resoluon EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 () Curren (+) Curren Eleroe EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman,

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C45 ME C18 Introducton to MEMS Desgn Fall 007 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer Scences Unversty of Calforna at Berkeley Berkeley, CA 9470 Lecture 8: Mnmum Detectable Sgnal

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C18 Introduction to MEMS Design Fall 008 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 6: Output

More information

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT-

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT- 3. MOEING OF PARAE THREE-PHASE URRENT-UNIIRETIONA ONERTERS 3. MOEING OF PARAE THREE-PHASE URRENT- UNIIRETIONA ONERTERS Ths chater eelos the moels of the arallel three-hase current-unrectonal swtch base

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introducton to MEM Desgn Fall 7 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer cences Unersty of Calforna at Berkeley Berkeley, C 947 Dscusson: eew of Op mps EE C45: Introducton

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

ECE 522 Power Systems Analysis II 2 Power System Modeling

ECE 522 Power Systems Analysis II 2 Power System Modeling ECE 522 Power Systems Analyss II 2 Power System Moelng Sprng 218 Instrutor: Ka Sun 1 Outlne 2.1 Moelng of synhronous generators for Stablty Stues Synhronous Mahne Moelng Smplfe Moels for Stablty Stues

More information

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling

ECE 422 Power System Operations & Planning 2 Synchronous Machine Modeling ECE 422 Power System Operatons & Plannng 2 Synhronous Mahne Moelng Sprng 219 Instrutor: Ka Sun 1 Outlne 2.1 Moelng of synhronous generators for Stablty Stues Synhronous Mahne Moelng Smplfe Moels for Stablty

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

EE 247B/ME 218: Introduction to MEMS Design Lecture 26m1: Noise & MDS CTN 4/25/17. Copyright 2017 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 26m1: Noise & MDS CTN 4/25/17. Copyright 2017 Regents of the University of California EE 47B/ME 18: Introduction to MEMS Design Lecture 6m1: & MDS CTN 4/5/17 Thermal Sources Thermal in Electronics: (Johnson noise, Nyquist noise) Produced as a result of the thermally excited random motion

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

Lesson 16: Basic Control Modes

Lesson 16: Basic Control Modes 0/8/05 Lesson 6: Basc Control Modes ET 438a Automatc Control Systems Technology lesson6et438a.tx Learnng Objectves Ater ths resentaton you wll be able to: Descrbe the common control modes used n analog

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 205 Two-Port Theory, Slde Two-Port Networks Note, the BJT s all are hghly

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

Introduction to Molecular Spectroscopy

Introduction to Molecular Spectroscopy Chem 5.6, Fall 004 Leture #36 Page Introduton to Moleular Spetrosopy QM s essental for understandng moleular spetra and spetrosopy. In ths leture we delneate some features of NMR as an ntrodutory example

More information

Signalized Intersections LOS. Signalized Intersection Analysis and Level of Service. Signalized Intersections LOS. Lane Grouping 11/17/2009

Signalized Intersections LOS. Signalized Intersection Analysis and Level of Service. Signalized Intersections LOS. Lane Grouping 11/17/2009 Sgnalze Intersecton nalyss an Leel of Serce CE3 Transportaton Engneerng Dr. hme bel-rahm Sgnalze Intersectons LOS Recall that leel of serce (LOS) s a qualtate assessment of faclty operatons base upon a

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

Traffic Signal Control. Signalized Intersection Analysis and Level of Service. Traffic Signal Control. Traffic Signal Control 11/4/2009

Traffic Signal Control. Signalized Intersection Analysis and Level of Service. Traffic Signal Control. Traffic Signal Control 11/4/2009 Sgnalze Intersecton nalyss an Leel of Serce CE3 Transportaton Engneerng Dr. hme bel-rahm Traffc Sgnal Control Pretme sgnal whose tmng (cycle length, green tme, an so on) s fxe oer specfe tme peros an oes

More information

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

Towards Applications of Bubble Acceleration: Bubble-driven Free-Electron-Lasers F. Grüner (LMU+MPQ), July 15, 2005, Photonics Lecture, Prof.

Towards Applications of Bubble Acceleration: Bubble-driven Free-Electron-Lasers F. Grüner (LMU+MPQ), July 15, 2005, Photonics Lecture, Prof. Towards Aliations of Bubble Aeleration: Bubble-driven Free-Eletron-Lasers F. Grüner (LMU+MPQ), July 5, 5, Photonis Leture, Prof. Krausz Motivation for FELs What is an FEL? Undulators and Wigglers SASE

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 03 Two-Port Theory, Slde What Are Two-Ports? Basc dea: replace a complex

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

Multicomponent Flows (continued)

Multicomponent Flows (continued) Mole Fraton Temerature (K) Transort Shool of Aerosae Engneerng Equatons for Multomonent Flows (ontnue) Jerry Setzman 0.2 2500 0.15 2000 0.1 0.05 0 CH4 H2O HCO x 1000 Temerature Methane Flame 0 0.1 0.2

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation /9/7 Dren rcut: Equaton EE Electrc rcut Analyss I ecture 8(a) an rcuts: Sngle Swtch THE ITADE, THE MIITAY OEGE OF SOUTH AOINA All sles an content 7 Moultre courtesy Street, of harleston, Dr. Gregory S

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

Errata for Problems and Answers in Wave Optics (PM216)

Errata for Problems and Answers in Wave Optics (PM216) Contents Errata for Problems and Answers n Wave Opts (PM6) Frst Prntng Seton 3 Seton 35 Seton Seton ttle should be Lnear polarzers and retarder plates Seton ttle should be Indued optal ansotropy Seton

More information

Lecture 27 Bipolar Junction Transistors

Lecture 27 Bipolar Junction Transistors Lecture 27 polar Juncton Transstors ELETRIAL ENGINEERING: PRINIPLES AND APPLIATIONS, Fourth Edton, by Allan R. Hambley, 2008 Pearson Educaton, Inc. polar Juncton Transstors 1. Understand bpolar juncton

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

Symmetric Root Locus. LQR Design

Symmetric Root Locus. LQR Design Leture 5 Symmetri Root Lous LQR Design State Estimation Seletion of 'otimal' oles for SISO ole laement design: SRL LQR design examle Predition and urrent estimators L5:1 L5:2 Otimal ole laement for SISO

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 4, 000 Ths paper formalzes a onept presented n my book, "Eletrogravtaton As A Unfed

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 3: Input Modeling

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering

Outline. Clustering: Similarity-Based Clustering. Supervised Learning vs. Unsupervised Learning. Clustering. Applications of Clustering Clusterng: Smlarty-Based Clusterng CS4780/5780 Mahne Learnng Fall 2013 Thorsten Joahms Cornell Unversty Supervsed vs. Unsupervsed Learnng Herarhal Clusterng Herarhal Agglomeratve Clusterng (HAC) Non-Herarhal

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Clustering. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University

Clustering. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University Clusterng CS4780/5780 Mahne Learnng Fall 2012 Thorsten Joahms Cornell Unversty Readng: Mannng/Raghavan/Shuetze, Chapters 16 (not 16.3) and 17 (http://nlp.stanford.edu/ir-book/) Outlne Supervsed vs. Unsupervsed

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Mechanical Systems Part B: Digital Control Lecture BL4

Mechanical Systems Part B: Digital Control Lecture BL4 BL4: 436-433 Mechancal Systems Part B: Dgtal Control Lecture BL4 Interretaton of Inverson of -transform tme resonse Soluton of fference equatons Desgn y emulaton Dscrete PID controllers Interretaton of

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 5, 000 Ths Analyss Proposes The Neessary Changes Requred For A Workng Test Ths

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

EC3075 Mathematical Approaches to Economics

EC3075 Mathematical Approaches to Economics EC3075 Mathematal Aroahes to Eonoms etures 7-8: Dualt and Constraned Otmsaton Pemberton & Rau haters 7-8 Dr Gaa Garno [Astle Clarke Room 4 emal: gg44] Dualt n onsumer theor We wll exose the rmal otmsaton

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Selection of 'optimal' poles for SISO pole placement design: SRL LQR design example Prediction and current estimators

Selection of 'optimal' poles for SISO pole placement design: SRL LQR design example Prediction and current estimators L5: Leture 5 Symmetri Root Lous LQR Design State Estimation Seletion of 'otimal' oles for SISO ole laement design: SRL LQR design examle Predition and urrent estimators L5:2 Otimal ole laement for SISO

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

Digital PI Controller Equations

Digital PI Controller Equations Ver. 4, 9 th March 7 Dgtal PI Controller Equatons Probably the most common tye of controller n ndustral ower electroncs s the PI (Proortonal - Integral) controller. In feld orented motor control, PI controllers

More information

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry:

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry: Voltammetry varety of eletroanalytal methods rely on the applaton of a potental funton to an eletrode wth the measurement of the resultng urrent n the ell. In ontrast wth bul eletrolyss methods, the objetve

More information

Lecture # 02: Pressure measurements and Measurement Uncertainties

Lecture # 02: Pressure measurements and Measurement Uncertainties AerE 3L & AerE343L Lecture Notes Lecture # 0: Pressure measurements and Measurement Uncertantes Dr. Hu H Hu Deartment of Aerosace Engneerng Iowa State Unversty Ames, Iowa 500, U.S.A Mechancal Pressure

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001 Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence Read Chapters 11 through 12. 6.002 Crcuts and Electroncs Sprng 2001 Homework #5 Handout S01031 Issued: 3/8/2001

More information

Module 3. Process Control. Version 2 EE IIT, Kharagpur 1

Module 3. Process Control. Version 2 EE IIT, Kharagpur 1 Moule 3 Process Control Verson 2 EE IIT, Kharagur 1 Lesson 13 Controller Tunng Verson 2 EE IIT, Kharagur 2 Instructonal Objectves At the en of ths lesson, the stuent shoul be able to Exlan the mortance

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid. Searatons n Chemcal Engneerng Searatons (gas from a mxture of gases, lquds from a mxture of lquds, solds from a soluton of solds n lquds, dssolved gases from lquds, solvents from gases artally/comletely

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 22 Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j P, Q, P j, P Q, P Necessary and suffcent P j P j for Canoncal Transf. = = j Q, Q, P j

More information

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are: I. INTRODUCTION 1.1 Crcut Theory Fundamentals In ths course we study crcuts wth non-lnear elements or deces (dodes and transstors). We wll use crcut theory tools to analyze these crcuts. Snce some of tools

More information

Complete Variance Decomposition Methods. Cédric J. Sallaberry

Complete Variance Decomposition Methods. Cédric J. Sallaberry Comlete Varance Decomoston Methods Cédrc J. allaberry enstvty Analyss y y [,,, ] [ y, y,, ] y ny s a vector o uncertan nuts s a vector o results s a comle uncton successon o derent codes, systems o de,

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction Phscs 1, Fall 01 6 Noember 01 Toda n Phscs 1: applcatons of nducton Generators, motors and back EMF Transformers Edd currents Vote toda! Hdropower generators on the Nagara Rer below the Falls. The ste

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior!

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior! 1/25/2012 secton3_1the_ideal_ode 1/2 4.1 The Ideal ode Readng Assgnment: pp.165-172 Before we get started wth deal dodes, let s frst recall lnear dece behaor! HO: LINEAR EVICE BEHAVIOR Now, the deal dode

More information

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f. Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

KIRCHHOFF CURRENT LAW

KIRCHHOFF CURRENT LAW KRCHHOFF CURRENT LAW ONE OF THE FUNDAMENTAL CONSERATON PRNCPLES N ELECTRCAL ENGNEERNG CHARGE CANNOT BE CREATED NOR DESTROYED NODES, BRANCHES, LOOPS A NODE CONNECTS SEERAL COMPONENTS. BUT T DOES NOT HOLD

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information

Chapter 9 Complete Response of Circuits with Two Storage Elements

Chapter 9 Complete Response of Circuits with Two Storage Elements hapter 9 omplete Response of rcuts wth Two Storage Elements In hapter 8, we had rreducble storage element and a frst order crcut. In hapter 9, we wll hae rreducble storage elements and therefore, a second

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

of concretee Schlaich

of concretee Schlaich Seoul Nat l Unersty Conrete Plastty Hong Sung Gul Chapter 1 Theory of Plastty 1-1 Hstory of truss model Rtter & Morsh s 45 degree truss model Franz Leonhardt - Use of truss model for detalng of renforement.

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo olantono a.a. 3 4 Let s consder a two ports network o Two ports Network o L For passve network (.e. wthout nternal sources or actve devces), a general representaton can be made by a sutable

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957)

Classification (klasifikácia) Feedforward Multi-Layer Perceptron (Dopredná viacvrstvová sieť) 14/11/2016. Perceptron (Frank Rosenblatt, 1957) 4//06 IAI: Lecture 09 Feedforard Mult-Layer Percetron (Doredná vacvrstvová seť) Lubca Benuskova AIMA 3rd ed. Ch. 8.6.4 8.7.5 Classfcaton (klasfkáca) In machne learnng and statstcs, classfcaton s the roblem

More information