Traffic Signal Control. Signalized Intersection Analysis and Level of Service. Traffic Signal Control. Traffic Signal Control 11/4/2009

Size: px
Start display at page:

Download "Traffic Signal Control. Signalized Intersection Analysis and Level of Service. Traffic Signal Control. Traffic Signal Control 11/4/2009"

Transcription

1 Sgnalze Intersecton nalyss an Leel of Serce CE3 Transportaton Engneerng Dr. hme bel-rahm Traffc Sgnal Control Pretme sgnal whose tmng (cycle length, green tme, an so on) s fxe oer specfe tme peros an oes not change n response to changes n traffc flow at the ntersecton. No ehcle etecton s necessary wth ths moe of operaton. Traffc Sgnal Control Sem-ctuate sgnal whose tmng (cycle length, green tme, an so on) s affecte when ehcles are etecte (by eo or paement-embee nuctance loop etectors) on some, but not all, approaches. Ths moe of operaton s usually foun when a low-olume roa ntersects a hgh-olume roa, often referre to as the mnor an major streets, respectely.in such cases, green tme s allocate to the major street untl ehcles are etecte on the mnor street, then the green ncaton s brefly allocate to the mnor street an then returne to the major street. Traffc Sgnal Control Fully-ctuate sgnal whose tmng (cycle length, green tme, an so on) s completely nfluence by the traffc olumes, when etecte, on all of the approaches. Fully actuate sgnals are most commonly use at ntersectons of two major streets an where substantal aratons exst n all approach traffc olumes oer the course of a ay.

2 Sgnalze Intersectons LOS Recall that leel of serce (LOS) s a qualtate assessment of faclty operatons base upon a quanttate performance measure. The performance measure that s use to assess leel of serce for sgnalze ntersectons s aerage control elay per ehcle. Sgnalze Intersectons LOS nalyss Proceure (assumng phasng, cycle length, an effecte green tmes hae alreay been etermne) Establsh nalyss Lane Groups Calculate nalyss Flow Rates an juste Saturaton Flow Rates Calculate Capactes Calculate Delay Determne Leel of Serce (LOS) Lane Groupng The methoology for sgnalze ntersectons s saggregate; that s, t s esgne to conser nual ntersecton approaches an nual lane groups wthn approaches. Segmentng the ntersecton nto lane groups s a relately smple process that consers both the geometry of the ntersecton an the strbuton of traffc moements. In general, the smallest number of lane groups s use that aequately escrbes the operaton of the ntersecton. Lane Groupng Lane groups wll generally be ctate by geometry (.e., lane allocaton) an phasng Sgnalze ntersecton phasng can range from smple to complex Pretme sngle rng Fully actuate ual rng

3 Lane Groupng Dual-rng Sgnal Control Calculate nalyss Flow Rates just hourly olumes for RTOR just for peak hour factor (PHF) ssume alreay accounte for n book problems Calculate juste Saturaton Flow Rates Start wth a base alue, usually 900 pc/hr/ln per the Hghway Capacty Manual Ths alue s then ajuste for a arety of roaway an traffc relate contons. Factors such as lane wth, grae, heay ehcle percentage, bus actty, parkng actty, peestran an bcyclst actty, an turn moement geometry an phasng 3

4 Calculate Lane Group Capactes Determnng Delay Capacty s etermne on a lane group bass c = s g/c s = ajuste saturaton flow rate g/c = eff. green to cycle length rato erage control elay per ehcle PF Eq = aerage sgnal elay per ehcle n secons, = aerage elay per ehcle ue to unform arrals n secons, PF = progresson ajustment factor, = aerage elay per ehcle ue to ranom arrals n secons, an 3 = aerage elay per ehcle ue to ntal queue at start of analyss tme pero, n secons. Determnng Delay Unform elay g 0.5C C g mn, X C Eq. 7.5 = aerage elay per ehcle ue to unform arrals n secons, C = cycle length n secons, g = effecte green tme for lane group n secons, an X = /c rato for lane group. Determnng Delay Ranom elay 8kIX X X 900T Eq. 7.6 ct = aerage elay per ehcle ue to ranom arrals n secons, T = uraton of analyss pero n h, X = /c rato for lane group, k = elay ajustment factor that s epenent on sgnal controller moe, I = upstream flterng/meterng ajustment factor, an c = lane group capacty, n eh/h. 4

5 Delay Calculaton ssumptons Determnng Delay For problems n ths class, all ntersectons are assume to be solate, uner pretme control, an hae no ntal queue at begnnng of analyss pero; thus: 3 0 PF.0 k 0.5 I.0 ggregatng Delays = aerage elay per ehcle for approach n secons, = aerage elay per ehcle for lane group (on approach ) n secons, an = analyss flow rate for lane group n eh/h. I I = aerage elay per ehcle for the ntersecton n secons, = aerage elay per ehcle for approach n secons, an = analyss flow rate for approach n eh/h. Eq. 7.7 Eq. 7.8 Leel of Serce Delay Threshols LOS Control Delay per Vehcle (s/eh) 0 B > 0-0 C > 0 35 D > E > F > 80 Example Traffc Volumes & Lanes 5

6 Phasng nalyss Flow Rates an j. Sat. Flow Rates juste nalyss Flow Rates Use gen olumes juste Saturaton Flow Rates Phase (E/W prot. LT s): 800 eh/h Phase (E/W Th/RT s): 3450, 3500 eh/h Phase 3 (N/S perm. LT s): 500, 350 eh/h (N/S Th/RT s): 800 eh/h 3 Calculate Flow Ratos (/s) an Ientfy Crtcal Ones Phase Phase Phase EB L: 0. EB T/R: NB L: WB L: WB T/R: 950 SB L: NB T/R: SB T/R: Determne Cycle Length n Yc s c ssumng 4 secons of lost tme per phase L n t L c ssumng a crtcal ntersecton /c rato of 0.8 L X c 0.8 Cmn = n X c = s c 6

7 Determne Effecte Green Tmes for each Phase g s C X 00 g g g C = = 00. Determne Delays & LOS Calculate EB approach elay Left turn lane group g/c = 7.4/00 = 0.74 (moes n phase ) c = s g/c = = 33. /c = 0/33. = 0.70 Unform Delay sec Determne Delays & LOS Ranom Delay Wth: T = 0.5 (5 mn) X = 0.70 (from aboe) k = 0.5 (pretme control) I =.0 (solate moe) c = 33. eh/h (from aboe) sec 0.5 Determne Delays & LOS LT Total Delay Wth PF =.0 (for solate sgnal) sec 7

8 Determne Delays & LOS Calculate EB approach elay Through/Rght turn lane group g/c = 33.9/00 = (moes n phase ) c = s g/c = = 69.6 /c = 880/69.6 = 0.75 Unform Delay Determne Delays & LOS Ranom Delay Wth: T = 0.5 (5 mn) X = 0.75 (from aboe) k = 0.5 (pretme control) I =.0 (solate moe) c = 69.6 eh/h (from aboe) sec sec 0.5 Determne Delays & LOS Total Delay Wth PF =.0 (for solate sgnal) T / R sec Determne Delays & LOS ggregate elays for LT an T/R lane groups EB EB LT LT LT T / R T / R T / R sec

Signalized Intersections LOS. Signalized Intersection Analysis and Level of Service. Signalized Intersections LOS. Lane Grouping 11/17/2009

Signalized Intersections LOS. Signalized Intersection Analysis and Level of Service. Signalized Intersections LOS. Lane Grouping 11/17/2009 Sgnalze Intersecton nalyss an Leel of Serce CE3 Transportaton Engneerng Dr. hme bel-rahm Sgnalze Intersectons LOS Recall that leel of serce (LOS) s a qualtate assessment of faclty operatons base upon a

More information

Traffic Signal Timing: Basic Principles. Development of a Traffic Signal Phasing and Timing Plan. Two Phase and Three Phase Signal Operation

Traffic Signal Timing: Basic Principles. Development of a Traffic Signal Phasing and Timing Plan. Two Phase and Three Phase Signal Operation Traffc Sgnal Tmng: Basc Prncples 2 types of sgnals Pre-tmed Traffc actuated Objectves of sgnal tmng Reduce average delay of all vehcles Reduce probablty of accdents by mnmzng possble conflct ponts Objectves

More information

>

> The grade length should include 5% of the length of the ertical cures at the start and end of the grade. With two consecutie upgrades, 50% of the length of the ertical cure joining them should be included.

More information

Signalized Intersections

Signalized Intersections Signalized Intersections Kelly Pitera October 23, 2009 Topics to be Covered Introduction/Definitions D/D/1 Queueing Phasing and Timing Plan Level of Service (LOS) Signal Optimization Conflicting Operational

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation /9/7 Dren rcut: Equaton EE Electrc rcut Analyss I ecture 8(a) an rcuts: Sngle Swtch THE ITADE, THE MIITAY OEGE OF SOUTH AOINA All sles an content 7 Moultre courtesy Street, of harleston, Dr. Gregory S

More information

WYSE Academic Challenge 2004 State Finals Physics Solution Set

WYSE Academic Challenge 2004 State Finals Physics Solution Set WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

VOLUME-BASED PROBABILISTIC APPROACHES TO DETERMINING WHEN TO TURN ON AND OFF SIGNAL COORDINATION PLANS

VOLUME-BASED PROBABILISTIC APPROACHES TO DETERMINING WHEN TO TURN ON AND OFF SIGNAL COORDINATION PLANS Unversty of Nevada, Reno VOLUME-BASED PROBABILISTIC APPROACHES TO DETERMINING WHEN TO TURN ON AND OFF SIGNAL COORDINATION PLANS A dssertaton submtted n partal fulfllment of the requrements for the degree

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introducton to MEM Desgn Fall 7 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer cences Unersty of Calforna at Berkeley Berkeley, C 947 Dscusson: eew of Op mps EE C45: Introducton

More information

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT-

3. MODELING OF PARALLEL THREE-PHASE CURRENT-UNIDIRECTIONAL CONVERTERS 3. MODELING OF PARALLEL THREE-PHASE CURRENT- 3. MOEING OF PARAE THREE-PHASE URRENT-UNIIRETIONA ONERTERS 3. MOEING OF PARAE THREE-PHASE URRENT- UNIIRETIONA ONERTERS Ths chater eelos the moels of the arallel three-hase current-unrectonal swtch base

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Question No. 1 (12 points)

Question No. 1 (12 points) Fnal Exam (3 rd Year Cvl) ransportaton lannng & rac Engneerng Date: uesday 4 June 20 otal Grade: 00 onts me: 09:30am 2:30pm Instructor: Dr. Mostaa Abo-Hashema, roessor Notes:. Answer all questons and assume

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

CE351 Transportation Systems: Planning and Design

CE351 Transportation Systems: Planning and Design CE351 Transportation Systems: Planning and Design TOPIC: Level of Service (LOS) at Traffic Signals 1 Course Outline Introduction to Transportation Highway Users and their Performance Geometric Design Pavement

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

Regulating Characteristics Analysis of Boiler Feed-water Pump when 600MW Unit Sliding-pressure Operating

Regulating Characteristics Analysis of Boiler Feed-water Pump when 600MW Unit Sliding-pressure Operating Aalable onlne at www.scencerect.com Energy rocea 7 (0 ) 5 60 0 Internatonal Conference on Future Electrcal ower an Energy Systems Regulatng Characterstcs Analyss of Boler Fee-water ump when 600MW Unt Slng-pressure

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

En Route Traffic Optimization to Reduce Environmental Impact

En Route Traffic Optimization to Reduce Environmental Impact En Route Traffc Optmzaton to Reduce Envronmental Impact John-Paul Clarke Assocate Professor of Aerospace Engneerng Drector of the Ar Transportaton Laboratory Georga Insttute of Technology Outlne 1. Introducton

More information

Graphical Performance Measures for Practitioners to Triage Split Failure Trouble Calls

Graphical Performance Measures for Practitioners to Triage Split Failure Trouble Calls Purdue Unversty Purdue e-pubs Lyles School of Cvl Engneerng Faculty Publcatons Lyles School of Cvl Engneerng 2014 Graphcal Performance Measures for Practtoners to Trage Splt Falure Trouble Calls Rchard

More information

A Simple Method of Predicting Travel Speed on Urban Arterial Streets for Planning Applications

A Simple Method of Predicting Travel Speed on Urban Arterial Streets for Planning Applications Tarko, Choocharukul, Bhargava and Snha A Smple Method of Predctng Travel Speed on Urban Arteral Streets for Plannng Applcatons Andrew P. Tarko (correspondng author) Assocate Professor, School of Cvl Engneerng,

More information

13th COTA International Conference of Transportation Professionals (CICTP 2013)

13th COTA International Conference of Transportation Professionals (CICTP 2013) Avalable onlne at www.scencedrect.com ScenceDrect Proceda - Socal and Behavoral Scen ce s 96 ( 203 ) 696 706 3th COTA Internatonal Conference of Transportaton Professonals (CICTP 203) An Improved Optmzaton

More information

Capacity Analysis of Traffic-Actuated Intersections

Capacity Analysis of Traffic-Actuated Intersections Capact Analss of Traffc-Actuated Intersectons b Zhl Tan Eng.B. n Cvl Engneerng (988) Tsnghua Unverst, Bejng, P. R. Chna Submtted to the Department of Cvl and Envronmental Engneerng n partal fulfllment

More information

METHOD AND ALGORITHM OF RANGING OF RELIABILITY OBJECTS OF THE POWER SUPPLY SYSTEM

METHOD AND ALGORITHM OF RANGING OF RELIABILITY OBJECTS OF THE POWER SUPPLY SYSTEM Farzalye Y.. METHOD AND ALGORITHM OF RANGING OF RELIABILITY OBJECTS OF THE POWER SUPPLY SYSTEM METHOD AND ALGORITHM OF RANGING OF RELIABILITY OBJECTS OF THE POWER SUPPLY SYSTEM Farzalye Y.. Azerbajan Scentfc-Research

More information

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans Peter

Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems by Kamran Sharifabadi, Lennart Harnefors, Hans Peter Desgn, Control an Applcaton o Moular Multleel Conerters or HVDC Transmsson Systems by Kamran Sharaba, Lennart Harneors, Hans Peter Nee, Staan Norrga, Remus Teoorescu ISBN 0: 885560 Copyrght Wley 06 Chapter

More information

Motion in One Dimension

Motion in One Dimension Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK

ASYMMETRIC TRAFFIC ASSIGNMENT WITH FLOW RESPONSIVE SIGNAL CONTROL IN AN URBAN NETWORK AYMMETRIC TRAFFIC AIGNMENT WITH FLOW REPONIVE IGNAL CONTROL IN AN URBAN NETWORK Ken'etsu UCHIDA *, e'ch KAGAYA **, Tohru HAGIWARA *** Dept. of Engneerng - Hoado Unversty * E-al: uchda@eng.houda.ac.p **

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

CASE STUDIES ON PERFORMANCE BASED SEISMIC DESIGN USING CAPACITY SPECTRUM METHOD

CASE STUDIES ON PERFORMANCE BASED SEISMIC DESIGN USING CAPACITY SPECTRUM METHOD CAE TUDIE ON PERFORMANCE BAED EIMIC DEIGN UING CAPACITY PECTRUM METHOD T NAGAO, H MUKAI An D NIHIKAWA 3 UMMARY Ths research ams to show the proceures an results of Performance Base esmc Desgn usng Capacty

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee

More information

Parking Demand Forecasting in Airport Ground Transportation System: Case Study in Hongqiao Airport

Parking Demand Forecasting in Airport Ground Transportation System: Case Study in Hongqiao Airport Internatonal Symposum on Computers & Informatcs (ISCI 25) Parkng Demand Forecastng n Arport Ground Transportaton System: Case Study n Hongqao Arport Ln Chang, a, L Wefeng, b*, Huanh Yan 2, c, Yang Ge,

More information

WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project

WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project WEBER ROAD RESIDENTIAL DEVELOPMENT TRAFFIC IMPACT STUDY TABLE OF CONTENTS 1.0 Executive Summary Page 2.0 Introduction 2.1 DEVELOPMENT

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

Physics 107 HOMEWORK ASSIGNMENT #9b

Physics 107 HOMEWORK ASSIGNMENT #9b Physics 07 HOMEWORK SSIGNMENT #9b Cutnell & Johnson, 7 th edition Chapter : Problems 5, 58, 66, 67, 00 5 Concept Simulation. reiews the concept that plays the central role in this problem. (a) The olume

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Queue Length Estimation Algorithm for Signalized Intersection Using Sectional Travel Time Information

Queue Length Estimation Algorithm for Signalized Intersection Using Sectional Travel Time Information Proceedngs o the Eastern Asa Socety or Transportaton Studes, Vol.9, 013 Queue Length Estmaton Algorthm or Sgnalzed Intersecton Usng Sectonal Travel Tme Inormaton Mnhyoung LEE Ph.D. Student Dept. o Transportaton

More information

Formulation of Circuit Equations

Formulation of Circuit Equations ECE 570 Sesson 2 IC 752E Computer Aded Engneerng for Integrated Crcuts Formulaton of Crcut Equatons Bascs of crcut modelng 1. Notaton 2. Crcut elements 3. Krchoff laws 4. ableau formulaton 5. Modfed nodal

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

Lecture 14: More MOS Circuits and the Differential Amplifier

Lecture 14: More MOS Circuits and the Differential Amplifier Lecture 4: More MOS rcuts an the Dfferental Aplfer Gu-Yeon We Dson of nneern an Apple Scences Harar Unersty uyeon@eecs.harar.eu We Oerew Rean S&S: hapter 5.0, 6.~, 6.6 ackroun Han seen soe of the basc

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES) PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to

More information

Development of Uniform Hazard Response Spectra for a Site

Development of Uniform Hazard Response Spectra for a Site Transactons of the 17 th Internatonal Conference on Structural Mechancs n Reactor Technology (SMRT 17) Prague, Czech Republc, August 17 22, 2003 Paper # K11-3 Development of Unform Hazar Response Spectra

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Lecture 5: Operational Amplifiers and Op Amp Circuits

Lecture 5: Operational Amplifiers and Op Amp Circuits Lecture 5: peratonal mplers and p mp Crcuts Gu-Yeon We Dson o Engneerng and ppled Scences Harard Unersty guyeon@eecs.harard.edu We erew eadng S&S: Chapter Supplemental eadng Background rmed wth our crcut

More information

SIMPLIFIED MODEL-BASED OPTIMAL CONTROL OF VAV AIR- CONDITIONING SYSTEM

SIMPLIFIED MODEL-BASED OPTIMAL CONTROL OF VAV AIR- CONDITIONING SYSTEM Nnth Internatonal IBPSA Conference Montréal, Canaa August 5-8, 2005 SIMPLIFIED MODEL-BASED OPTIMAL CONTROL OF VAV AIR- CONDITIONING SYSTEM Nabl Nassf, Stanslaw Kajl, an Robert Sabourn École e technologe

More information

On the Throughput of Clustered Photolithography Tools:

On the Throughput of Clustered Photolithography Tools: On the hroughput of lustered Photolthography ools: Wafer Advancement and Intrnsc Equpment Loss Maruth Kumar Mutnur James R. Morrson, Ph.D. September 23, 2007 Presentaton Outlne Motvaton Model : Synchronous

More information

SMART-Signal Phase II: Arterial Offset Optimization Using Archived High-Resolution Traffic Signal Data

SMART-Signal Phase II: Arterial Offset Optimization Using Archived High-Resolution Traffic Signal Data SMART-Sgnal Phase II: Arteral Offset Optmzaton Usng Archved Hgh-Resoluton Traffc Sgnal Data Fnal Report Prepared by: Henry X. Lu Heng Hu Department of Cvl Engneerng Unversty of Mnnesota CTS 13-19 Techncal

More information

Flexible Allocation of Capacity in Multi-Cell CDMA Networks

Flexible Allocation of Capacity in Multi-Cell CDMA Networks Flexble Allocaton of Capacty n Mult-Cell CDMA Networs Robert Al, Manu Hegde, Mort Naragh-Pour*, Paul Mn Washngton Unversty, St. Lous, MO *Lousana State Unversty, Baton Rouge, LA Outlne Capacty and Probablty

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

FREEWAY WEAVING. Highway Capacity Manual 2000 CHAPTER 24 CONTENTS EXHIBITS

FREEWAY WEAVING. Highway Capacity Manual 2000 CHAPTER 24 CONTENTS EXHIBITS CHAPTER 24 FREEWAY WEAVING CONTENTS I. INTRODUCTION... 24-1 Scope of the Methodology...24-1 Limitations of the Methodology...24-1 II. METHODOLOGY...24-1 LOS...24-2 Weaing Segment Parameters...24-3 Determining

More information

Highway Capacity Manual 2010

Highway Capacity Manual 2010 RR = minimum number of lane change that mut be made by one ramp-toramp ehicle to execute the deired maneuer uccefully. MIN for two-ided weaing egment i gien by Equation 12-3: MIN RR For two-ided weaing

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

Approved Corrections and Changes for the Highway Capacity Manual 2000

Approved Corrections and Changes for the Highway Capacity Manual 2000 Approved Corrections and Changes for the Highway Capacity Manual 2000 Updated 7/8/2005 Previous update 2/27/2004 TRB Committee AHB40, Highway Capacity and Quality of Service Unless stated otherwise, corrections

More information

TRAFFIC IMPACT STUDY MANUFACTURING COMPANY

TRAFFIC IMPACT STUDY MANUFACTURING COMPANY TRAFFIC IMPACT STUDY For MANUFACTURING COMPANY Prepared For: Airway Heights, WA Prepared By: SUNBURST ENGINEERING, P. S. 4310 S. Ball Dr. Veradale, WA 99037 April, 2013 TRAFFIC IMP ACT STUDY Manufacturing

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

The strict priority scheduler

The strict priority scheduler 6. SP and GPS schedulers Pag. The strct prorty scheduler The strct prorty scheduler s very smple and effcent In the followng, we wll carry out the analyss of ths scheduler to determne the formulas for

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Flyback Converter in DCM

Flyback Converter in DCM Flyback Converter n CM m 1:n V O V S m I M m 1 1 V CCM: wth O V I I n and S 2 1 R L M m M m s m 1 CM: IM 2 m 1 1 V 1 Borderlne: O VS I n wth V nv 2 1 R 2 L 1 M m s O S m CM f R > R 2n crt 2 L m 2 (1 )

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Encoder and Decoder Optimization for Source-Channel Prediction in Error Resilient Video Transmission

Encoder and Decoder Optimization for Source-Channel Prediction in Error Resilient Video Transmission Encoer an Decoer Optmzaton for Source-Channel Precton n Error Reslent Veo Transmsson Hua Yang an Kenneth Rose Sgnal Compresson Lab ECE Department Unversty of Calforna Santa Barbara, USA Outlne Backgroun

More information

On Optimal Design in Random Coefficient Regression Models and Alike

On Optimal Design in Random Coefficient Regression Models and Alike PODE 26 May 5, 26 On Optmal Desgn n Ranom Coeffcent Regresson Moels an Alke & homas Schmelter,2 Otto von Guercke Unversty Mageburg 2 Scherng AG, Berln raner.schwabe@mathematk.un-mageburg.e Outlne Prologue:

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

Modeling and Control of an Isolated Intersection via Hybrid Petri Nets

Modeling and Control of an Isolated Intersection via Hybrid Petri Nets Journal of Traffc and Logstcs Engneerng, Vol, 1, No. 1 June 2013 Modelng and Control of an Isolated Intersecton va Hybrd Petr Nets Bassem Sammoud Laboratore de Recherche en Automatque (LA.R.A.), ENIT,

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (Ths s a sample cover mage for ths ssue. The actual cover s not yet avalable at ths tme.) Ths artcle appeared n a journal publshed by Elsever. The attached copy s furnshed to the author for nternal non-commercal

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

An efficient method for computing single parameter partial expected value of perfect information

An efficient method for computing single parameter partial expected value of perfect information An effcent metho for computng sngle parameter partal expecte value of perfect nformaton Mark Strong,, Jeremy E. Oakley 2. School of Health an Relate Research ScHARR, Unversty of Sheffel, UK. 2. School

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Lecture 10: Dimensionality reduction

Lecture 10: Dimensionality reduction Lecture : Dmensonalt reducton g The curse of dmensonalt g Feature etracton s. feature selecton g Prncpal Components Analss g Lnear Dscrmnant Analss Intellgent Sensor Sstems Rcardo Guterrez-Osuna Wrght

More information

Traffic Signal Timing: Green Time. CVEN 457 & 696 Lecture #18 Gene Hawkins

Traffic Signal Timing: Green Time. CVEN 457 & 696 Lecture #18 Gene Hawkins Traffic Signal Timing: Green Time CVEN 457 & 696 Lecture #18 Gene Hawkins The Problem N 25 134 77 128 643 216 181 517 171 111 154 56 NBLT = 181 vph NBTR = 688* vph SBLT = 216 vph SBTR = 771* vph WB = 321*

More information

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs Interconnect Optmzaton for Deep-Submcron and Gga-Hertz ICs Le He http://cadlab.cs.ucla.edu/~hele UCLA Computer Scence Department Los Angeles, CA 90095 Outlne Background and overvew LR-based STIS optmzaton

More information

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp. Clck to Vew Mathcad Document 2011 Knovel Corp. Buldng Structural Desgn. homas P. Magner, P.E. 2011 Parametrc echnology Corp. Chapter 3: Renforced Concrete Slabs and Beams 3.2 Renforced Concrete Beams -

More information

SUMMARY OF STOICHIOMETRIC RELATIONS AND MEASURE OF REACTIONS' PROGRESS AND COMPOSITION FOR MULTIPLE REACTIONS

SUMMARY OF STOICHIOMETRIC RELATIONS AND MEASURE OF REACTIONS' PROGRESS AND COMPOSITION FOR MULTIPLE REACTIONS UMMAY OF TOICHIOMETIC ELATION AND MEAUE OF EACTION' POGE AND COMPOITION FO MULTIPLE EACTION UPDATED 0/4/03 - AW APPENDIX A. In case of multple reactons t s mportant to fnd the number of ndependent reactons.

More information

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015) Internatonal Power, Electroncs and Materals Engneerng Conference (IPEMEC 2015) Dynamc Model of Wnd Speed Dstrbuton n Wnd Farm Consderng the Impact of Wnd Drecton and Interference Effects Zhe Dong 1, a,

More information

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX -

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX - - APPENDIX - MAYARD S PROBLEM SOLVING METOD A sample o word problems rom hgh school (nd cycle) to college leel s used to llustrate ths smple method that can also be used n all grade leels. 4 smple steps

More information

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are: I. INTRODUCTION 1.1 Crcut Theory Fundamentals In ths course we study crcuts wth non-lnear elements or deces (dodes and transstors). We wll use crcut theory tools to analyze these crcuts. Snce some of tools

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS 1. Overview In this chapter we explore the models on which the HCM capacity analysis method for signalized intersections are based. While the method has

More information

Large-Scale Data-Dependent Kernel Approximation Appendix

Large-Scale Data-Dependent Kernel Approximation Appendix Large-Scale Data-Depenent Kernel Approxmaton Appenx Ths appenx presents the atonal etal an proofs assocate wth the man paper [1]. 1 Introucton Let k : R p R p R be a postve efnte translaton nvarant functon

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California MEMSBase Fork Gyrosoe Ω r z Volage Deermnng Resoluon EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 () Curren (+) Curren Eleroe EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman,

More information