Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Size: px
Start display at page:

Download "Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?"

Transcription

1 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons of a Lght Emttng ode (LE): co( t ) τ mn T t O A LE LE rer The queston then s: how do we use ths square wae to turn on and turn off the LE? rst, we must use the precse language and nomenclature of electronc deces. An LE as ts name makes clear s a dode. Jm Stles The Un. of Kansas ept. of EES

2 0//00 rng your LE.doc / Howeer, most LE are not slcon juncton dodes but nstead are made of Gallum Arsende (GaAs). Ths makes them somewhat dfferent than the p-n juncton dodes we studed n EES 3, but the bascs are the same.. An LE emts energy (t s on ) when the dode s forward based. or slcon p-n juncton dodes, sgnfcant but plausble (.e., nondestructe) forward bas current results n a forward bas dode oltage drop (from anode to cathode) of between 0.5 and 0.9 olts. Thus, we typcally approxmate ths forward based oltage as 0.7. Howeer, for GaAs LEs ths forward bas oltage s between.0 and.0 olts when the dode current s sgnfcant (.e., > ma) yet plausble (.e., < A).. An LE does not emt energy (t s off ) when the dode s reerse based. n ths state, the dode current s essentally zero. There s of course a transton regon between the forward and reerse bas states (.e., ther defntons are a bt subjecte), but we can safely say that an LE s reerse based ( 0) when ts dode oltage s less than (say) 0.5. Jm Stles The Un. of Kansas ept. of EES

3 0//00 rng your LE.doc 3/ LE Q: So, just how do we take the output of the O and use t to place the dode n one of these two state? A: The answer s the LE drer. As we look at the dgtal sgnal from the O, we see t has one of two oltage states ether hgh oltage or low oltage mn. Our job s to map each of these two oltage states nto a dode bas state of ether reerse or forward. An excellent drer crcut for accomplshng ths s: The desgn problem s ths: gen a specfc LE and JT, as well as oltages mn, and, what should be the two resstor alues and? To begn, let s do a lttle crcut analyss. rom KL: and rom KL: n or n mn LE E E and 0 E 0 n E Jm Stles The Un. of Kansas ept. of EES

4 0//00 rng your LE.doc 4/ And fnally from Ohm s Law: and Now, t s reasonable to decde that when n mn the LE should be reerse based (off) and when n, the LE should be forward based (on). Let s look at the reerse bas case frst. We know that for ths to be true, the dode current s zero ( 0) and the dode oltage s less than about 0.5 ( < 500m ). Note ths means that the current through resstor s zero, so that 0, as well. ut, by KL we know that the s also the collector current. Thus, to make the dode reerse based, we must bas the JT to the proper mode. Q: see! We must make the npn JT ether on or off, rght? n mn LE 0 0 E E A: NO!!!!!! Transstor modes are not on or off. There are three count em three specfc and unambguous transstor modes. or polar Juncton Transstor (JT), these modes are Acte, Saturaton, and utoff. Jm Stles The Un. of Kansas ept. of EES

5 0//00 rng your LE.doc 5/ Hopefully, the correct mode for the reerse based transstor s edent. We requre that 0, and all transstor currents are zero f the JT s n cutoff! f the JT of our crcut s n cutoff mode, the LE wll be reerse based. So, let s ASSUME that our JT s n cutoff. ecall that we ENOE the equaltes 0. E f we now ANALYZE ths crcut we fnd: E and E n We now HEK to see f ths analyss s consstent wth the nequaltes assocated wth our orgnal cutoff assumpton. ecall these nequaltes are: E > 07. and < 0 E Now f the LE s reerse based, we hae establshed that < 05., meanng that for ths crcut assumpton < 05. > 05. E E n mn LE E E Jm Stles The Un. of Kansas ept. of EES

6 0//00 rng your LE.doc 6/ Thus, n order for > 07., the oltage source must be: E 05. > 07. >. Ths means that must be greater than. for the JT to be n cutoff. Ths of course s not much of a restrcton, as s always much greater than. olts! rom the second nequalty, we can conclude that n order for the JT to be n cutoff, the nput oltage mn must be negate (.e., mn < 0 )! Q: Ykes! m not sure that ths wll be the case. Although mn wll lkely be zero (or at least ery small), don t thnk t wll actually be negate!?! A: Well, the nequalty E < 0 s actually a lttle bt too restrcte. emember, the mportant thng here s that the ase-emtter Juncton (EJ) of the JT s reerse based. Agan, ths defnton s a lttle nebulous. learly, the EJ wll be reerse based f E < 0, but t lkewse wll exhbt almost no dffuson current f E s poste but small. A less restrcte, but nearly as accurate nequalty would be < 03.. Meanng that < 03. s E requred for the JT to be n cutoff. Ths restrcton s qute realstc. mn Jm Stles The Un. of Kansas ept. of EES

7 0//00 rng your LE.doc 7/ Thus we can conclude for our drer crcut, the LE wll be reerse based (off) f both these condtons are satsfed: >. and < 03. n mn Q: Hey wat a mnute! Nether of these desgn statements hae anythng to do wth resstors and. Where do they come n?? A: f the JT s n cutoff, they don t! f the two nequaltes aboe are satsfed, then the JT wll be n cutoff and the LE reerse based for any (reasonable) alue of and. To see how the resstors affect the crcut, we must consder the case where the LE s forward based! ecall that f the LE s forward based, the dode current wll be poste, wth a sgnfcant but plausble alue (e.g., ma < < A ). Lkewse, the dode oltage wll be n the range of one to two olts (.e., < < ). LE endors call the oltage across a forward based LE the forward oltage and ge t the arable. n LE E E Jm Stles The Un. of Kansas ept. of EES

8 0//00 rng your LE.doc 8/ Snce now we hae a case where > 0, the JT s clearly not n cutoff. Of course t could be n ether ) saturaton or ) acte mode. Let s see f we can desgn a drer for each mode! rst, we must determne what dode current we desre when the LE s forward based (endors typcally refer to ths as forward current ). Of course, the hgher the current, the brghter our LE lght. rom that standpont, we wsh to make that current as large as possble. Q: an we just make t really large lke, say, 0 Amps? A: Unfortunately no. We attempted to put that much current through an LE, we would surely melt t. Eery dode has a mum power ratng P. The power absorbed by the dode s smply the product of the oltage across and the current through t. Of course, these alues wll be changng wth tme as co ( t ) toggles between and mn. The tme-aeraged power dsspaton, howeer, can be determned and not surprsngly t depends on the duty t : cycle τ T of sgnal ( ) co Jm Stles The Un. of Kansas ept. of EES

9 0//00 rng your LE.doc 9/ τ P T Snce we wsh to aod meltng, we want P > P meanng: τ P T < P < T τ Once we hae selected a sutable we can desgn the LE drer. Let s frst ASSUME that the JT s n saturaton. We ENOE equaltes: E 07. and 0. Now we ANALYZE ths crcut. rom Ohm s Law: E ( 0). earrangng, we can determned the requred alue of resstor : ( 0). Lkewse: 07. n LE E E Jm Stles The Un. of Kansas ept. of EES

10 0//00 rng your LE.doc 0/ Now we must HEK our results to see f/when they are consstent wth the nequaltes assocated wth JT saturaton. Specfcally, the nequalty <. Snce, ths nequalty leads to: < < Thus, we conclude that the JT wll be n saturaton, wth collector current, f: ( 0). and 07. < The problem wth ths desgn could be the resultng base current: 07. t s possble that the O cannot prode that much current. Thus, an alternate desgn can features the JT n acte mode. or ths mode, we ENOE the equaltes: E 07. and And so now ANALYZE ths crcut: Jm Stles The Un. of Kansas ept. of EES

11 0//00 rng your LE.doc / and as before: combnng: 07. Lkewse: Now HEK to see f/when these results are consstent wth acte mode nequaltes, specfcally > 07.. E E > 07. E 0 7. < auton: don t make too small!!! n LE E 07. E Thus, the JT wll be n acte mode, and the LE current wll be, f: and < Jm Stles The Un. of Kansas ept. of EES

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

3.2 Terminal Characteristics of Junction Diodes (pp )

3.2 Terminal Characteristics of Junction Diodes (pp ) /9/008 secton3_termnal_characterstcs_of_juncton_odes.doc /6 3. Termnal Characterstcs of Juncton odes (pp.47-53) A Juncton ode I.E., A real dode! Smlar to an deal dode, ts crcut symbol s: HO: The Juncton

More information

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior!

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior! 1/25/2012 secton3_1the_ideal_ode 1/2 4.1 The Ideal ode Readng Assgnment: pp.165-172 Before we get started wth deal dodes, let s frst recall lnear dece behaor! HO: LINEAR EVICE BEHAVIOR Now, the deal dode

More information

3.5 Rectifier Circuits

3.5 Rectifier Circuits 9/24/2004 3_5 Rectfer Crcuts empty.doc 1/2 3.5 Rectfer Crcuts A. Juncton ode 2-Port Networks - ( t ) Juncton ode Crcut ( t ) H: The Transfer Functon of ode Crcuts Q: A: H: teps for fndng a Juncton ode

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

5.6 Small-Signal Operation and Models

5.6 Small-Signal Operation and Models 3/16/2011 secton 5_6 Small Sgnal Operaton and Models 1/2 5.6 Small-Sgnal Operaton and Models Readng Assgnment: 443-458 Now let s examne how we use BJTs to construct amplfers! The frst mportant desgn rule

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

3.6 Limiting and Clamping Circuits

3.6 Limiting and Clamping Circuits 3/10/2008 secton_3_6_lmtng_and_clampng_crcuts 1/1 3.6 Lmtng and Clampng Crcuts Readng Assgnment: pp. 184-187 (.e., neglect secton 3.6.2) Another applcaton of juncton dodes Q: What s a lmter? A: A 2-port

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Lecture 27 Bipolar Junction Transistors

Lecture 27 Bipolar Junction Transistors Lecture 27 polar Juncton Transstors ELETRIAL ENGINEERING: PRINIPLES AND APPLIATIONS, Fourth Edton, by Allan R. Hambley, 2008 Pearson Educaton, Inc. polar Juncton Transstors 1. Understand bpolar juncton

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

A Novel, Low-Power Array Multiplier Architecture

A Novel, Low-Power Array Multiplier Architecture A Noel, Low-Power Array Multpler Archtecture by Ronak Bajaj, Saransh Chhabra, Sreehar Veeramachanen, MB Srnas n 9th Internatonal Symposum on Communcaton and Informaton Technology 29 (ISCIT 29) Songdo -

More information

Lecture 5: Operational Amplifiers and Op Amp Circuits

Lecture 5: Operational Amplifiers and Op Amp Circuits Lecture 5: peratonal mplers and p mp Crcuts Gu-Yeon We Dson o Engneerng and ppled Scences Harard Unersty guyeon@eecs.harard.edu We erew eadng S&S: Chapter Supplemental eadng Background rmed wth our crcut

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introducton to MEM Desgn Fall 7 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer cences Unersty of Calforna at Berkeley Berkeley, C 947 Dscusson: eew of Op mps EE C45: Introducton

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

VI. Transistor Amplifiers

VI. Transistor Amplifiers VI. Transstor Amplfers 6. Introducton In ths secton we wll use the transstor small-sgnal model to analyze and desgn transstor amplfers. There are two ssues that we need to dscuss frst: ) What are the mportant

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power ECE 3 Energy Conerson and Power Electroncs Dr. Tm Hogan Chapter : ntroducton and Three Phase Power. eew of Basc Crcut Analyss Defntons: Node - Electrcal juncton between two or more deces. Loop - Closed

More information

Flyback Converter in DCM

Flyback Converter in DCM Flyback Converter n CM m 1:n V O V S m I M m 1 1 V CCM: wth O V I I n and S 2 1 R L M m M m s m 1 CM: IM 2 m 1 1 V 1 Borderlne: O VS I n wth V nv 2 1 R 2 L 1 M m s O S m CM f R > R 2n crt 2 L m 2 (1 )

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 205 Two-Port Theory, Slde Two-Port Networks Note, the BJT s all are hghly

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points) ENGR-43 Electronc Instrumentaton Quz 4 Fall 21 Name Secton Queston Value Grade I 2 II 2 III 2 IV 2 V 2 Total (1 ponts) On all questons: SHOW LL WORK. EGIN WITH FORMULS, THEN SUSTITUTE VLUES ND UNITS. No

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1 E40M Devce Models, Resstors, Voltage and Current Sources, Dodes, Solar Cells M. Horowtz, J. Plummer, R. Howe 1 Understandng the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Electrcal Engneerng Department Network Lab. Objecte: - Experment on -port Network: Negate Impedance Conerter To fnd the frequency response of a smple Negate Impedance Conerter Theory: Negate Impedance

More information

ELCT 503: Semiconductors. Fall 2014

ELCT 503: Semiconductors. Fall 2014 EL503 Semconductors Fall 2014 Lecture 09: BJ rcut Analyss Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu EL 503: Semconductors ntroducton npn transstor pnp transstor EL 503: Semconductors ntroducton

More information

Chapter 10 Sinusoidal Steady-State Power Calculations

Chapter 10 Sinusoidal Steady-State Power Calculations Chapter 0 Snusodal Steady-State Power Calculatons n Chapter 9, we calculated the steady state oltages and currents n electrc crcuts dren by snusodal sources. We used phasor ethod to fnd the steady state

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014 OLLEGE OF ENGNEERNG PUTRAJAYA AMPUS FNAL EXAMNATON SEMESTER 013 / 014 PROGRAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electrocs Egeerg (Hoours) Bachelor of Electrcal Power Egeerg (Hoours) : EEEB73

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are: I. INTRODUCTION 1.1 Crcut Theory Fundamentals In ths course we study crcuts wth non-lnear elements or deces (dodes and transstors). We wll use crcut theory tools to analyze these crcuts. Snce some of tools

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

1.4 Small-signal models of BJT

1.4 Small-signal models of BJT 1.4 Small-sgnal models of J Analog crcuts often operate wth sgnal levels that are small compared to the bas currents and voltages n the crcut. Under ths condton, ncremental or small-sgnal models can be

More information

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy ..2 nt Crcut Bascs KVL, KCL, Ohm's Law LED Outputs Buttons/Swtch Inputs VOLTAGE AND CRRENT..4 Current and Voltage Current / Voltage Analogy Charge s measured n unts of Coulombs Current Amount of charge

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001 Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence Read Chapters 11 through 12. 6.002 Crcuts and Electroncs Sprng 2001 Homework #5 Handout S01031 Issued: 3/8/2001

More information

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS ELG 35 ELECTONICS I SECOND CHAPTE: OPEATIONAL AMPLIFIES Sesson Wnter 003 Dr. M. YAGOUB Second Chapter: Operatonal amplfers II - _ After reewng the basc aspects of amplfers, we wll ntroduce a crcut representng

More information

Traffic Signal Timing: Basic Principles. Development of a Traffic Signal Phasing and Timing Plan. Two Phase and Three Phase Signal Operation

Traffic Signal Timing: Basic Principles. Development of a Traffic Signal Phasing and Timing Plan. Two Phase and Three Phase Signal Operation Traffc Sgnal Tmng: Basc Prncples 2 types of sgnals Pre-tmed Traffc actuated Objectves of sgnal tmng Reduce average delay of all vehcles Reduce probablty of accdents by mnmzng possble conflct ponts Objectves

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3. ECE 6440 Summer 003 Page 1 Homework Assgnment No. 7 s Problem 1 (10 ponts) A fourstage rng oscllator used as the VCO n a PLL s shown. Assume that M1 and M are matched and M3 and M4 are matched. Also assume

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 03 Two-Port Theory, Slde What Are Two-Ports? Basc dea: replace a complex

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B3 3.1 Snusodal steady-state analyss (sngle-phase), a reew 3. hree-phase analyss Krtley Chapter : AC oltage, Current and Power.1 Sources and Power. Resstors, Inductors, and Capactors Chapter 4:

More information

Lecture 10: Small Signal Device Parameters

Lecture 10: Small Signal Device Parameters Lecture 0: Small Sgnal Dece Parameters 06009 Lecture 9, Hgh Speed Deces 06 Lecture : Ballstc FETs Lu: 0, 394 06009 Lecture 9, Hgh Speed Deces 06 Large Sgnal / Small Sgnal e I E c I C The electrcal sgnal

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Basically, if you have a dummy dependent variable you will be estimating a probability.

Basically, if you have a dummy dependent variable you will be estimating a probability. ECON 497: Lecture Notes 13 Page 1 of 1 Metropoltan State Unversty ECON 497: Research and Forecastng Lecture Notes 13 Dummy Dependent Varable Technques Studenmund Chapter 13 Bascally, f you have a dummy

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information