University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

Size: px
Start display at page:

Download "University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM"

Transcription

1 Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name: ID# Secton: Q1. For the set o three charges shown below, 10µC an 0.3m, n: a) The electrc el at the center (O). y b) The electrc potental at the center (O). + 6 x 0, y ( ) K 10 N / C - - x O K K + K K 3 x 10 5 Q. In the gure shown below, two pont charges, Q nc an Q -4.0 nc, are separate by 30.0 cm. a) What s the potental energy o the par? Q -4nC a 18cm Q 1 +6nC b) What s the electrc potental erence ab? x x 1c Q Q 7 U K 7. x J cm 9 6 x 10 4 x 10 a K x 10 4 x 10 K a - b b + 63 b Q3. A pont charge +9 µc s locate 4m rom an nnte lne o unorm charge per unt length λ -7 µc/m. Fn: a) The electrc el at pont p. λ b) The electrc orce on charge. p r p x F m

2 λ K πε () o 83. x 10 3 N/C ( ) p + λ F. πεo(4) 0.8 N (attracton ) Q4. In the gure shown below, the magntue o r s x 10 4 N/C an the cube has a se o a 0.1m, n each o the ollowng cases etermne the electrc lux through the shae ace o the cube. 37 o x (1) () (3) ( r s to the rght) ( r s upwars) ( r at an angle o 37 o ) Φ A N. m 00. C Φ 0 π θ N. m C o Φ A cos 37 Q5. A sphercal conuctor has a raus o 1cm an charge o 30nC. Calculate : a) The electrc el at center O an at pont p 0 cm rom O. b) The potental erence op. p p Q30nc o 9 30 x 10 0, p k 6.75 (0.) Q Q op bp K K r p 900 x 10 3 N C O 1c bb r p 0cm

3 Q6. An ar-lle capactor conssts o two parallel plates, each wth an area o 7.5 cm, separate by a stance o 1.6 mm. The capactor s charge to a potental erence o 100 volt, then s remove rom the source. a) Calculate the electrc el between the plates. b) I the plates were pulle apart such that ther separaton becomes 3. mm, what woul be the voltage across the plates? c) The space between the plates o capactor (n part a) s lle wth a electrc substance o electrc constant K.5. What s the voltage across the plates? 6.5K / m x 10 Q Q, C C 00, εoa εoa c. Q Q ε, oa ε oak, 40 K 1 15 kω Q7. In the crcut shown, n: a) The currents n 1, an 3. C10 µf b) The charge on capactor C. 5 kω ε 0 I 0 1 ma 3 0 x 10 I 1 I 1 ma, I kΩ c I 5, Q C c 50 µ C

4 Q8. A copper wre o m n length has a cross secton area.5 (mm) carres a current o 5A. The ensty o ree electrons s.8 x 10 9 m -3. Compute: a) The rt velocty o the electrons. b) The potental rop along the wre. Use ρ 1.7 x 10-8 Ω.m. ν J ne x /.5 x x 10 x 1.6 x10 m / s ρl x 10 Ω, I 6.88 x 10 A or 5 L ρj L 1.7 x 10 x x 6.88 x 10.5 x 10 8 Q9. In the crcut shown, the current was oun to vary accorng to the ollowng relaton where I s n µa: I(t) 0 e t/10 (µa). I C µf, n: a) The values o ε an b) The charges that passes through the crcut urng 0s. ε C µf t / C I ε e C 10S 5MΩ Q 0S t /10 [ e ] 0S t / µ C It x 10 e t 00 x 10 0 O o Q10. Two long, parallel wres carry currents I 1 3.0A an I 3.0A, both recte nto the gure gven below. Determne the magntue o the resultant magnetc el at pont p. 5.0 cm µ I1 B1 10 x 10 π o ( 0.05) µ I B o 50 x 10 T π ( 0.1) T I cm B r 1 1 B B1 + B 130 x 10 T I B 1.0cm B r

5 Q11. A wre (mass 50g, length 40 cm) s suspene horzontally by two vertcal wres whch conuct a current I 8A as shown n the gure below. The magnetc el n the regon s nto the paper an has a magntue o 60 mt. What s the tenson (n N) n both wres? T mg + IBL T N T I T B L mg IBL Q1. An electron wth knetc energy 1.9 x j crcles n a plane perpencular to a unorm magnetc el. The orbt raus s 5 cm. Fn: a) The magnetc el B. b) The reuency o crclng. K 1 m v, v K / m.05 x 10 7 m / s mv 4 B 4.67 x 10 T r ω v v π, 1.31 r πr 7 x 10 HZ Q13. A porton o a complete electrc crcut s shown n ths agram. The current n some resstors are gven, current n others must be oun. What s the potental erence between ponts (a) an (b). 1A ε 1 6A a c + b 3Ω Ω 1Ω A 4 Ω 1 Ω 3A ac 3, b 1 x 6 6, c ab ac c b 3x (1)

6 Q14. A soleno 3.55 cm n ameter an 1.3m n length has 850 turns an carres a current o 4.6A. Fn: a) The magnetc el at ts center. b) The average magnetc lux through ts cross secton. 850 B µ oni 4π x mT Φ BA (4x10 ) π ( 3.55/ ) 4 [ x 10 ] 39.6 x10 Wb Q15. A rectangular conucton loop o area A 0.0 m an resstance 0.1 Ω. A tme varyng magnetc el n a recton perpencular to the plane o the loop s gven by the euaton: B (t) 0. cos (100πt) (T) Fn: a) The nuce em n the loop as a uncton o tme. b) The maxmum value an recton o nuce current n the loop. Φ BA 0.004cos( 100 πt) Φ ε ( 0.004) (100π ) Sn (100πt ) t 0.1 Ω 1.5 sn (100πt) ε 1.5sn(100πt I A B r I max 1.5A Inuce current s alternatve (A.C) Use the ollowng terms: K 9x10 9 N.m /C ε o x 10-1 C /N.m, m e 9.1 x Kg m p 1.67 x 10-7 Kg e 1.60 x C g 10 m/s N A 6.0 x 10 3 mol -1 µ o 4π 10 Τ.m/Α

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

WYSE Academic Challenge 2004 State Finals Physics Solution Set

WYSE Academic Challenge 2004 State Finals Physics Solution Set WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Field and Wave Electromagnetic. Chapter.4

Field and Wave Electromagnetic. Chapter.4 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc

More information

Physics 2102 Spring 2007 Lecture 10 Current and Resistance

Physics 2102 Spring 2007 Lecture 10 Current and Resistance esstance Is Futle! Physcs 0 Sprng 007 Jonathan Dowlng Physcs 0 Sprng 007 Lecture 0 Current and esstance Georg Smon Ohm (789-854) What are we gong to learn? A road map lectrc charge lectrc force on other

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy.

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy. -1 apactors A capactor s smply two peces of metal near each other, separate by an nsulator or ar. A capactor s use to store charge an energy. A parallel-plate capactor conssts of two parallel plates separate

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Phys102 General Physics II

Phys102 General Physics II Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Review & Summary. Questions

Review & Summary. Questions QUESTIONS 87 Reew & Summar Magnetc Fel A magnetc fel s efne n terms of the force F : actng on a test partcle wth charge q mong through the fel wth eloct : The SI unt for : : : F : q : :. s the tesla (T):

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

List of the Main Concepts. Study Suggestions. List Continued. List Continued. List Continued. List Continued

List of the Main Concepts. Study Suggestions. List Continued. List Continued. List Continued. List Continued Stuy Suggestons. ecture notes. evew the man concepts.. Prevous exams an quzzes.. Homework, especally textbook problems. 4. hapter summares n the textbook. AWAYS: emember n revewng problems, concentrate

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11) We..7 -.9, (.) Moton Wth & Wthout Torque E. ab r. otaton ab Evals.0 Quantzaton, Quz, ect Evals E.e Mon. evew or nal (-) HW: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. nal Exam (Ch. -) Usng ngular Momentum The

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10. Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

AP Physics 2: Algebra-Based

AP Physics 2: Algebra-Based 08 P Physcs : lgebra-based Free-Response Questons 08 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are regstered trademarks of the College Board. Vst the

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE. Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

is at the origin, and charge q μc be located if the net force on q

is at the origin, and charge q μc be located if the net force on q Term: 152 Saturday, April 09, 2016 Page: 1 Q1. Three point charges are arranged along the x-axis. Charge q 3.0 0 μc 1 is at the origin, and charge q 5.0 0 μc 2 is at x = 0.200 m. Where should a third charge

More information

2. High dimensional data

2. High dimensional data /8/00. Hgh mensons. Hgh mensonal ata Conser representng a ocument by a vector each component of whch correspons to the number of occurrences of a partcular wor n the ocument. The Englsh language has on

More information

Phys222 W16 Exam 2: Chapters Key. Name:

Phys222 W16 Exam 2: Chapters Key. Name: Name: Please mark your answer here and in the scantron. A positively charged particle is moving in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Which

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1 E40M Devce Models, Resstors, Voltage and Current Sources, Dodes, Solar Cells M. Horowtz, J. Plummer, R. Howe 1 Understandng the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Chapter 2: Electric Energy and Capacitance

Chapter 2: Electric Energy and Capacitance Chapter : Electrc Energy and Capactance Potental One goal of physcs s to dentfy basc forces n our world, such as the electrc force as studed n the prevous lectures. Expermentally, we dscovered that the

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

EE 221 Practice Problems for the Final Exam

EE 221 Practice Problems for the Final Exam EE 1 Practce Prblems fr the Fnal Exam 1. The netwrk functn f a crcut s 1.5 H. ω 1+ j 500 Ths table recrds frequency respnse data fr ths crcut. Fll n the blanks n the table:. The netwrk functn f a crcut

More information

HO 40 Solutions ( ) ˆ. j, and B v. F m x 10-3 kg = i + ( 4.19 x 10 4 m/s)ˆ. (( )ˆ i + ( 4.19 x 10 4 m/s )ˆ j ) ( 1.40 T )ˆ k.

HO 40 Solutions ( ) ˆ. j, and B v. F m x 10-3 kg = i + ( 4.19 x 10 4 m/s)ˆ. (( )ˆ i + ( 4.19 x 10 4 m/s )ˆ j ) ( 1.40 T )ˆ k. .) m.8 x -3 g, q. x -8 C, ( 3. x 5 m/)ˆ, and (.85 T)ˆ The magnetc force : F q (. x -8 C) ( 3. x 5 m/)ˆ (.85 T)ˆ F.98 x -3 N F ma ( ˆ ˆ ) (.98 x -3 N) ˆ o a HO 4 Soluton F m (.98 x -3 N)ˆ.8 x -3 g.65 m.98

More information

Chaper 2: Stress in beams

Chaper 2: Stress in beams Chaper : Stress n eams FLEURE Beams suject to enng wll fle COPRESSON TENSON On the lower surface the eam s stretche lengthwse. Ths sujects t to tensle stress. N.A. N.A. s the neutral as On the upper surface

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo olantono a.a. 3 4 Let s consder a two ports network o Two ports Network o L For passve network (.e. wthout nternal sources or actve devces), a general representaton can be made by a sutable

More information

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( ) I I T / P M T A C A D E M Y IN D IA JEE ADVANCE : 5 P PHASE TEST (.8.7) ANSWER KEY PHYSICS CHEMISTRY MATHEMATICS Q.No. Answer Key Q.No. Answer Key Q.No. Answer Key. () () (). () () (). (9) () (). () ()

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points) ENGR-43 Electronc Instrumentaton Quz 4 Fall 21 Name Secton Queston Value Grade I 2 II 2 III 2 IV 2 V 2 Total (1 ponts) On all questons: SHOW LL WORK. EGIN WITH FORMULS, THEN SUSTITUTE VLUES ND UNITS. No

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

Physics 2113 Lecture 14: WED 18 FEB

Physics 2113 Lecture 14: WED 18 FEB Physcs 2113 Jonathan Dowlng Physcs 2113 Lecture 14: WED 18 FEB Electrc Potental II Danger! Electrc Potental Energy, Unts : Electrc Potental Potental Energy = U = [J] = Joules Electrc Potental = V = U/q

More information

PHYS 1443 Section 002

PHYS 1443 Section 002 PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIERSITY OF UTH ELECTRICL & COMPUTER ENGINEERING DEPRTMENT ECE 70 HOMEWORK #6 Soluton Summer 009. fter beng closed a long tme, the swtch opens at t = 0. Fnd (t) for t > 0. t = 0 0kΩ 0kΩ 3mH Step : (Redraw

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

measurement and the charge the electric field will be calculated using E =. The direction of the field will be the . But, so

measurement and the charge the electric field will be calculated using E =. The direction of the field will be the . But, so THE ELECTRIC FIELD 6 Conceptual Questons 6.. A tny, postve test charge wll be placed at the pont n space and the force wll be measured. From the force F measurement and the charge the electrc feld wll

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement. Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk. Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

Ch04 Work, Energy and Power What is work in physics?

Ch04 Work, Energy and Power What is work in physics? Eunl Won Dept o Physcs, Korea Unversty 1 Ch04 Work, Energy and Power What s work n physcs? Eunl Won Dept o Physcs, Korea Unversty Eunl Won Dept o Physcs, Korea Unversty 3 Work W F d W Fd cosφ W Fd ο cos

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4 Physcs - lectrcty and Magnetsm ecture - Inductance, Crcuts Y&F Chapter 30, Sect - 4 Inductors and Inductance Self-Inductance Crcuts Current Growth Crcuts Current Decay nergy Stored n a Magnetc Feld nergy

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

13. One way of expressing the power dissipated by a resistor is P = ( V)

13. One way of expressing the power dissipated by a resistor is P = ( V) Current and esstance 9. One way of expressng the power dsspated by a resstor s ( ). Thus, f the potental dfference across the resstor s doubled, the power wll be ncreased by a factor of 4, to a value of

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02 EE 2006 Electrc Crcut Analyss Fall 2014 September 04, 2014 Lecture 02 1 For Your Informaton Course Webpage http://www.d.umn.edu/~jngba/electrc_crcut_analyss_(ee_2006).html You can fnd on the webpage: Lecture:

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information