CE351 Transportation Systems: Planning and Design

Size: px
Start display at page:

Download "CE351 Transportation Systems: Planning and Design"

Transcription

1 CE351 Transportation Systems: Planning and Design TOPIC: Level of Service (LOS) at Traffic Signals 1

2 Course Outline Introduction to Transportation Highway Users and their Performance Geometric Design Pavement Design Speed Studies - Project Traffic Queuing Signalized Intersections Level e of Service in Highways and Intersections s Speed Zoning - Traffic Impact Studies 2

3 Signal Design The process of designing the different components of traffic signals 3

4 REVIEW 4

5 Summary (1) Start-up Lost Time (l 1) Time used by the first few vehicles in a queue while reacting to the initiation of the green phase and accelerating. 2 seconds is typical. Clearance Lost Time (l 2 ) Time between signal phases during which an intersection is not used by traffic. 2 seconds is typical. Lost Time (t L ) Time when an intersection is not effectively used by any approach. 4 seconds is typical. t L = l 1 + l 2 Total Lost Time (L) Total lost time per cycle during which the intersection is not used by any movement. 5

6 Summary (2) Effective Green Time (g) Time actually available for movement g = G + Y + AR t L Extension of Effective Green Time (e) The amount of the change and clearance interval at the end of a phase that is usable for movement of vehicles Effective Red Time (r) Time during which a movement is effectively not permitted to move. r = R + t L r = C g 6

7 Summary (3) Saturation Flow Rate (s) Maximum flow that could pass through an intersection if 100% green time was allocated to that movement. s = 3600/h Approach Capacity (c) Saturation flow times the proportion of effective green c = s g/c Peak Hour Factor (PHF) The hourly volume during the maximum-volume hour of the day divided by the peak 15-minute flow rate within the peak hour; a measure of traffic demand fluctuation within the peak hour. 7

8 General Approach for Signal Timing 1. Select phasing plan How many possible phasing plans? Phase The sum of the displayed green, yellow, and red times for a movement or combination of movements that receive the right of way simultaneously during the cycle. The sum of the phase lengths (in seconds) is the cycle length. 8

9 General Approach for Signal Timingi 2. Find the critical movements or lanes and calculate the critical flow ratios 9

10 Critical lane groups and Total Cycle Lost Time Y c = sum of flow ratios for critical lane groups Y c n v = i= 1 s ci L= total lost time per cycle ( ) L L n = i= 1 t ci 10

11 Summary (4) Flow Ratio The ratio of actual flow rate (v) to saturation flow rate (s) for a lane group at an intersection Lane Group A set of lanes established at an intersection approach for separate analysis Critical Lane Group The lane group that has the highest flow ratio (v/s) for a given signal phase Citi Critical lvolume-to-capacity Ratio (X c ) The proportion of available intersection capacity used by vehicles in critical lane groups In terms of v/c and NOT v/s 11

12 General Approach for Signal Timing 3. Calculate the optimum cycle length 12

13 Minimum Cycle Length C min L = n X c i= 1 X c C min = estimated minimum cycle length (seconds) L = total lost time per cycle (seconds), 4 seconds per phase is typical (v/s) ci = flow ratio for critical lane group, i (seconds) X c = critical v/c ratio for the intersection v s ci How to set X c? Usually less than 1 to account for randomness 13

14 Optimum Cycle Length Estimation (Webster) C opt 1.5 = n 1 ( L) i= v s ci C opt = estimated optimum cycle length (seconds) to minimize vehicle delay L = total lost time per cycle (seconds), 4 seconds per phase is typical (v/s) ci = flow ratio for critical lane group, i (seconds) 14

15 Green Time Estimation g i = v s i C X i g = effective green time for phase, i (seconds) (v/s) i = flow ratio for lane group, i (seconds) C = cycle length (seconds) X i = v/c ratio for lane group i 15

16 Clearance Interval τ Y + AR min Y AR Y = t + r V w + l AR = 2a+ 2gG V τ min = minimum clearance interval t r = perception/reaction time (lower than 2.5, usually 1 second) w = width of intersection l = length of vehicle (feet) V = speed of vehicle a = constant rate of deceleration (ft/sec 2 ) G = percent grade divided by 100 g = acceleration due to gravity (32.2 ft/sec2) 16

17 Check for Constraints Pedestrians Bicycles Level of Service 17

18 Pedestrian Crossing Time G G p p L N ped = for WE > 10 ft. S p WE L + ( 0.27N ) for W 10 ft. = E ped S p G p = minimum green time required for pedestrians (seconds) L = crosswalk length (ft) S p W E p = average pedestrian speed (ft/s) often assumed 4 ft/s = effective crosswalk width (ft) 3.2 = pedestrian startup time (seconds) N ped = number of pedestrians crossing during an interval 18

19 Effective Width (W E ) from Highway Capacity 19 Manual 2000

20 Minimum Green Interval g = P -I min t where: g min = minimum green time (sec) P t = pedestrian crossing time (sec) I = clearance interval (sec) 20

21 Example Given: Intersection width = 60 feet 12 peds/interval S p = 4 feet/sec 9 ft crosswalk WALK interval = 10 sec Clearance time is 6 sec. G t = _L_ (N ped ) for W E <= 10 ft S p W E G t = _60 ft (12) 4 ft/sec 9 = 18.6 sec g min = P t - I = 18.6 sec - 6sec= 12.6 sec 21

22 LEVEL OF SERVICE AT SIGNALIZE INTERSECTIONS 22

23 Level of Service for car drivers: quantifying delays Two approaches Deterministic (uniform) arrivals (Use D/D/1) Probabilistic (random) arrivals (Use empirical equations) Total delay can be expressed as Total delay in an hour (vehicle-hours, person-hours) Average delay per vehicle (seconds per vehicle) 23

24 Design using D/D/1 System It provides a strong intuitive appeal that helps understand the analytic fundamentals underlying traffic analysis at signalized intersections. Consider the case where the approach capacity exceeds the approach arrivals. 24

25 Design using D/D/1 System λ= arrival rate, typically in veh/s, μ= departure rate, typically y in veh/s, g = effective green time in seconds, r = effective red time in seconds, and t c = time from the start of the effective green until queue clearance, in seconds. 25

26 D/D/1 Signal Analysis (Graphical) Departure Rate Arrival Rate Vehicles Queue dissipation i Total vehicle delay per cycle Maximum queue Maximum delay Time Red Green Red Green Red Green 26

27 Note Note that the per-cycle approach arrivals will be λ C corresponding approach capacity (maximum departures) per cycle will be λg. assumption that t μg > λc for all cycles (no queues exist at the beginning or end of a cycle). 27

28 D/D/1 System For the time to queue clearance after the start of the effective green The proportion of the cycle with a queue The proportion of vehicles stopped t c P P s q = = = ρr 1 ρ ( ) λ λ r + t C c ( r + tc ) ( r + g) = r + t C c = P q also, P s = λ λ ( r + tc ) μtc tc = = ( r + g) λc ρc 28

29 D/D/1 System The maximum number of vehicles in the queue, 2 The total vehicle delay λr D t = per cycle 2 ( 1 ρ ) The average delay per vehicle The maximum delay of any vehicle assuming a FIFO queuing discipline d avg Q max = λr = = 2 λr 2 1 ρ ( ) r 2C d max = 2 ( ) 1 ρ r 1 λc 29

30 Quantifying delays Analytical-Empirical Analysis 30

31 Signal Analysis Random Arrivals Webster s Formula (1958) - empirical d' = d + x 2 ( 1 ) 0.65 c 2 2 λ x λ 1/3 x 2+ 5( g / c) d = avg. veh. delay assuming random arrivals d = avg. veh. delay assuming uniform arrivals (D/D/1) x = ratio of arrivals to departures (λc/μg) g = effective green time (sec) c = cycle length (sec) 31

32 Signal Analysis Random Arrivals Allsop s Formula (1972) - empirical d' = 9 x d λ 2 ( 1 x ) d = avg. veh delay assuming random arrivals d = avg. veh delay assuming uniform arrivals (D/D/1) x = ratio of arrivals to departures (λc/μg) 32

33 Definition Level of Service (LOS) Chief measure of quality of service Describes operational conditions within a traffic stream Does not include safety Different measures for different facilities Six levels of service (A through F) 33

34 Signalized Intersection LOS Based on control delay per vehicle How long you wait, on average, at the stop light from Highway Capacity Manual

35 Typical Approach Split control delay into three parts Part 1: Delay calculated assuming uniform arrivals (d 1 ). This is essentially a D/D/1 analysis. Part 2: Delay due to random arrivals (d 2 ) Part 3: Delay due to initial iti queue at start t of analysis time period (d 3 ). Often assumed zero but it depends on progression, arterial timing!!!. ( PF ) + d2 3 d = d + 1 d d = Average signal delay per vehicle in s/veh PF = progression adjustment factor d 1, d 2, d 3 = as defined above 35

36 Uniform Delay (d 1 ) d 1 = g 0.5C 1 C 1 min 1, X g C ( ) d 1 = delay due to uniform arrivals (s/veh) C = cycle length (seconds) g = effective green time for lane group (seconds) X = v/c ratio for lane group 36

37 Incremental Delay (d 2 ) d 2 = 900 T X 1 d 2 = delay due to random arrivals (s/veh) + X kix ct ( ) ( ) T = duration of analysis period (hours). If the analysis is based on the peak 15-min. flow then T = 0.25 hrs. k = delay adjustment factor that is dependent on signal controller mode. For pretimed intersections k = 0.5. For more efficient intersections k < 0.5. I = upstream filtering/metering adjustment factor. Adjusts for the effect of an upstream signal on the randomness of the arrival pattern. I = 1.0 for completely random. I < 1.0 for reduced variance. c = lane group capacity (veh/hr) X = v/c ratio for lane group 37 +

38 Initial Queue Delay (d 3 ) Applied in cases where X > 1.0 for the analysis period Vehicles arriving during the analysis period will experience an additional delay because there is already an existing queue When no initial queue d 3 = 0 38

39 General Approach for Signal Timing Allocate available green based on critical flow ratios Calculate the capacity Check capacity/design flow rates and green intervals/minimum green intervals Adjust cycle timing if necessary 39

40 Adjustments Once done need to see if results work Make sure green meets requirements or adjust until it does pedestrian crossing Check capacity If significantly below capacity, reduce green time If close increase Compute LOS and delay and check Check for any other constraint 40

Signalized Intersections

Signalized Intersections Signalized Intersections Kelly Pitera October 23, 2009 Topics to be Covered Introduction/Definitions D/D/1 Queueing Phasing and Timing Plan Level of Service (LOS) Signal Optimization Conflicting Operational

More information

1 h. Page 1 of 12 FINAL EXAM FORMULAS. Stopping Sight Distance. (2 ) N st U Where N=sample size s=standard deviation t=z value for confidence level

1 h. Page 1 of 12 FINAL EXAM FORMULAS. Stopping Sight Distance. (2 ) N st U Where N=sample size s=standard deviation t=z value for confidence level Page 1 of 12 FINAL EXAM FORMULAS Stopping Sight Distance 2 2 V V d 1.47Vt 1.075 i f a 2 2 Vi Vf d 1.47Vt 30( f 0.01 G) Where d = distance (ft) V = speed (mph) t = time (sec) a=deceleration rate (ft/sec

More information

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS

CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS CHAPTER 3. CAPACITY OF SIGNALIZED INTERSECTIONS 1. Overview In this chapter we explore the models on which the HCM capacity analysis method for signalized intersections are based. While the method has

More information

Design Priciples of Traffic Signal

Design Priciples of Traffic Signal Design Priciples of Traffic Signal Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Overview 1 2 Definitions and notations 2 3 Phase design 3 3.1 Two phase signals.................................

More information

Traffic signal design-ii

Traffic signal design-ii CHAPTER 4. TRAFFIC SIGNAL DESIGN-II NPTEL May 3, 007 Chapter 4 Traffic signal design-ii 4.1 Overview In the previous chapter, a simple design of cycle time was discussed. Here we will discuss how the cycle

More information

Signalized Intersection Delay Models

Signalized Intersection Delay Models Chapter 35 Signalized Intersection Delay Models 35.1 Introduction Signalized intersections are the important points or nodes within a system of highways and streets. To describe some measure of effectiveness

More information

Signalized Intersection Delay Models

Signalized Intersection Delay Models Transportation System Engineering 56. Signalized Intersection Delay Models Chapter 56 Signalized Intersection Delay Models 56.1 Introduction Signalized intersections are the important points or nodes within

More information

CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES

CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES Delay is an important measure of effectiveness in traffic studies, as it presents the direct cost of fuel consumption and indirect cost

More information

Signalized Intersection Delay Models

Signalized Intersection Delay Models Signalized Intersection Delay Models Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Introduction 1 2 Types of delay 2 2.1 Stopped Time Delay................................

More information

Chapter 5 Traffic Flow Characteristics

Chapter 5 Traffic Flow Characteristics Chapter 5 Traffic Flow Characteristics 1 Contents 2 Introduction The Nature of Traffic Flow Approaches to Understanding Traffic Flow Parameters Connected with Traffic Flow Categories of Traffic Flow The

More information

Course Outline Introduction to Transportation Highway Users and their Performance Geometric Design Pavement Design

Course Outline Introduction to Transportation Highway Users and their Performance Geometric Design Pavement Design Course Outline Introduction to Transportation Highway Users and their Performance Geometric Design Pavement Design Speed Studies - Project Traffic Queuing Intersections Level of Service in Highways and

More information

Signalized Intersection Delay Models

Signalized Intersection Delay Models hapter 56 Signalized Intersection Delay Models 56.1 Introduction Signalized intersections are the important points or nodes within a system of highways and streets. To describe some measure of effectiveness

More information

Impact of Day-to-Day Variability of Peak Hour Volumes on Signalized Intersection Performance

Impact of Day-to-Day Variability of Peak Hour Volumes on Signalized Intersection Performance Impact of Day-to-Day Variability of Peak Hour Volumes on Signalized Intersection Performance Bruce Hellinga, PhD, PEng Associate Professor (Corresponding Author) Department of Civil and Environmental Engineering,

More information

CHAPTER 2. CAPACITY OF TWO-WAY STOP-CONTROLLED INTERSECTIONS

CHAPTER 2. CAPACITY OF TWO-WAY STOP-CONTROLLED INTERSECTIONS CHAPTER 2. CAPACITY OF TWO-WAY STOP-CONTROLLED INTERSECTIONS 1. Overview In this chapter we will explore the models on which the HCM capacity analysis method for two-way stop-controlled (TWSC) intersections

More information

WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project

WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project WEBER ROAD RESIDENTIAL DEVELOPMENT Single Family Residential Project WEBER ROAD RESIDENTIAL DEVELOPMENT TRAFFIC IMPACT STUDY TABLE OF CONTENTS 1.0 Executive Summary Page 2.0 Introduction 2.1 DEVELOPMENT

More information

CE351 Transportation Systems: Planning and Design

CE351 Transportation Systems: Planning and Design CE351 Transportation Systems: Planning and Design TOPIC: HIGHWAY USERS PERFORMANCE (Part III) 1 ANOUNCEMENT Updated d Schedule on: http://wiki.cecs.pdx.edu/bin/view/main/slidesce 351 Course Outline Introduction

More information

Traffic Signal Timing: Green Time. CVEN 457 & 696 Lecture #18 Gene Hawkins

Traffic Signal Timing: Green Time. CVEN 457 & 696 Lecture #18 Gene Hawkins Traffic Signal Timing: Green Time CVEN 457 & 696 Lecture #18 Gene Hawkins The Problem N 25 134 77 128 643 216 181 517 171 111 154 56 NBLT = 181 vph NBTR = 688* vph SBLT = 216 vph SBTR = 771* vph WB = 321*

More information

Approved Corrections and Changes for the Highway Capacity Manual 2000

Approved Corrections and Changes for the Highway Capacity Manual 2000 Approved Corrections and Changes for the Highway Capacity Manual 2000 Updated 7/8/2005 Previous update 2/27/2004 TRB Committee AHB40, Highway Capacity and Quality of Service Unless stated otherwise, corrections

More information

JEP John E. Jack Pflum, P.E. Consulting Engineering 7541 Hosbrook Road, Cincinnati, OH Telephone:

JEP John E. Jack Pflum, P.E. Consulting Engineering 7541 Hosbrook Road, Cincinnati, OH Telephone: JEP John E. Jack Pflum, P.E. Consulting Engineering 7541 Hosbrook Road, Cincinnati, OH 45243 Email: jackpflum1@gmail.com Telephone: 513.919.7814 MEMORANDUM REPORT Traffic Impact Analysis Proposed Soccer

More information

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) 1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) Student Name: Alias: Instructions: 1. This exam is open-book 2. No cooperation is permitted 3. Please write down your name

More information

2.2t t 3 =1.2t+0.035' t= D, = f ? t 3 dt f ' 2 dt

2.2t t 3 =1.2t+0.035' t= D, = f ? t 3 dt f ' 2 dt 5.5 Queuing Theory and Traffic Flow Analysis 159 EXAMPLE 5.8 After observing arrivals and departures at a highway toll booth over a 60-minute tim e period, an observer notes that the arrival and departure

More information

Analytical Delay Models for Signalized Intersections

Analytical Delay Models for Signalized Intersections Analytical Delay Models for Signalized Intersections Ali Payidar Akgungor and A. Graham R. Bullen INTRODUCTION Delay is the most important measure of effectiveness (MOE) at a signalized intersection because

More information

Incorporating the Effects of Traffic Signal Progression Into the Proposed Incremental Queue Accumulation (IQA) Method

Incorporating the Effects of Traffic Signal Progression Into the Proposed Incremental Queue Accumulation (IQA) Method #06-0107 Incorporating the Effects of Traffic Signal Progression Into the Proposed Incremental Queue Accumulation (IQA) Method Dennis W. Strong, President Strong Concepts 1249 Shermer Road, Suite 100 Northbrook,

More information

The Highline Development Traffic Impact Study

The Highline Development Traffic Impact Study The Highline Development Traffic Impact Study Columbia Falls, Montana Prepared For: TD&H Engineering 450 Corporate Drive, Suite 101 Kalispell, MT 59901 June, 2018 130 South Howie Street Helena, Montana

More information

LIC SR INTERCHANGE OPERATIONS STUDY

LIC SR INTERCHANGE OPERATIONS STUDY LIC SR 16 18.20 - INTERCHANGE OPERATIONS STUDY Project Summary Location SR 16 & W. Church St. Interchange Newark, Ohio Licking County PID 99478 Study Sponsor ODOT District 5 Proposed Work Add Left Turn

More information

TRAFFIC IMPACT STUDY MANUFACTURING COMPANY

TRAFFIC IMPACT STUDY MANUFACTURING COMPANY TRAFFIC IMPACT STUDY For MANUFACTURING COMPANY Prepared For: Airway Heights, WA Prepared By: SUNBURST ENGINEERING, P. S. 4310 S. Ball Dr. Veradale, WA 99037 April, 2013 TRAFFIC IMP ACT STUDY Manufacturing

More information

Roundabout Level of Service

Roundabout Level of Service Roundabout Level of Service Rahmi Akçelik Director Akcelik & Associates Pty Ltd email: rahmi.akcelik@sidrasolutions.com web: www.sidrasolutions.com 8 January 2009 Contents 1. Introduction... 1 2. Fundamental

More information

Performance Analysis of Delay Estimation Models for Signalized Intersection Networks

Performance Analysis of Delay Estimation Models for Signalized Intersection Networks Performance Analysis of Delay Estimation Models for Signalized Intersection Networks Hyung Jin Kim 1, Bongsoo Son 2, Soobeom Lee 3 1 Dept. of Urban Planning and Eng. Yonsei Univ,, Seoul, Korea {hyungkim,

More information

Traffic Progression Models

Traffic Progression Models Traffic Progression Models Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Introduction 1 2 Characterizing Platoon 2 2.1 Variables describing platoon............................

More information

h CIVIL ENGINEERING FLUID MECHANICS section. ± G = percent grade divided by 100 (uphill grade "+")

h CIVIL ENGINEERING FLUID MECHANICS section. ± G = percent grade divided by 100 (uphill grade +) FLUID MECHANICS section. TRANSPORTATION U.S. Customary Units a = deceleration rate (ft/sec ) A = absolute value of algebraic difference in grades (%) e = superelevation (%) f = side friction factor ± G

More information

III. DISEÑO OPERACIONAL Y TRÁNSITO

III. DISEÑO OPERACIONAL Y TRÁNSITO Estudios Técnicos y Ambientales del Corredor Segregado de Alta Capacidad (COSAC I) y sus terminales de transferencia. III. DISEÑO OPERACIONAL Y TRÁNSITO ANEXO 36. TRÁNSITO III.2. TRANSITO.- ANEXOS. Anexo

More information

Derivation of the Yellow Change Interval Formula

Derivation of the Yellow Change Interval Formula Derivation of the Yellow Change Interval Formula Brian Ceccarelli, Joseph Shovlin The yellow change interval formula traffic engineers use to set yellow light durations originated from a paper written

More information

Cumulative Count Curve and Queueing Analysis

Cumulative Count Curve and Queueing Analysis Introduction Traffic flow theory (TFT) Zhengbing He, Ph.D., http://zhengbing.weebly.com School of traffic and transportation, Beijing Jiaotong University September 27, 2015 Introduction Outline 1 Introduction

More information

MnDOT Method for Calculating Measures of Effectiveness (MOE) From CORSIM Model Output

MnDOT Method for Calculating Measures of Effectiveness (MOE) From CORSIM Model Output MnDOT Method for Calculating Measures of Effectiveness (MOE) From CORSIM Model Output Rev. April 29, 2005 MnDOT Method for Calculating Measures of Effectiveness (MOE) From CORSIM Model Output Table of

More information

Traffic flow theory involves the development of mathematical relationships among

Traffic flow theory involves the development of mathematical relationships among CHAPTER 6 Fundamental Principles of Traffic Flow Traffic flow theory involves the development of mathematical relationships among the primary elements of a traffic stream: flow, density, and speed. These

More information

Analytical Approach to Evaluating Transit Signal Priority

Analytical Approach to Evaluating Transit Signal Priority JOURNAL OF TRANSPORTATION SYSTMS NGINRING AND INFORMATION TCHNOLOGY Volume 8, Issue, April 008 Online nglish edition of the Chinese language ournal Cite this paper as: J Transpn Sys ng & IT, 008, 8(, 4857.

More information

FUNDAMENTALS OF TRANSPORTATION ENGINEERING By Jon D. Fricker and Robert K. Whitford

FUNDAMENTALS OF TRANSPORTATION ENGINEERING By Jon D. Fricker and Robert K. Whitford FUNDAMENTALS OF TRANSPORTATION ENGINEERING By Jon D. Fricker and Robert K. Whitford This table includes typos Dr. Saito found besides the ones listed in the authors official errata sheet. Please note that

More information

MEMORANDUM. The study area of the analysis was discussed with City staff and includes the following intersections:

MEMORANDUM. The study area of the analysis was discussed with City staff and includes the following intersections: MEMORANDUM DATE: JULY 6, 2012 TO: FROM: RE: CC: MELANIE KNIGHT BRAD BYVELDS/ JENNIFER LUONG 1050 SOMERSET STREET PRELIMINARY TRAFFIC ANALYSIS OUR FILE NO. 111152 NEIL MALHOTRA The purpose of this memo

More information

$QDO\]LQJ$UWHULDO6WUHHWVLQ1HDU&DSDFLW\ RU2YHUIORZ&RQGLWLRQV

$QDO\]LQJ$UWHULDO6WUHHWVLQ1HDU&DSDFLW\ RU2YHUIORZ&RQGLWLRQV Paper No. 001636 $QDO\]LQJ$UWHULDO6WUHHWVLQ1HDU&DSDFLW\ RU2YHUIORZ&RQGLWLRQV Duplication for publication or sale is strictly prohibited without prior written permission of the Transportation Research Board

More information

A Delay Model for Exclusive Right-turn Lanes at Signalized Intersections with Uniform Arrivals and Right Turns on Red

A Delay Model for Exclusive Right-turn Lanes at Signalized Intersections with Uniform Arrivals and Right Turns on Red University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2000 A Delay Model for Exclusive Right-turn Lanes at Signalized Intersections

More information

2.1 Traffic Stream Characteristics. Time Space Diagram and Measurement Procedures Variables of Interest

2.1 Traffic Stream Characteristics. Time Space Diagram and Measurement Procedures Variables of Interest 2.1 Traffic Stream Characteristics Time Space Diagram and Measurement Procedures Variables of Interest Traffic Stream Models 2.1 Traffic Stream Characteristics Time Space Diagram Speed =100km/h = 27.78

More information

Derivation of the Yellow Change Interval Formula

Derivation of the Yellow Change Interval Formula Derivation of the Yellow Change Interval Formula Brian Ceccarelli, PE; Joseph Shovlin, PhD The yellow change interval formula traffic engineers use to set yellow light durations originated from a paper

More information

NATHAN HALE HIGH SCHOOL PARKING AND TRAFFIC ANALYSIS. Table of Contents

NATHAN HALE HIGH SCHOOL PARKING AND TRAFFIC ANALYSIS. Table of Contents Parking and Traffic Analysis Seattle, WA Prepared for: URS Corporation 1501 4th Avenue, Suite 1400 Seattle, WA 98101-1616 Prepared by: Mirai Transportation Planning & Engineering 11410 NE 122nd Way, Suite

More information

Vehicle Motion Equations:

Vehicle Motion Equations: 1 Vehicle Motion Equations: v = at + v (2.2.4) x x = v2 2 v 2a (2.2.6) v 2 = v 2 + 2a(x x ) (2.2.6) x = 1 2 at2 + v t + x (2.2.7) D b = x cos α (2.2.10) x = vt D b = v 2 v 2 2g(f G) (2.2.14) e + f s =

More information

Control Delay at Signalized Diamond Interchanges Considering Internal Queue Spillback Paper No

Control Delay at Signalized Diamond Interchanges Considering Internal Queue Spillback Paper No Publish Information: Xu, H., H. Liu, and Z. Tian (00). Control Delay at Signalized Interchanges Considering Internal Queue Spillback. Journal of Transportation Research Record, No.73, 3 3. Control Delay

More information

Traffic Flow Theory and Simulation

Traffic Flow Theory and Simulation Traffic Flow Theory and Simulation V.L. Knoop Lecture 2 Arrival patterns and cumulative curves Arrival patterns From microscopic to macroscopic 24-3-2014 Delft University of Technology Challenge the future

More information

11. Contract or Grant No. College Station, Texas Sponsoring Agency Code College Station, TX

11. Contract or Grant No. College Station, Texas Sponsoring Agency Code College Station, TX 1. Report No. TTIIITS RCE-01/01 I 2. Government Accession No. T ec h rue. air eqort D ocuruentatlon. P age 3. Recipient's Catalog No. 4. Title and Subtitle 5. Report Date ACTUATED CONTROLLER SETTINGS FOR

More information

New Calculation Method for Existing and Extended HCM Delay Estimation Procedures

New Calculation Method for Existing and Extended HCM Delay Estimation Procedures #06-0106 New Calculation Method for Existing and Extended HCM Delay Estimation Procedures Dennis W. Strong, President Strong Concepts 1249 Shermer Road, Suite 100 Northbrook, IL 60062-4540 Tel: 847-564-0386

More information

Control experiments for a network of signalized intersections using the.q simulator

Control experiments for a network of signalized intersections using the.q simulator Control experiments for a network of signalized intersections using the.q simulator Jennie Lioris Alexander A. Kurzhanskiy Pravin Varaiya California PATH, University of California, Berkeley Abstract: The

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 4 Shockwave theory Shockwave theory I: Introduction Applications of the Fundamental Diagram February 14, 2010 1 Vermelding onderdeel organisatie

More information

To convert a speed to a velocity. V = Velocity in feet per seconds (ft/sec) S = Speed in miles per hour (mph) = Mathematical Constant

To convert a speed to a velocity. V = Velocity in feet per seconds (ft/sec) S = Speed in miles per hour (mph) = Mathematical Constant To convert a speed to a velocity V S ( 1.466) V Velocity in feet per seconds (ft/sec) S Speed in miles per hour (mph) 1.466 Mathematical Constant Example Your driver just had a rear-end accident and says

More information

CVS Derwood. Local Area Transportation Review

CVS Derwood. Local Area Transportation Review CVS Derwood Montgomery County, Maryland May 27, 2016 Local Area Transportation Review Prepared for: JC Bar Properties, Inc. Steve Fleming, PE 415 Fallowfield Road, Suite 301 Camp Hill, Pennsylvania 17011

More information

Flow and Capacity Characteristics on Two-Lane Rural Highways

Flow and Capacity Characteristics on Two-Lane Rural Highways 128 TRANSPORTATON RESEARCH RECORD 1320 Flow and Capacity Characteristics on Two-Lane Rural Highways ABSHA PoLus, JosEPH CRAus, AND MosHE LrvNEH Traffic operation on two-lane rural highways is unique; no

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

TRAFFIC IMPACT STUDY

TRAFFIC IMPACT STUDY TRAFFIC IMPACT STUDY TERRE HAUTE CONVENTION CENTER WABASH AVENUE & 9 TH STREET TERRE HAUTE, INDIANA PREPARED FOR 8365 Keystone Crossing, Suite 201 Indianapolis, IN 46240 Phone: (317) 202-0864 Fax: (317)

More information

April 10, Mr. Curt Van De Walle, City Manager City of Castle Hills 209 Lemonwood Drive Castle Hills, Texas 78213

April 10, Mr. Curt Van De Walle, City Manager City of Castle Hills 209 Lemonwood Drive Castle Hills, Texas 78213 Mr. Curt Van De Walle, City Manager City of Castle Hills 209 Lemonwood Drive Castle Hills, Texas 78213 Subject: Revised Castle Hills BASIS Charter School Traffic Impact Analysis Review City of Castle Hills,

More information

CEE 320 Midterm Examination (50 minutes)

CEE 320 Midterm Examination (50 minutes) CEE 320 Midterm Examination (50 minutes) Fall 2009 Please write your name on this cover. Please write your last name on all other exam pages This exam is NOT open book, but you are allowed to use one 8.5x11

More information

Critchfield Rd / SR-129

Critchfield Rd / SR-129 NOVEMBER 27, 2017 Critchfield Rd / SR-129 Intersection Safety Study Alternatives Report CRITCHFIELD INTERSECTION SAFETY STUDY Contents Introduction...1 Purpose...2 Existing Conditions...2 Proposed Alternatives...2

More information

Progression Factors in the HCM 2000 Queue and Delay Models for Traffic Signals

Progression Factors in the HCM 2000 Queue and Delay Models for Traffic Signals Akcelik & Associates Pty Ltd TECHNICAL NOTE Progression Factors in the HCM 2000 Queue and Delay Models for Traffic Signals Author: Rahmi Akçelik September 2001 Akcelik & Associates Pty Ltd DISCLAIMER:

More information

Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE 2

Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE 2 www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.10 May-2014, Pages:2058-2063 Analysis and Design of Urban Transportation Network for Pyi Gyi Ta Gon Township PHOO PWINT ZAN 1, DR. NILAR AYE

More information

TRAFFIC IMPACT STUDY. Platte Canyon Villas Arapahoe County, Colorado (Arapahoe County Case Number: Z16-001) For

TRAFFIC IMPACT STUDY. Platte Canyon Villas Arapahoe County, Colorado (Arapahoe County Case Number: Z16-001) For TRAFFIC IMPACT STUDY For Platte Canyon Villas Arapahoe County, Colorado (Arapahoe County Case Number: Z16-001) February 2015 Revised: August 2015 April 2016 July 2016 September 2016 Prepared for: KB Home

More information

A hydrodynamic theory based statistical model of arterial traffic

A hydrodynamic theory based statistical model of arterial traffic CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY A hydrodynamic theory based statistical model of arterial traffic Aude Hofleitner,

More information

Potential Issues with Advance Preemption. Roelof Engelbrecht Texas Transportation Institute

Potential Issues with Advance Preemption. Roelof Engelbrecht Texas Transportation Institute 1 Potential Issues with Advance Preemption Roelof Engelbrecht Texas Transportation Institute 2 Rail Preemption Designed to transfer right-of-way to the track movement and clear vehicles off the track(s)

More information

Advanced Computer Networks Lecture 3. Models of Queuing

Advanced Computer Networks Lecture 3. Models of Queuing Advanced Computer Networks Lecture 3. Models of Queuing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/13 Terminology of

More information

FINAL Traffic Report for the Proposed Golden Valley Road and Newhall Ranch Road Projects in the City of Santa Clarita, California May 5, 2005

FINAL Traffic Report for the Proposed Golden Valley Road and Newhall Ranch Road Projects in the City of Santa Clarita, California May 5, 2005 FINAL Traffic Report for the Proposed Golden Valley Road and Newhall Ranch Road Projects in the City of Santa Clarita, California May 5, 2005 Prepared For: EDAW, Inc. 1420 Kettner Boulevard, Suite 620

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Real-time, Adaptive Prediction of Incident Delay for Advanced Traffic Management Systems

Real-time, Adaptive Prediction of Incident Delay for Advanced Traffic Management Systems Real-time, Adaptive Prediction of Incident Delay for Advanced Traffic Management Systems Liping Fu and Bruce Hellinga Department of Civil Engineering, University of Waterloo, Waterloo, Canada Phone: 59

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

Airline Road: is a two lane residential roadway adjacent to the west side of the proposed school site with a speed limit of 30 mph.

Airline Road: is a two lane residential roadway adjacent to the west side of the proposed school site with a speed limit of 30 mph. HIGHLAND PARK ISD TRAFFIC IMPACT STUDY REPORT FOR PROPOSED HPISD ELEMENTARY SCHOOL SITE ON NORTHWEST HIGHWAY BETWEEN AIRLINE ROAD AND DURHAM IN THE CITY OF DALLAS, TEXAS PURPOSE OF STUDY The purpose of

More information

S.170 th Street Micro-Simulation Seattle-Tacoma International Airport Port of Seattle/Aviation Planning

S.170 th Street Micro-Simulation Seattle-Tacoma International Airport Port of Seattle/Aviation Planning Seattle-acoma International Airport Port of Seattle/Aviation Planning Port of Seattle PO OF SEAE Aviation Planning Airport Operations January 24, 2013 Summary he Port is planning to relocate the cell phone

More information

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions.

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. MAT 4371 - SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. Question 1: Consider the following generator for a continuous time Markov chain. 4 1 3 Q = 2 5 3 5 2 7 (a) Give

More information

Traffic Modelling for Moving-Block Train Control System

Traffic Modelling for Moving-Block Train Control System Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 601 606 c International Academic Publishers Vol. 47, No. 4, April 15, 2007 Traffic Modelling for Moving-Block Train Control System TANG Tao and LI Ke-Ping

More information

The Timing Capacity of Single-Server Queues with Multiple Flows

The Timing Capacity of Single-Server Queues with Multiple Flows The Timing Capacity of Single-Server Queues with Multiple Flows Xin Liu and R. Srikant Coordinated Science Laboratory University of Illinois at Urbana Champaign March 14, 2003 Timing Channel Information

More information

A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic

A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic Commun. Theor. Phys. 58 (202) 744 748 Vol. 58, No. 5, November 5, 202 A Cellular Automaton Model for Heterogeneous and Incosistent Driver Behavior in Urban Traffic LIU Ming-Zhe ( ), ZHAO Shi-Bo ( ô ),,

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

GIS-BASED VISUALIZATION FOR ESTIMATING LEVEL OF SERVICE Gozde BAKIOGLU 1 and Asli DOGRU 2

GIS-BASED VISUALIZATION FOR ESTIMATING LEVEL OF SERVICE Gozde BAKIOGLU 1 and Asli DOGRU 2 Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey GIS-BASED VISUALIZATION FOR ESTIMATING LEVEL OF SERVICE Gozde BAKIOGLU 1 and Asli DOGRU 2 1 Department of Transportation Engineering,

More information

Per your request and authorization, we have prepared this traffic evaluation for the above referenced project.

Per your request and authorization, we have prepared this traffic evaluation for the above referenced project. Memorandum To: From: Re: Marc Stout, P.E. City Engineer, City of Roseville Chris Gregerson, P.E., T.E. Matt Weir, P.E., T.E., PTOE Douglas Boulevard Coffee Kiosk Traffic Evaluation Roseville, California

More information

STUDY OF CRITICAL GAP AND ITS EFFECT ON ENTRY CAPACITY OF A ROUNDABOUT IN MIXED TRAFFIC CONDITIONS

STUDY OF CRITICAL GAP AND ITS EFFECT ON ENTRY CAPACITY OF A ROUNDABOUT IN MIXED TRAFFIC CONDITIONS STUDY OF CRITICAL GAP AND ITS EFFECT ON ENTRY CAPACITY OF A ROUNDABOUT IN MIXED TRAFFIC CONDITIONS PRESENTED BY, Revathy Pradeep School Of Planning And Architecture, New Delhi GUIDED BY, Dr. Sewa Ram Associate

More information

HALFF 16196? TRAFFIC MANAGEMENT PLAN. Richardson ISD Aikin Elementary School Dallas, Texas North Bowser Road Richardson, Texas 75081

HALFF 16196? TRAFFIC MANAGEMENT PLAN. Richardson ISD Aikin Elementary School Dallas, Texas North Bowser Road Richardson, Texas 75081 30280 16196? TRAFFIC MANAGEMENT PLAN Exhibit 572B Aikin Elementary School Planned Development District No. 572 Approved City Plan Commission October20, 2016 July 12, 2016 Prepared for HALFF AVO 31586 PHO1

More information

Subject: Desert Palisades Specific Plan - Tram Way Access Sight Distance

Subject: Desert Palisades Specific Plan - Tram Way Access Sight Distance Endo Engineering Traffic Engineering Air Quality Studies Noise Assessments July 13, 2015 Mr. Ed Freeman Pinnacle View, LLC P.O. Box 1754 Lake Oswego, OR 97035-0579 Subject: Desert Palisades Specific Plan

More information

CSM: Operational Analysis

CSM: Operational Analysis CSM: Operational Analysis 2016-17 Computer Science Tripos Part II Computer Systems Modelling: Operational Analysis by Ian Leslie Richard Gibbens, Ian Leslie Operational Analysis Based on the idea of observation

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

A Review of Gap-Acceptance Capacity Models

A Review of Gap-Acceptance Capacity Models 29th Conference of Australian Institutes of Transport Research (CAITR 2007), University of South Australia, Adelaide, Australia, 5-7 December 2007 A Review of Gap-Acceptance Capacity Models Rahmi Akçelik

More information

Intro to Queueing Theory

Intro to Queueing Theory 1 Intro to Queueing Theory Little s Law M/G/1 queue Conservation Law 1/31/017 M/G/1 queue (Simon S. Lam) 1 Little s Law No assumptions applicable to any system whose arrivals and departures are observable

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Ekkehard Köhler, Rolf H. Möhring, and Gregor Wünsch Technische Universität Berlin, Institut für Mathematik, MA 6-1, Straße des 17. Juni

More information

Modeling Driver Behavior During Merge Maneuvers

Modeling Driver Behavior During Merge Maneuvers Southwest Region University Transportation Center Modeling Driver Behavior During Merge Maneuvers SWUTC/98/472840-00064-1 Center for Transportation Research University of Texas at Austin 3208 Red River,

More information

Anticipatory Pricing to Manage Flow Breakdown. Jonathan D. Hall University of Toronto and Ian Savage Northwestern University

Anticipatory Pricing to Manage Flow Breakdown. Jonathan D. Hall University of Toronto and Ian Savage Northwestern University Anticipatory Pricing to Manage Flow Breakdown Jonathan D. Hall University of Toronto and Ian Savage Northwestern University Flow = density x speed Fundamental diagram of traffic Flow (veh/hour) 2,500 2,000

More information

Introduction to Queueing Theory with Applications to Air Transportation Systems

Introduction to Queueing Theory with Applications to Air Transportation Systems Introduction to Queueing Theory with Applications to Air Transportation Systems John Shortle George Mason University February 28, 2018 Outline Why stochastic models matter M/M/1 queue Little s law Priority

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

Variable Speed Approach for Congestion Alleviation on Boshporus Bridge Crossing

Variable Speed Approach for Congestion Alleviation on Boshporus Bridge Crossing Variable Speed Approach for Congestion Alleviation on Boshporus Bridge Crossing A. Akbas a,1, V. Topuz a,1, H.H. Celik b,2 and M. Ergun c,3 a University of Marmara, Vocational High School of Technical

More information

1.225J J (ESD 205) Transportation Flow Systems

1.225J J (ESD 205) Transportation Flow Systems 1.225J J (ESD 25) Transportation Flow Systems Lecture 9 Simulation Models Prof. Ismail Chabini and Prof. Amedeo R. Odoni Lecture 9 Outline About this lecture: It is based on R16. Only material covered

More information

Using High-Resolution Detector and Signal Data to Support Crash Identification and Reconstruction. Indrajit Chatterjee Gary Davis May, 2011

Using High-Resolution Detector and Signal Data to Support Crash Identification and Reconstruction. Indrajit Chatterjee Gary Davis May, 2011 Using High-Resolution Detector and Signal Data to Support Crash Identification and Reconstruction Indrajit Chatterjee Gary Davis May, 2011 Introduction Road accidents are complex phenomenon. Causal factors

More information

Validation of traffic models using PTV VISSIM 7

Validation of traffic models using PTV VISSIM 7 Department of Mechanical Engineering Manufacturing Networks Research Group Validation of traffic models using PTV VISSIM 7 J.H.T. Hendriks Supervisors: Dr.ir. A.A.J. Lefeber Ir. S.T.G. Fleuren Eindhoven,

More information

Uncertainty in the Yellow Change Interval

Uncertainty in the Yellow Change Interval Uncertainty in the Yellow Change Interval Abstract The difference between legal and illegal when it comes to running a red light is not black and white. Engineering is never exact. Tolerance is routine

More information

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic Linear Model Predictive Control for ueueing Networks in Manufacturing and Road Traffic Yoni Nazarathy Swinburne University of Technology, Melbourne. Joint work with: Erjen Lefeber (manufacturing), Hai

More information

March Grade Crossing Analysis

March Grade Crossing Analysis March 2014 Grade Crossing Analysis T E C H N I C A L M E M O R A N D U M South Florida Freight and Passenger Rail Enhancement Study Phase 1A - Rehabilitate Existing Northwood Connection; FPID: 434948-1

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 6, June ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 6, June ISSN International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018 109 Quantifying Traffic Congestion by Studying Traffic Flow Characteristics in Wolaita Sodo Town, Ethiopia Mengistu

More information

Standard Highway Sign Border Specifications

Standard Highway Sign Border Specifications Standard Highway Sign Border Specifications A Radius Radius B C SIGN SIZE SIGN SIZE Variable Radius B C SIGN SIZE BORDER WIDTHS A B C CORNER RADIUS 18 4 30 36 48 60.375.375.375 1.375.375.438 1.5.5.375.65

More information