ECE 2100 Circuit Analysis

Size: px
Start display at page:

Download "ECE 2100 Circuit Analysis"

Transcription

1 ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk, Ph.D.

2 ECE 00 Crcut Analyss Chapter AC Power Analyss Copyrght The McGraw-Hll Copanes, nc. Persson requred for reproducton or dsplay.

3 AC Power Analyss Chapter. nstantaneous and Aerage Power. Maxu Aerage Power Transfer.3 Effecte or RMS alue.4 Apparent Power and Power Factor.5 Coplex Power.6 Conseraton of AC Power.7 Power Factor Correcton.8 Power Measureent 3

4 4 Snusodal power at wt Constant power cos ( cos ( cos ( cos ( ( ( ( t t t t t t p w w w. nstantaneous and Aerage Power ( The nstantaneous power, p(t p(t > 0: power s absorbed by the crcut; p(t < 0: power s absorbed by the source.

5 . nstantaneous and Aerage Power ( The aerage power, P, s the aerage of the nstantaneous power oer one perod. P T T 0 p( t dt cos (. P s not te dependent.. When θ = θ, t s a purely resste load case. 3. When θ θ = ±90 o, t s a purely reacte load case. 4. P = 0 eans that the crcut absorbs no aerage power. 5

6 . nstantaneous and Aerage Power (3 Exaple Calculate the nstantaneous power and aerage power absorbed by a passe lnear network f: ( t ( t 65cos (0 t 0 0 sn (0 t 60 Answer: cos(0t 0kW,.0606W 6

7 . nstantaneous and Aerage Power (4 Exaple A current 0 30 flows through an pedance Z 40 Ω. Fnd the aerage power delered to the pedance. Answer: kw 7

8 . Maxu Aerage Power Transfer ( Z TH R TH j X TH Z L R L j X L The axu aerage power can be transferred to the load f X L = X TH and R L = R TH P ax TH 8 R TH f the load s purely real, then R L R TH X TH Z TH 8

9 . Maxu Aerage Power Transfer ( Exaple 3 For the crcut shown below, fnd the load pedance Z L that absorbs the axu aerage power. Calculate that axu aerage power. (Change current source to 6A Answer: 3.45 j0.737w,.49w 9

10 .3 Effecte or RMS alue ( The total power dsspated by R s gen by: P T R Rdt T T 0 0 T dt R Hence, eff s equal to: eff T 0 T dt The alue s a constant tself whch depends on the shape of the functon (t. The effect of a perodc current s the dc current that delers the sae aerage power to a resstor as the perodc current. 0

11 .3 Effecte or RMS alue ( The alue of a snusod (t = cos(wt s gen by: The aerage power can be wrtten n te of the alues: eff cos (θ θ cos (θ θ Note: f you express apltude of a phasor source(s n, then all the answers as a result of ths phasor source(s ust also be n alue.

12 .4 Apparent Power and Power Factor ( Apparent Power, S, s the product of the r..s. alues of oltage and current. t s easured n olt-aperes or A to dstngush t fro the aerage or real power whch s easured n watts. P cos (θ θ S cos (θ θ Apparent Power, S Power Factor, pf Power factor s the cosne of the phase dfference between the oltage and current. t s also the cosne of the angle of the load pedance.

13 .4 Apparent Power and Power Factor ( Purely resste load (R Purely reacte load (L or C Resste and reacte load (R and L/C θ θ = 0, Pf = θ θ = 90 o, pf = 0 θ θ > 0 θ θ < 0 P/S =, all power are consued P = 0, no real power consupton Laggng - nducte load Leadng - capacte load 3

14 .5 Coplex Power ( Coplex power S s the product of the oltage and the coplex conjugate of the current: θ θ θ θ 4

15 .5 Coplex Power ( S θ θ S cos (θ θ j sn (θ θ S = P + j Q P: s the aerage power n watts delered to a load and t s the only useful power. Q: s the reacte power exchange between the source and the reacte part of the load. t s easured n AR. Q = 0 for resste loads (unty pf. Q < 0 for capacte loads (leadng pf. Q > 0 for nducte loads (laggng pf. 5

16 .5 Coplex Power (3 S cos (θ θ j sn (θ θ S = P + j Q Apparent Power, S = S = * = Real power, P = Re(S = S cos(θ θ Reacte Power, Q = (S = S sn(θ θ Power factor, pf = P/S = cos(θ θ P Q 6

17 .5 Coplex Power (4 S cos (θ θ j sn (θ θ S = P + j Q Power Trangle pedance Trangle Power 7

18 .6 Conseraton of AC Power ( The coplex real, and reacte powers of the sources equal the respecte sus of the coplex, real, and reacte powers of the nddual loads. For parallel connecton: S * ( * * The sae results can be obtaned for a seres connecton. * * S S 8

19 .7 Power Factor Correcton ( Power factor correcton s the process of ncreasng the power factor wthout alterng the oltage or current to the orgnal load. Power factor correcton s necessary for econoc reason. 9

20 .7 Power Factor Correcton ( Q c = Q Q = P (tan θ - tan θ = ωc Q = S sn θ = P tan θ C Q ω c P (tan θ tan θ ω P = S cos θ Q = P tan θ 0

21 .8 Power Measureent ( The watteter s the nstruent for easurng the aerage power. The basc structure Equalent Crcut wth load f ( t cos( wt and ( t cos( wt P cos (θ θ cos (θ θ

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Chapter 10 Sinusoidal Steady-State Power Calculations

Chapter 10 Sinusoidal Steady-State Power Calculations Chapter 0 Snusodal Steady-State Power Calculatons n Chapter 9, we calculated the steady state oltages and currents n electrc crcuts dren by snusodal sources. We used phasor ethod to fnd the steady state

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

CHAPTER II AC POWER CALCULATIONS

CHAPTER II AC POWER CALCULATIONS CHAE AC OWE CACUAON Conens nroducon nsananeous and Aerage ower Effece or M alue Apparen ower Coplex ower Conseraon of AC ower ower Facor and ower Facor Correcon Maxu Aerage ower ransfer Applcaons 3 nroducon

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B3 3.1 Snusodal steady-state analyss (sngle-phase), a reew 3. hree-phase analyss Krtley Chapter : AC oltage, Current and Power.1 Sources and Power. Resstors, Inductors, and Capactors Chapter 4:

More information

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power ECE 3 Energy Conerson and Power Electroncs Dr. Tm Hogan Chapter : ntroducton and Three Phase Power. eew of Basc Crcut Analyss Defntons: Node - Electrcal juncton between two or more deces. Loop - Closed

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Chapter 7 AC Power and Three-Phase Circuits

Chapter 7 AC Power and Three-Phase Circuits Chaper 7 AC ower and Three-hae Crcu Chaper 7: Oulne eance eacance eal power eacve power ower n AC Crcu ower and Energy Gven nananeou power p, he oal energy w ranferred o a load beween and : w p d The average

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02 EE 2006 Electrc Crcut Analyss Fall 2014 September 04, 2014 Lecture 02 1 For Your Informaton Course Webpage http://www.d.umn.edu/~jngba/electrc_crcut_analyss_(ee_2006).html You can fnd on the webpage: Lecture:

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Basic Electrical Engineering for Welding [ ] --- Introduction --- Basc Elctrcal Engnrng for Wldng [] --- Introducton --- akayosh OHJI Profssor Ertus, Osaka Unrsty Dr. of Engnrng VIUAL WELD CO.,LD t-ohj@alc.co.jp OK 15 Ex. Basc A.C. crcut h fgurs n A-group show thr typcal

More information

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5.

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5. Krchoff s Laws Drect: KL, KL, Ohm s Law G G Ohm s Law: 6 (always get equaton/esor) Ω 5 Ω 6Ω 4 KL: : 5 : 5 eq. are dependent (n general, get n ndep. for nodes) KL: 4 wrte loop equaton for each loop wth

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Module B3. VLoad = = V S V LN

Module B3. VLoad = = V S V LN Mdule B Prblem The -hase lads are cnnected n arallel. One s a urely resste lad cnnected n wye. t cnsumes 00kW. The secnd s a urely nducte 00kR lad cnnected n wye. The thrd s a urely caacte 00kR lad cnnected

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

The Impact of the Earth s Movement through the Space on Measuring the Velocity of Light

The Impact of the Earth s Movement through the Space on Measuring the Velocity of Light Journal of Appled Matheatcs and Physcs, 6, 4, 68-78 Publshed Onlne June 6 n ScRes http://wwwscrporg/journal/jap http://dxdoorg/436/jap646 The Ipact of the Earth s Moeent through the Space on Measurng the

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are: I. INTRODUCTION 1.1 Crcut Theory Fundamentals In ths course we study crcuts wth non-lnear elements or deces (dodes and transstors). We wll use crcut theory tools to analyze these crcuts. Snce some of tools

More information

Formulation of Circuit Equations

Formulation of Circuit Equations ECE 570 Sesson 2 IC 752E Computer Aded Engneerng for Integrated Crcuts Formulaton of Crcut Equatons Bascs of crcut modelng 1. Notaton 2. Crcut elements 3. Krchoff laws 4. ableau formulaton 5. Modfed nodal

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 03 Two-Port Theory, Slde What Are Two-Ports? Basc dea: replace a complex

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force? Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 205 Two-Port Theory, Slde Two-Port Networks Note, the BJT s all are hghly

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Electrcal Engneerng Department Network Lab. Objecte: - Experment on -port Network: Negate Impedance Conerter To fnd the frequency response of a smple Negate Impedance Conerter Theory: Negate Impedance

More information

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3. ECE 6440 Summer 003 Page 1 Homework Assgnment No. 7 s Problem 1 (10 ponts) A fourstage rng oscllator used as the VCO n a PLL s shown. Assume that M1 and M are matched and M3 and M4 are matched. Also assume

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

Lecture 2 Introduction

Lecture 2 Introduction EE 333 POWER SYSTEMS ENGNEERNG Lecture 2 ntroduction Dr. Lei Wu Departent of Electrical and Coputer Engineering Clarkson University Resilient Underground Microgrid in Potsda, NY Funded by NYSERDAR + National

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS Contents ELEC46 Power ystem Analysis Lecture ELECTRC POWER CRCUT BAC CONCEPT AND ANALY. Circuit analysis. Phasors. Power in single phase circuits 4. Three phase () circuits 5. Power in circuits 6. ingle

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001 Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence Read Chapters 11 through 12. 6.002 Crcuts and Electroncs Sprng 2001 Homework #5 Handout S01031 Issued: 3/8/2001

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

Lecture 10: Small Signal Device Parameters

Lecture 10: Small Signal Device Parameters Lecture 0: Small Sgnal Dece Parameters 06009 Lecture 9, Hgh Speed Deces 06 Lecture : Ballstc FETs Lu: 0, 394 06009 Lecture 9, Hgh Speed Deces 06 Large Sgnal / Small Sgnal e I E c I C The electrcal sgnal

More information

Lecture 09 Systems of Particles and Conservation of Linear Momentum

Lecture 09 Systems of Particles and Conservation of Linear Momentum Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0

More information

ECE 2C, notes set 7: Basic Transistor Circuits; High-Frequency Response

ECE 2C, notes set 7: Basic Transistor Circuits; High-Frequency Response class notes, M. odwell, copyrhted 013 EE, notes set 7: Basc Transstor rcuts; Hh-Frequency esponse Mark odwell Unversty of alforna, Santa Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36 fax oals class

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

NON-LINEAR CONVOLUTION: A NEW APPROACH FOR THE AURALIZATION OF DISTORTING SYSTEMS

NON-LINEAR CONVOLUTION: A NEW APPROACH FOR THE AURALIZATION OF DISTORTING SYSTEMS NON-LINEAR CONVOLUTION: A NEW APPROAC FOR TE AURALIZATION OF DISTORTING SYSTEMS Angelo Farna, Alberto Belln and Enrco Armellon Industral Engneerng Dept., Unversty of Parma, Va delle Scenze 8/A Parma, 00

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Review of Chapter 2, Plus Matlab Examples

Review of Chapter 2, Plus Matlab Examples Reiew of Chapter, Plus Matlab Examples. Power in single-phase circuits Let () t and () i t be defined as: () = cos ( ω + θ ) and () = cos ( ω + θ ) t V t i t I t m m i then the instantaneous power is gie

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle.

BEF BEF Chapter 2. Outline BASIC PRINCIPLES 09/10/2013. Introduction. Phasor Representation. Complex Power Triangle. BEF 5503 BEF 5503 Chapter BASC PRNCPLES Outline 1 3 4 5 6 7 8 9 ntroduction Phasor Representation Coplex Power Triangle Power Factor Coplex Power in AC Single Phase Circuits Coplex Power in Balanced Three-Phase

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1 4V I 2V (I + ) 0 0 --- 3V 1 2 4Ω 6Ω 3Ω 3/27/2006 Crcuts ( F.obllard) 1 Introducton: Electrcal crcuts are ubqutous n the modern world, and t s dffcult to oerstate ther mportance. They range from smple drect

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

p p +... = p j + p Conservation Laws in Physics q Physical states, process, and state quantities: Physics 201, Lecture 14 Today s Topics

p p +... = p j + p Conservation Laws in Physics q Physical states, process, and state quantities: Physics 201, Lecture 14 Today s Topics Physcs 0, Lecture 4 Conseraton Laws n Physcs q Physcal states, process, and state quanttes: Today s Topcs Partcle Syste n state Process Partcle Syste n state q Lnear Moentu And Collsons (Chapter 9.-9.4)

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Important Instructions to the Examiners:

Important Instructions to the Examiners: Summer 0 Examnaton Subject & Code: asc Maths (70) Model Answer Page No: / Important Instructons to the Examners: ) The Answers should be examned by key words and not as word-to-word as gven n the model

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

Introduction To Robotics (Kinematics, Dynamics, and Design)

Introduction To Robotics (Kinematics, Dynamics, and Design) ntroducton To obotcs Kneatcs, Dynacs, and Desgn SESSON # 6: l Meghdar, Professor School of Mechancal Engneerng Sharf Unersty of Technology Tehran, N 365-9567 Hoepage: http://eghdar.sharf.edu So far we

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

Circuit Theory I

Circuit Theory I 16.1 Crcut Theory I Tngshu Hu Offce: Ball Hall 45 Phone: 4374, Fax: 37 Emal: tngshu@gmal.com Offce Hours: 9-1am, 11am-1pm, Monday, Wednesday http://faculty.uml.edu/thu/ http://faculty.uml.edu/thu/16.1/materal.htm

More information

Neumann Asymptotic Eigenvalues of Sturm-liouville Problem with Three Turning Points

Neumann Asymptotic Eigenvalues of Sturm-liouville Problem with Three Turning Points Australan Journal of Basc and Appled Scences 5(5): 89-96 ISSN 99-878 Neumann Asymptotc Egenalues of Sturm-loulle Problem wth Three Turnng Ponts E.A.Sazgar Department of Mathematcs Yerean state Unersty

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1) . (a) (cos θ + sn θ) = cos θ + cos θ( sn θ) + cos θ(sn θ) + (sn θ) = cos θ cos θ sn θ + ( cos θ sn θ sn θ) (b) from De Movre s theorem (cos θ + sn θ) = cos θ + sn θ cos θ + sn θ = (cos θ cos θ sn θ) +

More information

Circuit Theory I

Circuit Theory I 16.1 Crcut Theory I Tngshu Hu Offce: Ball Hall 45 Phone: 4374, Fax: 37 Emal: tngshu_hu@uml.edu Offce Hours: MW: 1am-1pm http://faculty.uml.edu/thu/ http://faculty.uml.edu/thu/16.1/materal.htm http://faculty.uml.edu/thu/16.1/lecture_note.htm

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

10/2/2003 PHY Lecture 9 1

10/2/2003 PHY Lecture 9 1 Announceents. Exa wll be returned at the end of class. Please rework the exa, to help soldfy your knowledge of ths ateral. (Up to 0 extra cre ponts granted for reworked exa turn n old exa, correctons on

More information

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18

Multipoint Analysis for Sibling Pairs. Biostatistics 666 Lecture 18 Multpont Analyss for Sblng ars Bostatstcs 666 Lecture 8 revously Lnkage analyss wth pars of ndvduals Non-paraetrc BS Methods Maxu Lkelhood BD Based Method ossble Trangle Constrant AS Methods Covered So

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Uncertainty in measurements of power and energy on power networks

Uncertainty in measurements of power and energy on power networks Uncertanty n measurements of power and energy on power networks E. Manov, N. Kolev Department of Measurement and Instrumentaton, Techncal Unversty Sofa, bul. Klment Ohrdsk No8, bl., 000 Sofa, Bulgara Tel./fax:

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Axial Turbine Analysis

Axial Turbine Analysis Axal Turbne Analyss From Euler turbomachnery (conservaton) equatons need to Nole understand change n tangental velocty to relate to forces on blades and power m W m rc e rc uc uc e Analye flow n a plane

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014 OLLEGE OF ENGNEERNG PUTRAJAYA AMPUS FNAL EXAMNATON SEMESTER 013 / 014 PROGRAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electrocs Egeerg (Hoours) Bachelor of Electrcal Power Egeerg (Hoours) : EEEB73

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

kq r 2 2kQ 2kQ (A) (B) (C) (D)

kq r 2 2kQ 2kQ (A) (B) (C) (D) PHYS 1202W MULTIPL CHOIC QUSTIONS QUIZ #1 Answer the followng multple choce questons on the bubble sheet. Choose the best answer, 5 pts each. MC1 An uncharged metal sphere wll (A) be repelled by a charged

More information

Chapter 28: Alternating Current

Chapter 28: Alternating Current hapter 8: Alternating urrent Phasors and Alternating urrents Alternating current (A current) urrent which varies sinusoidally in tie is called alternating current (A) as opposed to direct current (D).

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information