Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Size: px
Start display at page:

Download "Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87"

Transcription

1 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston 9-0 (a) same (b) ncreases (c) decreases (d) ncreases Problem 9- In solng the deal-gas law equaton = nr or n, we rst conert the temerature to the Keln scale: = ( ) K =. K, and the olume to SI unts: V = 000 cm = 0 m (a) he number o moles o oxygen resent s n. R (.0 0 Pa)( m ) = = =.88 0 mol. ( 8.J/mol K)(.K) (b) Smlarly, the deal gas law = nr leads to (.06 0 Pa)(.00 0 m ) = = = 49K, nr (.88 0 mol)( 8.J/mol K) whch may be exressed n degrees Celsus as 0 C. Note that the nal temerature can also be V calculated by notng that =, or V = = = V.0 0 Pa 000 cm.06 0 Pa 00 cm (. K) 49 K

2 Problem 9- (a) At ont a, we know enough normaton to comute n: ( 00Pa)(.0m ) n = = =.mol. R ( 8. J/mol K) ( 00 K) (b) We can use the answer to art (a) wth the new alues o ressure and olume, and sole the deal gas law or the new temerature, or we could set u the gas law n terms o ratos (note: n a = n b and cancels out): 7.kPa.0m = b = ( 00K).kPa.0m b b b a a a whch yelds an absolute temerature at b o b =.8 0 K. (c) As n the reous art, we choose to aroach ths usng the gas law n rato orm:.kpa.0m = c = ( 00K).kPa.0m c c c a a a whch yelds an absolute temerature at c o c = K. (d) he net energy added to the gas (as heat) s equal to the net work that s done as t rogresses through the cycle (reresented as a rght trangle n the dagram shown n Fg. 9-0). hs, n turn, s related to ± area nsde that trangle (wth area = (base)(heght) ), where we choose the lus sgn because the olume change at the largest ressure s an ncrease. hus, Q net net (.0m ) (.0 0 Pa ).0 0 = W = = J. Problem 9-4 We can exress the deal gas law n terms o densty usng n = M sam /M: = M R = M M R sam ρ. We can also use ths to wrte the rms seed ormula n terms o densty: rms R ( M / ρ) = = = M M ρ.

3 (a) We conert to SI unts: ρ =.4 0 kg/m and =.0 0 Pa. he rms seed s (00) / 0.04 = 494 m/s. (b) We nd M rom ρ = M/R wth = 7 K. M ρr (0.04 kg/m ) ( 8.J/mol K )(7K) = = = kg/mol = 7.9 g/mol..0 0 Pa (c) From able 9., we denty the gas to be N. Problem 9- (a) We use the deal gas law = nr = Nk, where s the ressure, V s the olume, s the temerature, n s the number o moles, and N s the number o molecules. he substtutons N = nn A and k = R/N A were made. Snce cm o mercury = Pa, the ressure s = (0 7 )( Pa) =. 0 4 Pa. hus, N V = = = = k 4. 0 Pa (.8 0 J/K)(9 K) molecules/m.7 0 molecules/cm. (b) he molecular dameter s d = m, so, accordng to Eq. 9-, the mean ree ath s λ= 7 m. 0 6 πd N / V = π (.00 0 m) (.7 0 m ) = Problem 9- (a) he aerage seed s ag N = = [4(00 m/s) + (00 m/s) + 4(600 m/s)] = 40 m/s. 0 N = (b) he rms seed s rms N [4(00 m/s) (00 m/s) 4(600 m/s) ] 48 m/s N = 0 = = + + = (c) Yes, rms > ag.

4 Problem 9-48 (a) Accordng to the rst law o thermodynamcs Q = ΔE nt + W. When the ressure s a constant W = ΔV. So 6 0 m Δ Ent = Q Δ V = 0.9 J (.0 0 Pa)( 00 cm 0 cm ) =.9 J. cm (b) he molar secc heat at constant ressure s C ( ) ( 8. J/mol K)( 0.9 J) Q Q R Q = = = = = 4.4J mol K. nδ n ΔV / nr Δ V.0 0 Pa 0 0 m (c) Usng Eq. 9-49, C V = C R = 6. J/mol K. 6 ( )( ) Problem 9- (a) Snce the rocess s at constant ressure, energy transerred as heat to the gas s gen by Q = nc Δ, where n s the number o moles n the gas, C s the molar secc heat at constant 7 ressure, and Δ s the ncrease n temerature. For a datomc deal gas C = R hus,. Q = 7 nrδ = 7 ( 4.00mol )( 8.J/mol K )( 60.0 K ) = J. (b) he change n the nternal energy s gen by ΔE nt = nc V Δ, where C V s the secc heat at constant olume. For a datomc deal gas C = R, so V Δ Ent = nrδ = ( 4.00mol )( 8.J/mol.K )( 60.0 K ) = J. (c) Accordng to the rst law o thermodynamcs, ΔE nt = Q W, so W = Q Δ E nt = J J =.99 0 J. (d) he change n the total translatonal knetc energy s Δ K = nrδ = ( 4.00mol )( 8.J/mol K )( 60.0 K ) =.99 0 J.

5 Problem 9-6 In the ollowng, C = R s the molar secc heat at constant olume, C = R s the molar V secc heat at constant ressure, Δ s the temerature change, and n s the number o moles. he rocess takes lace at constant olume. (a) he heat added s Q= ncv Δ = nrδ = (.00mol )( 8.J/mol K )( 600K 00K ) =.74 0 J. (b) Snce the rocess takes lace at constant olume, the work W done by the gas s zero, and the rst law o thermodynamcs tells us that the change n the nternal energy s Δ E = = nt Q.74 0 J. (c) he work W done by the gas s zero. he rocess s adabatc. (d) he heat added s zero. (e) he change n the nternal energy s Δ Ent = ncv Δ = nrδ = (.00 mol )( 8.J/mol K )( 4K 600 K ) =.8 0 J. () Accordng to the rst law o thermodynamcs the work done by the gas s W = Q Δ E nt =+.8 0 J. he rocess takes lace at constant ressure. (g) he heat added s (.00 mol)(8.j/mol K)(00K 4K). 0 J. Q= ncδ = nrδ = = (h) he change n the nternal energy s (.00 mol)(8.j/mol K)(00 K 4K).9 0 J. Δ Ent = ncv Δ = nrδ = = () Accordng to the rst law o thermodynamcs the work done by the gas s

6 W = Q Δ E nt =. 0 J J =.9 0 J. (j) For the entre rocess the heat added s (k) he change n the nternal energy s (l) he work done by the gas s Q =.74 0 J J = 0 J. Δ E nt =.74 0 J.8 0 J.9 0 J = 0. W = J.9 0 J = 0 J. (m) We rst nd the ntal olume. Use the deal gas law V = nr to obtan nr (.00mol)(8.J / mol K)(00 K) V = = = (.0 0 Pa).46 0 m. (n) Snce s a constant olume rocess, V = V =.46 0 m. he ressure or state s nr (.00 mol)(8. J / mol K)(600 K) = = = V.46 0 m.0 0 Pa. hs s aroxmately equal to.00 atm. (o) s a constant ressure rocess. he olume or state s V nr (.00mol)(8.J / mol K)(4K) = = =.0 0 Pa.7 0 m. () he ressure or state s the same as the ressure or state : = =.0 0 Pa (.00 atm) Problem 9-6 γ γ (a) We use = V to comute γ: ( ) ( V V) ( ) 6 ( ) ln ln.0atm.0 0 atm γ = = =. ln ln.0 0 L.0 0 L

7 hereore the gas s monatomc. (b) Usng the gas law n rato orm, the nal temerature s ( ) ( )(.0 0 atm.0 0 L ) 6 (.0atm)(.0 0 L) 4 = = 7K =.7 0 K. (c) he number o moles o gas resent s n R (.0 0 Pa)(.0 0 cm ) 4 = = = 4. 0 mol. ( 8. J/mol K)( 7K) (d) he total translatonal energy er mole beore the comresson s K = R = ( 8. J/mol K )( 7K ) =.4 0 J. (e) Ater the comresson, K 8. J/mol K K.4 0 R J. ( )( ) = = = () Snce rms, we hae rms, 7K 4 rms, = = = K Problem 9-78 (a) In the ree exanson rom state 0 to state we hae Q = W = 0, so ΔE nt = 0, whch means that the temerature o the deal gas has to reman unchanged. hus the nal ressure s = = = 0 = = 0.. V.00V (b) For the adabatc rocess rom state to we hae V γ = V γ, that s, (.00V ) γ = (.00) V γ 0 whch ges γ = 4/. he gas s thereore olyatomc.

8 (c) From = /nr we get K = = = (.00) / =.44. K Problem 9-87 For conenence, the nt subscrt or the nternal energy wll be omtted n ths soluton. Recallng Eq. 9-8, we note that E = 0, whch ges cycle Δ E +Δ E +Δ E +Δ E +Δ E = 0. A B B C C D D E E A Snce a gas s noled (assumed to be deal), then the nternal energy does not change when the temerature does not change, so Δ E =Δ E = 0. A B D E Now, wth ΔE E A = 8.0 J gen n the roblem statement, we hae Δ E +Δ E J = 0. B C C D In an adabatc rocess, ΔE = W, whch leads to and we obtan ΔE C D =.0 J..0 J +Δ J = 0, EC D

Isothermal vs. adiabatic compression

Isothermal vs. adiabatic compression Isothermal vs. adabatc comresson 1. One and a half moles of a datomc gas at temerature 5 C are comressed sothermally from a volume of 0.015 m to a volume of 0.0015 m. a. Sketch the rocess on a dagram and

More information

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes ESCI 341 Atmosherc Thermodynamcs Lesson 6 Thermodynamc Processes Reerences: An Introducton to Atmosherc Thermodynamcs, Tsons Introducton to Theoretcal Meteorology, Hess Physcal Chemstry (4 th edton), Lene

More information

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p )

Example problems. Chapter 3: The Kinetic Theory of Gases. Homework: 13, 18, 20, 23, 25, 27 (p ) Examle roblems Chater : he Kinetic heory o Gases Homework:, 8,,, 5, 7 (. 5-5) 9. An automobile tire has a volume o.64 x m and contains air at a gauge ressure (above atmosheric ressure) o 65 kpa when the

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Lecture 3 Examples and Problems

Lecture 3 Examples and Problems Lecture 3 Examles and Problems Mechancs & thermodynamcs Equartton Frst Law of Thermodynamcs Ideal gases Isothermal and adabatc rocesses Readng: Elements Ch. 1-3 Lecture 3, 1 Wllam Thomson (1824 1907) a.k.a.

More information

Physics 207 Lecture 27

Physics 207 Lecture 27 hyscs 07 Lecture 7 hyscs 07, Lecture 7, Dec. 6 Agenda: h. 0, st Law o Thermodynamcs, h. st Law o thermodynamcs ( U Q + W du dq + dw ) Work done by an deal gas n a ston Introducton to thermodynamc cycles

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State

Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases Experimental Laws and the Equation of State Chater 3 The Knetc Theory of Gases 3.1. Ideal Gases 3.1.1. Exermental Laws and the Equaton of State 3.1.2. Molecular Model of an Ideal Gas 3.3. Mean Free Path 3.4. The Boltzmann Dstrbuton Law and The Dstrbuton

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1

CHAPTER 20. Answer to Checkpoint Questions. 1. all but c 2. (a) all tie; (b) 3, 2, 1 558 CHAPTER 0 THE KINETIC THEORY OF GASES CHAPTER 0 Answer to Checkoint Questions. all but c. (a) all tie; (b) 3,, 3. gas A 4. 5 (greatest change in T ), then tie of,, 3, and 4 5.,, 3 (Q 3 0, Q goes into

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj?

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj? 376 Lea & Burke Physcs; The Nature of Thngs 19.44 J»(Pa) At constant V A \ LjSj?! '/! If / l/l /!! j j J [ ^ 1 I X j j> 1 ' : / J! 60 100 T('K) 200 Constant V lnes are mapped onto straght lnes on the P-T

More information

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX -

THE MIND & THE SCIENCE OF SUCCESS - All rights reserved - - APPENDIX - - APPENDIX - MAYARD S PROBLEM SOLVING METOD A sample o word problems rom hgh school (nd cycle) to college leel s used to llustrate ths smple method that can also be used n all grade leels. 4 smple steps

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases he Knetc heory o Gases CHE OULIE. Molecular Model o an Ideal Gas. Molar Specc Heat o an Ideal Gas. dabatc rocesses or an Ideal Gas.4 he Equpartton o Energy.5 Dstrbuton o Molecular Speeds SWES O QUESIOS

More information

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f. Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 006 ME 440 Aerosace Engneerng Fundamentals roulson hrust Jet Engne F m( & Rocket Engne F m & F ρ A - n ) ρ A he basc rncle nsde the engne s to convert the ressure and thermal energy of the workng

More information

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics

PHYS1001 PHYSICS 1 REGULAR Module 2 Thermal Physics Chapter 17 First Law of Thermodynamics PHYS1001 PHYSICS 1 REGULAR Module Thermal Physics Chater 17 First Law of Thermodynamics References: 17.1 to 17.9 Examles: 17.1 to 17.7 Checklist Thermodynamic system collection of objects and fields. If

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.

1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74. 1. Each atom has a mass of m = M/N A, where M is the molar mass and N A is the Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 10 3 kg/mol. 7.50 10 4 arsenic atoms have a total mass

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58 Chater 0: Exercises:, 7,,, 8, 4 EOC: 40, 4, 46, 8 E: A gasoline engine takes in.80 0 4 and delivers 800 of work er cycle. The heat is obtained by burning gasoline with a heat of combustion of 4.60 0 4.

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

WYSE Academic Challenge 2004 State Finals Physics Solution Set

WYSE Academic Challenge 2004 State Finals Physics Solution Set WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage

More information

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1

PHYS 1101 Practice problem set 5, Chapter 18: 4, 9, 15, 23, 27, 32, 40, 43, 55, 56, 59 1 = = = Nk T Nk T Nk T B 1 B 2 B 1 PHYS 0 Practice roble set, Chater 8: 4, 9,,, 7,, 40, 4,, 6, 9 8.4. Sole: (a he ean free ath of a olecule in a gas at teerature, olue V, and ressure is λ 00 n. We also know that λ λ V 4 π ( N V r Although,

More information

THE FIRST LAW OF THERMODYNAMICS

THE FIRST LAW OF THERMODYNAMICS THE FIRST LA OF THERMODYNAMIS 9 9 (a) IDENTIFY and SET UP: The ressure is constant and the volume increases (b) = d Figure 9 Since is constant, = d = ( ) The -diagram is sketched in Figure 9 The roblem

More information

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any

More information

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:.

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:. Aendx: Proo o Prooston : Bdder s (lnear) exected utlty rom dng s: S Q U (A) where Q reresents the roalty that she wns the aucton wth and reresents the exected rce condtonal on eng one o the wnnng ds Rewrte

More information

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics

COMPENDIUM OF EQUATIONS Unified Engineering Thermodynamics COMPENDIUM OF EQUAIONS Unified Engineering hermodynamics Note: It is with some reseration that I suly this comendium of equations. One of the common itfalls for engineering students is that they sole roblems

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst

More information

Chemistry 531 Spring 2009 Problem Set 6 Solutions

Chemistry 531 Spring 2009 Problem Set 6 Solutions Chemistry 531 Sring 2009 Problem Set 6 Solutions 1. In a thermochemical study of N 2, the following heat caacity data were found: t 0 C,m d 27.2Jmol 1 K 1 f t b f C,m d 23.4Jmol 1 K 1 C,m d 11.4Jmol 1

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases Physics week 7 Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases 3.1.1. Experimental Laws and the Equation of State 3.1.. Molecular Model of an Ideal Gas 3.. Mean Free Path 3.3. The Boltzmann Distribution

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

CHEMISTRY Midterm #2 answer key October 25, 2005

CHEMISTRY Midterm #2 answer key October 25, 2005 CHEMISTRY 123-01 Mdterm #2 answer key October 25, 2005 Statstcs: Average: 70 pts (70%); Hghest: 97 pts (97%); Lowest: 33 pts (33%) Number of students performng at or above average: 62 (63%) Number of students

More information

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to

36.1 Why is it important to be able to find roots to systems of equations? Up to this point, we have discussed how to find the solution to ChE Lecture Notes - D. Keer, 5/9/98 Lecture 6,7,8 - Rootndng n systems o equatons (A) Theory (B) Problems (C) MATLAB Applcatons Tet: Supplementary notes rom Instructor 6. Why s t mportant to be able to

More information

Physics 115. Molecular motion and temperature Phase equilibrium, evaporation

Physics 115. Molecular motion and temperature Phase equilibrium, evaporation Physcs 115 General Physcs II Sesson 9 Molecular moton and temperature Phase equlbrum, evaporaton R. J. Wlkes Emal: phy115a@u.washngton.edu Home page: http://courses.washngton.edu/phy115a/ 4/14/14 Physcs

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Lnear Momentum and Collsons m = 3. kg r = ( ˆ ˆ j ) P9., r r (a) p m ( ˆ ˆj ) 3. 4. m s = = 9.. kg m s Thus, p x = 9. kg m s and p y =. kg m s (b) p px p y p y θ = tan = tan (.33) = 37 px = +

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative Physcs (PHYF hap : Heat and the Frst aw of hermodynamcs -. Work and Heat n hermodynamc Processes A thermodynamc system s a system that may exchange energy wth ts surroundngs by means of heat and work.

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

Lesson 16: Basic Control Modes

Lesson 16: Basic Control Modes 0/8/05 Lesson 6: Basc Control Modes ET 438a Automatc Control Systems Technology lesson6et438a.tx Learnng Objectves Ater ths resentaton you wll be able to: Descrbe the common control modes used n analog

More information

Prof. Dr. I. Nasser T /16/2017

Prof. Dr. I. Nasser T /16/2017 Pro. Dr. I. Nasser T-171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons -,, 3, 4, 5 - Moton n 1 dmenson We le n a 3-dmensonal world, so why bother analyzng 1-dmensonal stuatons? Bascally, because

More information

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal.

Name ID # For relatively dilute aqueous solutions the molality and molarity are approximately equal. Name ID # 1 CHEMISTRY 212, Lect. Sect. 002 Dr. G. L. Roberts Exam #1/Sprng 2000 Thursday, February 24, 2000 CLOSED BOOK EXM No notes or books allowed. Calculators may be used. tomc masses of nterest are

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1

Chemistry 420/523 Chemical Thermodynamics (Spring ) Examination 1 Chemistry 420/523 Chemical hermodynamics (Sring 2001-02) Examination 1 1 Boyle temerature is defined as the temerature at which the comression factor Z m /(R ) of a gas is exactly equal to 1 For a gas

More information

2.00 kg 4.00 kg 3.00 kg m. y com. (2.00 kg)(0.500 m) 4.00 kg m 3.00 kg m m m kg 4.00 kg 3.00 kg m.

2.00 kg 4.00 kg 3.00 kg m. y com. (2.00 kg)(0.500 m) 4.00 kg m 3.00 kg m m m kg 4.00 kg 3.00 kg m. Chapter 9. We use Eq. 9-5 to sole or ( x, y ). (a) The x coordnate o the system s center o mass s: x com x m x m (.00 kg)(.0 m) 4.00 kg 0.600 m.00 kg x mx m m m.00 kg 4.00 kg.00 kg 0.500 m. Solng the equaton

More information

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101

11/19/2013. PHY 113 C General Physics I 11 AM 12:15 PM MWF Olin 101 PHY 113 C General Pyss I 11 AM 12:15 PM MWF Oln 101 Plan or Leture 23: Capter 22: Heat engnes 1. ermodynam yles; work and eat eeny 2. Carnot yle 3. Otto yle; desel yle 4. Bre omments on entropy 11/19/2013

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

86 Chapter 7 Energy 7-11 POWER. Answers to the Conceptual Questions

86 Chapter 7 Energy 7-11 POWER. Answers to the Conceptual Questions 86 Chater 7 Energy nented to make eerythng alrght. We eel t s mortant to show that the nenton o other orms o energy s not whmscal or a arce. A newly nented orm o energy would be alse the new orm was not

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

Chapter 8 Balances on Nonreactive Processes 8.1 Elements of Energy Balances Calculations 8.1a Reference States A Review

Chapter 8 Balances on Nonreactive Processes 8.1 Elements of Energy Balances Calculations 8.1a Reference States A Review Chater 8 Balances on Nonreactve Processes 8.1 Elements of Energy Balances Calculatons 8.1a Reference States A Revew We can never know the absolute values of U and H for a seces at a gven state. t Fortunately,

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

δq T = nr ln(v B/V A )

δq T = nr ln(v B/V A ) hysical Chemistry 007 Homework assignment, solutions roblem 1: An ideal gas undergoes the following reversible, cyclic rocess It first exands isothermally from state A to state B It is then comressed adiabatically

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Physics 2A Chapter 9 HW Solutions

Physics 2A Chapter 9 HW Solutions Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Digital PI Controller Equations

Digital PI Controller Equations Ver. 4, 9 th March 7 Dgtal PI Controller Equatons Probably the most common tye of controller n ndustral ower electroncs s the PI (Proortonal - Integral) controller. In feld orented motor control, PI controllers

More information

NAME and Section No.

NAME and Section No. Chemstry 391 Fall 2007 Exam I KEY (Monday September 17) 1. (25 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). Defne the terms: open system, closed system and solated system

More information