Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

Size: px
Start display at page:

Download "Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy"

Transcription

1 ..2 nt Crcut Bascs KVL, KCL, Ohm's Law LED Outputs Buttons/Swtch Inputs VOLTAGE AND CRRENT..4 Current and Voltage Current / Voltage Analogy Charge s measured n unts of Coulombs Current Amount of charge flowng through a n a certan Measured n = Coulombs per second Current s usually denoted by the varable, I Voltage Electrc energy Analogous to mechancal potental energy (.e. ) Must measure ponts Measured n Volts (V) Common reference pont: Ground (GND) = 0V Often really connected to the ground Hgher Potental Conductve Materal (A Wre) Hgher Potental Lower Potental Lower Potental V 5V Charge = Water Voltage Source = Water Pressure v v 2 2 v GND

2 Meet The Components Most electronc crcuts are modeled wth the followng components Resstor Measures how well a materal conducts electrons Capactor & Inductor Measures materal's ablty to store charge and energy Transstor Basc amplfcaton or swtchng technology.5 Transstor Krchhoff's Laws Common sense rules that govern current and voltage Krchhoff's Current Law (KCL) Krchhoff's Voltage Law (KVL) Krchhoff's Current Law (KCL) The current flowng a locaton (a.k.a. node) must equal the current flowng of the locaton or put another way The sum of current at any locaton must An electronc component (e.g. resstor, transstor, etc.) 2 4 KCL says.6 Krchhoff's Current Law Remnder: KCL says Start by defnng a for each current It does not matter what drecton we choose When we solve for one of the currents we may get a current "Negatve" sgn smply means the drecton s of our orgnal ndcaton In the examples to the rght the top two examples the drectons chosen are fne but physcally n volaton of KCL but KCL helps us arrve at a consstent result snce solvng for one of the current values ndcates The of and 2 are the same They always flow n the drecton of each other (f one flows n the other flows out or vce versa) 2 KCL says mples 2 KCL says mples 2 KCL says 2 KCL says.7 Krchhoff's Laws Krchhoff's Voltage Law (KVL) The sum of voltages around a (.e. walkng around and returnng to the ) must equal 0 Defne "polarty" of voltage and then be consstent as you go around the loop obvously when you solve you may fnd a voltage to be negatve whch means you need to flp/reverse the polarty v KVL says: v v 2 v 4 2 v 4 KVL says: v 2 2 v 5.8 v 5

3 .9.0 A Bref Summary Nodes KCL and KVL are and no matter what knd of devces are used The yellow boxes could be ANY electronc devce: resstors, batteres, swtches, transstors, etc KVL and KCL wll stll apply In a few mnutes, we'll learn a law that only apples to resstors (or any devce that can be modeled as a resstor) Some KVL or KCL equatons may be Wrtng the equaton for loop {v,v2,v} and {v,v4,v5} may be suffcent and wrtng {v,v2,v4,v5} may not be necessary But as a novce, feel free to KVL says: v v 2 v =0 v v 2 v 4 v 5 =0 v v 4 v 5 =0 (Def.) An electrc node s the juncton of devces connected by wres voltage at any pont of the node How many nodes exst n the dagram to the rght? se KCL to solve for, 4, and 6 se KVL to solve for v, v8, v5 Practce KCL and KVL NODE D A 2V Hnt: Fnd a node or loop where there s only one unknown and that should cause a domno effect 9 A 9 9V 5V 2 8 v 8 NODE A A 4 v 4 v 5 4V NODE C 0.5A 8 5 NODE B V 5V. Resstance and Ohms Law Measure of how hard t s for current to flow through the substance Resstance = How much do you have to put to get a certan to flow Measured n Ohms (Ω) Ohm's Law I = or V = R => I Large Resstance R Small Resstance Schematc Symbol for a Resstor Ohm's Law ONLY apples to resstors (or devces that can be modeled as a resstor such as swtches and transstors).2

4 Seres & Parallel Resstance Seres resstors = one after the next wth no other dvergent path Parallel resstors = Spannng the same two ponts Seres and parallel resstors can be combned to an equvalent resstor wth value gven as shown Seres Connectons R R eff R=R= Parallel Connecton R eff R R eff = For only 2 resstors, ths smplfes to:. Solvng Voltage & Current Gven the crcut to the rght, let = 5V, R = 400 ohms, = 600 ohms Solve for the current through the crcut and voltages across each resstors (.e. V and V2) Snce everythng s n, KCL teaches us that the current through each component must be the, let's call t = Ths alone lets us compute V and V2 snce Ohm's law says V = and V2 = V = and V2 = Though unneeded, KVL teaches us that VV2=0 or that = V V2 v dd _ V R v v2 2.4 Voltage Supply Drawngs The voltage source () n the left dagram (.e. the crcle connected to the "Rest of Crcut") s shown n an alternate representaton n the rght dagram (.e. the trangle labeled "") In the left dagram we can easly see a KVL loop avalable There s stll a KVL loop avalable n the rght dagram _ V R Both are drawngs of the same crcut (.e. they are equvalent) Rest of Crcut Actual connecton wll be drawn lke ths.5 Shortcut: Voltage Dvders A shortcut applcaton of KVL, KCL, and Ohm's law when two resstors are n seres (must be n seres) When two resstors are n seres we can deduce an expresson for the voltage across one of them () = / ; (2) V = *R; () V2 = * Substtutng our expresson for nto (2) and () The voltage across one of the resstors s proportonal to the value of that resstor and the total seres resstance If you need 0 gallons of gas to drve 500 mles, how much gas you have you used up after drvng 200 mles? Gas =, Mleage = V tot R V V2 Voltage Dvder Eqn: If two resstors R and are n seres then voltage across R s: V = Memorze ths. We wll use t often!.6

5 .7.8 Solvng Voltage & Current Solvng Voltage & Current Reconsderng the crcut to the rght wth = 5V, R = 400 ohms, = 600 ohms Solve for the current through the crcut and voltages across each resstors (.e. V and V2) We can use the voltage dvder concept to mmedately arrve at the value of V2 2 _ V R Consder the crcut on the rght What s the relatonshp between V and V? Can you solve for the voltage V (n terms of Vs, R,, R)? Vs _ V R V R Can you solve for the voltage V2 (n terms of Vs, R,, R)?.9.20 A Problem Gven the followng parameters Vs=5V, R=4, = 2, R = 2 and R4 = 0 ohms. Can we use the voltage dvder concept to mmedately solve the voltage across or do we need to frst do some manpulaton? What about R4? Frst, fnd the total equvalent resstance (R eq ) seen by Vs and then solve for the voltage across each resstor LEDS AS OTPTS AND SWITCHES/BTTONS AS INPTS Frst collapse ths to a sngle equvalent resstance, R eq

6 Generatng Inputs & Measurng Outputs Where do nputs to a dgtal crcut orgnate? sually as from another dgtal crcut (.e. SB connectng to your laptop's man processng system) For our class rght now: A controlled by a human (can be on or off) How wll we know what voltage s comng out of a dgtal crcut? Could use a voltmeter or osclloscope (don't be afrad to use the equpment n our lab!) are commonly used to show the status of a dgtal output to a human A button or swtch (nput stmulus) Input Some dgtal processng/ control An LED Output Each key on your keyboard s essentally a dgtal nput generated by a push button (pressed or not pressed) The status ndcator on the Caps Lock button s smply an LED controlled by a dgtal output..2 (LghtEmttng) Dodes The smplest output we can control s an LED (Lghtemttng dode) whch s lke a tny lght bulb An LED glows ('on') when current through t (.e. when there s a voltage across t) LEDs are polarzed meanng they only work n one Longer leg orentaton ( leg must be at hgher voltage) LED Schematc Symbol Shorter leg ault/fles/magecache/product_full/p roducts/solarbotcsredled.gf 5V 0V Current flows = LED on 5V 0V BACKWARDS!! No Current flows = LED off.22 Longer leg connects to the sde wth the hgher voltage Shorter leg connects to the sde wth the lower voltage 0V 0V 5V 5V No voltage dfferental = No Current flows = LED off Man Pont: To be 'on', there must be a voltage dfference across the LED makng current flow. Need for Seres Resstor wth LEDs Problem: LEDs may allow too much current to flow whch may blow out the LED Soluton: se a seres resstor to lmt current Amount of current wll determne of LED R then and thus LED brghtness = V/R = (VsV LED ) / R sually R s a few hundred ohms ( ohms) No current lmtaton BAD Choose resstor to lmt current A dgtal (gate) output wll usually serve as our voltage source that can be ether '0' (0V) or '' (5V) Doesn't matter where resstor s placed as long as t s n seres Man Pont: LED's should always be connected wth a currentlmtng resstor Longer leg LED Schematc Symbol Breadboard vew.2 Shorter leg LED Connecton Approaches When lettng a dgtal output control an LED, the value (.e. '0' = low or '' = hgh voltage) that causes the LED to lght up depends on how the crcut s wred Ths box represents a dgtal output (e.g. your Arduno) that can generate a hgh () or low (0) voltage. What dgtal output value must be present for the LED to be on? Note: Gates can often (take n) more current than they can (push out), so opton 2 may be preferred but let's not worry about ths now let's use opton Opton 0 LED on LED off GND Model of dgtal output LED s on when gate outputs '' R Opton 2 LED off LED on LED s on when gate outputs '0' Man Pont: LED's can lght for ether a logc '' or '0' output t depends on how they are wred..24

7 Swtch and PushButton Inputs Swtches and pushbuttons can be n one of two confguratons: or Swtches can be opened or closed and then n that poston untl changed Pushbuttons are open by and requre you to push them to close the crcut (they then open when you release) Can be used as an nput to dgtal devce.25 Example pushbuttons Example swtch Swtches and Pushbuttons Important Note : We can model a button or swtch as a resstor of ether 0 ohms or nf. (very large) ohms When open a SW/PB looks lke an resstance (no current can flow) When closed a SW/PB looks lke a (R=0) and no voltage drops across t Queston: What voltage does an open or closed swtch (pushbutton) generate? Answer:. Important Note 2: SW or PBs don't produce dgtal 0's or 's, they control what voltage (PWR/GND) s connected to your devce SW SW SW SW = =.26 R=nf. (open crcut) R=0 (wre) V =?? V =?? Connectng a Swtch Swtches only the voltage gong nto a devce, they do not produce a voltage (0V or 5V) by themselves Opton : Attach one sde to GND and the other sde to the devce When the swtch=open, nothng s connected to the devce (a.k.a. ) A floatng nput may sometmes appears as zero, and other tmes as a one. We need the nputs to logc gates to be n ether the 0 or state not floatng Opton 2: When swtch closed => resstance connecton from power to ground = current flow BAD!!! (Ths s known as a "short crcut"). Vn = floatng = unknown Vn.27 Opton : Bad (floatng) Swtch Closed = 0V (Logc 0) to nput Swtch Open =??? (does not work) nlmted current flow when closed Opton 2: Bad (short crcut) Swtch Open = =5V (Logc ) to nput Swtch Closed = Short Crcut (does not work) Preferred Wrng of Swtches Soluton: Put GND on the far sde and a "pullup" resstor at the nput sde "Pullup resstor" used to hold the nput hgh unless somethng s forcng t to a zero SW open => Arduno nput looks lke nf. Resstance n seres wth Rp. Thus through Rp and thus no voltage drop across Rp Vn = SW closed => Drect wre from GND to nput nput = Also current flowng from to GND s lmted by Rp preventng a short crcut. sually Rp s large (0k ohms) to lmt current Analogy: Ths Photo by nknown Author s lcensed under CC BYSA Rp Vn Preferred: se a pullup resstor To calculate Vn: Vn = V RP Vn = RP = snce n wth resstance of Arduno nput Thus, Vn = Man Pont: Buttons & swtches should have GND connected to one sde & a pullup resstor on the other.28

8 Power & Ground Connectons Easy mstake when you're just learnng to wre up crcuts: Wre the nputs & outputs but forget to connect power and ground All crcuts and chps requre a connecton to a power source and ground Dgtal crcuts (aka "gates") Swtches Buttons Actual connecton Rest of Crcut GND wll be drawn lke ths.29 Summary KCL and KVL apply to ALL electronc devces Ohm's law apples ONLY to resstors and governs the relatonshp between the current through and the voltage across a resstor A resstor network can be collapsed to a sngle equvalent resstance by applyng seres and parallel transformatons If two or more resstors are n seres, the voltage across any of those resstors can be quckly found by applyng the voltage dvder equaton LEDs are used as dgtal outputs and must be wred n the correct drecton Swtches can be modeled as a small (0) resstance when closed or large (nf.) resstance when open.0

1.1. Unit 1. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs

1.1. Unit 1. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs 1.1 nit 1 Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs VOLTAGE AND CRRENT 1.2 1.3 Current and Voltage Charge is measured in units of Coulombs Current Amount of charge flowing through

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week. Announcements Sectons begn ths week Cancelled Sectons: Th 122. Labs begn ths week. Attend your only second lab slot ths week. Cancelled labs: ThF 25. Please check your Lab secton. Homework #1 onlne Due

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02 EE 2006 Electrc Crcut Analyss Fall 2014 September 04, 2014 Lecture 02 1 For Your Informaton Course Webpage http://www.d.umn.edu/~jngba/electrc_crcut_analyss_(ee_2006).html You can fnd on the webpage: Lecture:

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

Physics 2102 Spring 2007 Lecture 10 Current and Resistance

Physics 2102 Spring 2007 Lecture 10 Current and Resistance esstance Is Futle! Physcs 0 Sprng 007 Jonathan Dowlng Physcs 0 Sprng 007 Lecture 0 Current and esstance Georg Smon Ohm (789-854) What are we gong to learn? A road map lectrc charge lectrc force on other

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Kirchhoff second rule

Kirchhoff second rule Krchhoff second rule Close a battery on a resstor: smplest crcut! = When the current flows n a resstor there s a voltage drop = How much current flows n the crcut? Ohm s law: Krchhoff s second law: Around

More information

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1 E40M Devce Models, Resstors, Voltage and Current Sources, Dodes, Solar Cells M. Horowtz, J. Plummer, R. Howe 1 Understandng the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage

More information

8.022 (E&M) Lecture 8

8.022 (E&M) Lecture 8 8.0 (E&M) Lecture 8 Topcs: Electromotve force Crcuts and Krchhoff s rules 1 Average: 59, MS: 16 Quz 1: thoughts Last year average: 64 test slghtly harder than average Problem 1 had some subtletes math

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

Voltage and Current Laws

Voltage and Current Laws CHAPTER 3 Voltage and Current Laws KEY CONCEPTS INTRODUCTION In Chap. 2 we were ntroduced to ndependent voltage and current sources, dependent sources, and resstors. We dscovered that dependent sources

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIERSITY OF UTH ELECTRICL & COMPUTER ENGINEERING DEPRTMENT ECE 70 HOMEWORK #6 Soluton Summer 009. fter beng closed a long tme, the swtch opens at t = 0. Fnd (t) for t > 0. t = 0 0kΩ 0kΩ 3mH Step : (Redraw

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1 4V I 2V (I + ) 0 0 --- 3V 1 2 4Ω 6Ω 3Ω 3/27/2006 Crcuts ( F.obllard) 1 Introducton: Electrcal crcuts are ubqutous n the modern world, and t s dffcult to oerstate ther mportance. They range from smple drect

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

MAE140 - Linear Circuits - Fall 10 Midterm, October 28 M140 - Lnear rcuts - Fall 10 Mdterm, October 28 nstructons () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

UNIT I BASIC CIRCUIT CONCEPTS

UNIT I BASIC CIRCUIT CONCEPTS UNIT I BASIC CIRCUIT CONCEPTS Crcut elements Krchhoff s Law V-I Relatonshp of R,L and C Independent and Dependent sources Smple Resstve crcuts Networks reducton Voltage dvson current source transformaton.

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

Inductor = (coil of wire)

Inductor = (coil of wire) A student n 1120 emaled me to ask how much extra he should expect to pay on hs electrc bll when he strngs up a standard 1-strand box of ccle holday lghts outsde hs house. (total, cumulatve cost)? Try to

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4 Physcs - lectrcty and Magnetsm ecture - Inductance, Crcuts Y&F Chapter 30, Sect - 4 Inductors and Inductance Self-Inductance Crcuts Current Growth Crcuts Current Decay nergy Stored n a Magnetc Feld nergy

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Surface Charge and Resistors

Surface Charge and Resistors Surface Charge and Resstors Just after connecton: E may be the same everywhere nav naue thn thck na na thn thck ue ue After steady state s reached: thn thck na thn thck na thn thck ue thn ue thck E thn

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

KIRCHHOFF CURRENT LAW

KIRCHHOFF CURRENT LAW KRCHHOFF CURRENT LAW ONE OF THE FUNDAMENTAL CONSERATON PRNCPLES N ELECTRCAL ENGNEERNG CHARGE CANNOT BE CREATED NOR DESTROYED NODES, BRANCHES, LOOPS A NODE CONNECTS SEERAL COMPONENTS. BUT T DOES NOT HOLD

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists * How Strong Are Weak Patents? Joseph Farrell and Carl Shapro Supplementary Materal Lcensng Probablstc Patents to Cournot Olgopolsts * September 007 We study here the specal case n whch downstream competton

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

Turing Machines (intro)

Turing Machines (intro) CHAPTER 3 The Church-Turng Thess Contents Turng Machnes defntons, examples, Turng-recognzable and Turng-decdable languages Varants of Turng Machne Multtape Turng machnes, non-determnstc Turng Machnes,

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior!

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior! 1/25/2012 secton3_1the_ideal_ode 1/2 4.1 The Ideal ode Readng Assgnment: pp.165-172 Before we get started wth deal dodes, let s frst recall lnear dece behaor! HO: LINEAR EVICE BEHAVIOR Now, the deal dode

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Computer-Aided Circuit Simulation and Verification. CSE245 Fall 2004 Professor:Chung-Kuan Cheng

Computer-Aided Circuit Simulation and Verification. CSE245 Fall 2004 Professor:Chung-Kuan Cheng Computer-Aded Crcut Smulaton and Verfcaton CSE245 Fall 24 Professor:Chung-Kuan Cheng Admnstraton Lectures: 5:pm ~ 6:2pm TTH HSS 252 Offce Hours: 4:pm ~ 4:45pm TTH APM 4256 Textbook Electronc Crcut and

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

3.6 Limiting and Clamping Circuits

3.6 Limiting and Clamping Circuits 3/10/2008 secton_3_6_lmtng_and_clampng_crcuts 1/1 3.6 Lmtng and Clampng Crcuts Readng Assgnment: pp. 184-187 (.e., neglect secton 3.6.2) Another applcaton of juncton dodes Q: What s a lmter? A: A 2-port

More information