Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Size: px
Start display at page:

Download "Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16"

Transcription

1 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum

2 Chapter 6 Work & Energy In physics, work is done by forces on an object over a distance. 1a. W = F d 1b. W = F d Cosθ (Joule, J) 2. Wnet = E ext 3. Kinetic Energy, Ek = 1/2m v 2 (Joule, J) 4. otential Energy, E = m g h (Joule, J) 5. ower, = W t (Watts, W) 5. pring, E = ½kx 2 (Joule, J) Force is parallel to distance Force is at an angle to distance

3 Chapter 7 Momentum & Impulse In physics, work is done by forces on an object over a distance. 1. Impulse, J = F t (N s) 2. Momentum, p = m v (kg m/s) 3. Impulse-Momentum Theorem, F t = p = mvf mvi (kg m/s) 4. Conservation of Momentum, pf = pi (kg m/s) Force F t t f Time t

4 Warm Up (1/19/16) Conservation of Momentum bullet of mass m = 8. g is fired into a block of mass M = 25 g that is initially at rest at the edge of a table of height 5 1. m. The bullet remains in the block, and after the impact the block lands d = 2. m from the bottom of the table. Determine the initial speed of the bullet. By NL, F net = ma = m v = mv; ext t t = p t Thus, = p = p f p i p f = p i h system: m, & M m v b =? M d v initial u final F fr F g F N

5 Warm Up (1/19/16) Conservation of Momentum bullet F of mass m = 8. g is fired into a block net = ma = m v = mv; of mass ext M = 25 t g that t is initially at rest at the edge of a table of height m v 5 1. b =? = p m. MThe bullet t F remains in the block, and after the impact the fr Thus, = p p block lands d = f = p 2. i m from the bottom of the h F table. Determine the initial speed of the bullet. g y NL, = p f p i system: m, & M Figure 6.4 v initial u final ince momentum is conserved, m b v b + Mv B = (m b + M)u v fy 2 = v iy 2 2gh v fy = 2gh t = qr[ 2(9.8m/s 2 )( 1m)] 9.8m/s 2 v m b v b + = (m b fy = v iy gt + M)u v b = (m b + M)u t = v fy g = 2gh m b g =.45 s u = d t = 2m.45s = 4.44 m/s d F N v b = ( )kg 4.44m/s= 143 m/s.8 kg

6 7.2 Conservation of Momentum collision consists of three phases: incoming, interaction, and outgoing.

7 7.2 Conservation of Momentum collision consists of three phases: incoming, interaction, and outgoing. By NL, F net = ma = m v = mv = p ext t t t Thus, = p p f = p i Momentum is Conserved!

8 7.3 Collisions in One Dimension collision consists of three phases: incoming, interaction, and outgoing. erfectly Inelastic Collision Fnet = p; system: ext t = p; system: Elastic Collision Momentum is conserved!

9 Warm Up (1/2/16) Collisions 9-g ball moving at 1m/s collides head-on with a stationary 1-g ball. Determine the speed of each after impact if (a) they stick together (b) they bounce off each other. Before Collision fter Collision v 2 = v 1 u =? m 1 m 2 m 1 m 2 a) Inelastic Collision (balls stick together) F net = ma = m v = mv = p ext t t t = p p f = p i t m 1 v 1 + m 2 v 2 = (m 1 + m 2 )u = p + u = m 1 v 1 (m 1 + m 2 ) u =.9kg(1m/s) (.9 +.1)kg u =.9 m/s

10 Warm Up (1/2/16) Collisions 9-g ball moving at 1m/s collides head-on with a stationary 1-g ball. Determine the speed of each after impact if (a) they stick together (b) they bounce off each other. Before Collision Collision fter Collision b) Elastic Collision (balls bounce off each other) m 1 v 1 v 2 = u 1 =? u 2 =? F net = ma = m v = mv = p ext t t t = p p f = p i t m 1 v 1 + m 2 v 2 = m 1 u 1 + m 2 u 2 = p +

11 Warm Up (1/2/16) Collisions 9-g ball moving at 1m/s collides head-on with a stationary m 1 v 2 = 1-g ball. Determine u 1 =? u 2 = the? speed v 1 of each after impact if (a) they stick together (b) they bounce off each other. ) Elastic Collision (balls bounce off each other) Before Collision F net = ma = m v = mv = ext t t = p p f = p i t = p In an elastic collision, kinetic energy is conserved. KE f = KE i ½m 1 u ½m 2 u 22 = ½m 1 v ½m 2 v 2 2 fter a lot of painful algebra, m 1 v 1 + m 2 v 2 = Collision p t m 1 u 1 + m 2 u 2 u 1 = 2m 2 v 2 + v 1 (m 1 m 2 ) m 1 + m 2 we get: u 2 = 2m 1 v 1 + v 2 (m 2 m 1 ) m 1 + m 2 + fter Collision u 1 =.8m/s = + 1m/s(.8kg).1kg u 2 = 1.8m/s = 2(.9kg)(1m/s) +.1kg

12 (i) m 1 v 1 + m 2 v 2 = u 1 m 1 + u 2 m 2 Conservation of Momentum (ii) ½m 1 u ½m 2 u 22 = ½m 1 v ½m 2 v 2 2 Conservation of KE olving equation i for u 2, we get: (iii) u 2 = v 2 + m 1 (v 1 u 1 ) m 2 Multiplying equation ii, by ½ and rearranging, we get: m 1 (v 1 2 u 1 2 ) = m 2 (u 2 2 v 2 2 ) (iv) m 1 (v 1 u 1 )(v 1 + u 1 ) = m 2 (u 2 v 2 )(u 2 + v 2 ) ubstituting equation iii into equation iv, we get: m 1 (v 1 u 1 )(v 1 + u 1 ) = m 2 v 2 + m 1 (v 1 u 1 ) v 2 (u 2 + v 2 ) m 2 m 1 (v 1 u 1 )(v 1 + u 1 ) = m 2 m 1 (v 1 u 1 )(u 2 + v 2 ) m 2 masses cancel!

13 (v) (v 1 u 1 )(v 1 + u 1 ) = (v 1 u 1 )(u 2 + v 2 ) Note that one possible solution is that v 1 = u 1. In this case note that from equation ii follows that v 2 = u 2. This means that in this case the particles don t interact. Thus, the solution that we want has v 1 u 1, so we may cancel the factor of (v 1 u 1 ) to obtain: (vi) (v 1 + u 1 ) = (u 2 + v 2 ) ubstituting iii into vi, we get: (v 1 + u 1 ) = v 2 + m 1 (v 1 u 1 ) + v 2 olving for u 1, we get: m 2 u 1 ( 1 + m 1 m 2 ) = 2v 2 + v 1 (m 1 m 2 1) u 1 = 2v 2 + v 1 (m 1 m 2 1) ( 1 + m 1 m 2 ) = 2m 2 v 2 + v 1 (m 1 m 2 ) ( m 2 + m 1 )

14 ubstituting the result for u 1 into equation vi we get: (v 1 + u 1 ) = (u 2 + v 2 ) 2m v v 2 + v 1 (m 1 m 2 ) = (u 2 + v 2 ) ( m 2 + m 1 ) olving for u 2, we get: u 2 = v 1 v 2 + 2m 2 v 2 + v 1 (m 1 m 2 ) ( m 2 + m 1 ) u 2 = 2m 1 v 1 + v 2 (m 2 m 1 ) ( m 2 + m 1 )

15 Lab 1 Momentum Questions Under Consideration 1) What happens in a collision? 2) ow could you test the Law of Conservation of Momentum?

16 (a) Warm Up (1/21/16) Ballistic endulum The ballistic pendulum is a device used to measure the speed of a fast-moving projectile such as a bullet. The bullet is fired into a large block of wood suspended from some light wires. The bullet is stopped by the block, and the entire system swings up to a height h. It is possible to obtain the initial speed of the bullet by measuring h and the two masses. s an example of the technique, assume that the mass of the bullet, m 1, is 5. g, the mass of the pendulum, m 2, is 1. kg, and h is 5. cm. Find the initial speed of the bullet, v 1. v 1i f m 1 m 2 v m 1 + m 2 h

17 Warm Up (1/21/16) Ballistic endulum F net = ma = m v = mv = p ext t t t = p p f = p i t m 1 v 1 + m 2 v 2 = (m 1 + m 2 )u = p v 1 = (m 1 + m 2 )u v1 = ( )kg(.99m/s) = 199 m/s.5 kg ince Energy is conserved, E i = E f. u = 2g h = 2(9.8m/s 2 ).5m =.99 m/s Wnet = E ext = E m 1 E i = E f, h =, u = KE i + E i = E f + KE f ½(m 1 +m 2 )u 2 = (m 1 + m 2 )g h v 1i f m 1 m 2 (a) v m 1 + m 2 h

18 FIGURE 7;19 Warm Up (1/22/16) Glancing Collision Billiard ball moving with speed v = 3. m/s in the +x direction strikes an equal-mass ball B initially at rest. The two balls are observed to move off at 45 to the x axis, ball above the x axis and ball B below. That is, θ = 45 and θ B = 45. What are the speeds of the two balls after the collision? pplying the principle of conservation of momentum we get:, at rest! m v + m B v B = m u + m B u B ( m v ) ^ x + ( ) ^ y = (m u Cosθ + m B u B Cosθ B )^x + v B (m u inθ m B u B inθ B )^y B y y θ = 45 B x θ = θ B = u =? v B θ B = 45 v B B =? x u B =?

19 Warm Up (1/22/16) Ballistic endulum ( m v ) ^ x + ( ) ^ y = (m u Cosθ + m B u B Cosθ B )^x + (m u inθ m B u B inθ B )^y Thus, mv = mucosθ + mbubcosθb (muinθ mbubinθb) = v = ucosθ + ubcosθb (uinθ ubinθb) = u = v ubcosθb ubinθb = uinθ v B B FIGURE 7;19 y θ = θ = 45 ub(inθb + CosθB Tanθ ) = vtanθ θ B = v Tanθ = 3m/s Tan45 B inθb + CosθB Tanθ in(-45 ) + Cos(-45 ) Tan45 ub = 2.1 m/s ub = Cosθ u = 3m/s 2.1m/sCos45 Cos45 ubinθb = v ubcosθb inθ = 2.1 m/s Cosθ u =? v B θ B = 45 v B B =? x u B =? The angles must be +45 because we already account for the directions!

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum 5 1/26/16 Rotational Dynamics

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

7-6 Inelastic Collisions

7-6 Inelastic Collisions 7-6 Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Linear Momentum Inelastic Collisions

Linear Momentum Inelastic Collisions Linear Momentum Inelastic Collisions Lana Sheridan De Anza College Nov 9, 2017 Last time collisions elastic collisions Overview inelastic collisions the ballistic pendulum Linear Momentum and Collisions

More information

Chapter 9. Linear Momentum

Chapter 9. Linear Momentum Chapter 9 Linear Momentum Linear Momentum Conservation of Linear Momentum Kinetic Energy of a System Collisions Collisions in Center of Mass Reference Frame MFMcGraw-PHY 45 Chap09Ha-Momentum-Revised-10//01

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

Chapter 6 Work & Energy

Chapter 6 Work & Energy Chapter 6 Work & Energy In physics, work is done by forces on an object over a distance. 1a. W = F d 1b. W = F d Cosθ (Joule, J) 2. W net = E 5. ower, = W t (Watts, W) ext 3. Kinetic Energy, E k = 1/2m

More information

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum Linear Momentum (Ch 9) The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product of the mass and velocity: p = m v

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Chapter 10 Collision and Impulse

Chapter 10 Collision and Impulse Chapter 10 Collision and Impulse Momentum provides a new analysis technique. With fce analysis and wk-energy analysis, application of the appropriate analysis technique to the problems at the end of the

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Newton: Quantity of Motion Forces applied for a period of time change an object s quantity of motion. F = ma F = m Δ v t F t = mδv = mv f mv i p mv Ft = Δp F = dp dt Conservation?

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

A ballistic pendulum

A ballistic pendulum A ballistic pendulum A ballistic pendulum is a device used to measure the speed of a bullet. A bullet of mass m is fired at a block of wood (mass M) hanging from a string. The bullet embeds itself in the

More information

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 Lesson Description In this lesson we: Learn that an object s momentum is the amount of motion it has due to its mass and velocity. Show that

More information

Collisions. Lecture 18. Chapter 11. Physics I. Department of Physics and Applied Physics

Collisions. Lecture 18. Chapter 11. Physics I. Department of Physics and Applied Physics Lecture 18 Chater 11 Physics I Collisions Course website: htt://faculty.uml.edu/ndriy_danylov/teaching/physicsi Deartment of Physics and lied Physics IN THIS CHPTER, you will discuss collisions of two

More information

Chapter 9. Momentum and Collisions

Chapter 9. Momentum and Collisions Chapter 9. Momentum and Collisions Level : AP Physics Date : 9.1 Linear Momentum The linear momentum of a particle of mass m moving with a velocity v is defined as p mv [kg m/s] 9.3 Nonisolated System:

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

Conserv. of Momentum (Applications)

Conserv. of Momentum (Applications) Conserv. of Momentum (Applications) Announcements: Next midterm a week from Thursday (3/15). Chapters 6 9 will be covered LA information session at 6pm today, UMC 235. Will do some longer examples today.

More information

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a

1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a Collisions Worksheet Honors: Name: Date: 1. A 1,160-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 9,900-kg truck moving in the same direction

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

(1) Center of mass of a symmetric object always lies on an axis of symmetry. (2) Center of mass of an object does NOT need to be on the object.

(1) Center of mass of a symmetric object always lies on an axis of symmetry. (2) Center of mass of an object does NOT need to be on the object. x com = 1 M N i=1 m ix i x com = 1 M xdm x com = 1 V xdv y com = 1 M N i=1 m iy i y com = 1 M ydm z com = 1 M N i=1 m iz i z com = 1 M zdm M = N i=1 m i ρ = dm dv = M V Here mass density replaces mass

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

Last class, we learned Section 9-8, Momentum and Kinetic Energy in Collisions

Last class, we learned Section 9-8, Momentum and Kinetic Energy in Collisions Final Exam 8:30-11:00 am, May 8th, 2007, Tuesday 208 Kupfrian Hall (Different from the room for the previous exams) From Chapter 1 to Chapter 9 Bring your scientific calculators. Lecture notes at Last

More information

UNIT 4 MOMENTUM & IMPULSE

UNIT 4 MOMENTUM & IMPULSE UNIT 4 UNIT 4 MOMENTUM & IMPULSE IMPULSE-MOMENTUM THEOREM Remember, means final initial p = p f p i v = v f v i J = F( t) = p = m v = (mv f mv i ) The impulse, J, that acts on an object is equal to the

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q ore on Linear omentum nd Collisions Elastic and Perfect Inelastic Collision (D) Two Dimensional Elastic Collisions Exercise: illiards oard Explosion q ulti-particle

More information

PS113 Chapter 7. Impulse and Momentum

PS113 Chapter 7. Impulse and Momentum PS113 Chapter 7 Impulse and Momentum 1 The impulse-momentum theorem There are many situations in which the force acting on a object is not constant, but varies with time. The resulting motion can be simply

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

Classical Mechanics Lecture 11

Classical Mechanics Lecture 11 Classical Mechanics Lecture 11 Today s Examples Center of Mass Today s Concept: Conservation of Momentum Inelastic Collisions Mechanics Lecture 11, Slide 1 Unit 10 Homework Problems Mechanics Lecture 10,

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Collisions in 1- and 2-D

Collisions in 1- and 2-D Collisions in 1- and 2-D Momentum and Energy Conservation Physics 109 Experiment Number 7 2017 Outline Brief summary of Binary Star Experiment Some thoughts on conservation principles Description of the

More information

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum P H Y S I C S Chapter 9: Collisions, CM, RP Since impulse = change in momentum, If no impulse is exerted on an object, the momentum of the object will not change. If no external forces act on a system,

More information

Physics 211: Lecture 14. Today s Agenda

Physics 211: Lecture 14. Today s Agenda Physics 211: Lecture 14 Today s Agenda Systems of Particles Center of mass Linear Momentum Example problems Momentum Conservation Inelastic collisions in one dimension Ballistic pendulum Physics 211: Lecture

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade Phy11: General Physics I Lab page 1 of 5 Experiment: The Ballistic Pendulum Objectives: Apply the Law of Conservation of Momentum to an inelastic collision Apply the Law of Conservation of Mechanical Energy

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Lecture 17. Conservation of Linear Momentum

Lecture 17. Conservation of Linear Momentum Lecture 17 Chapter 11 Physics I Conservation of Linear Momentum Course website: http://faculty.uml.edu/ndriy_danylov/teaching/physicsi Department of Physics and pplied Physics IN THIS CHPTER, you will

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Elastic collisions. Objectives. Physics terms. Assessment. Review: conservation laws. Equations 5/14/14. Define and describe an elastic collision.

Elastic collisions. Objectives. Physics terms. Assessment. Review: conservation laws. Equations 5/14/14. Define and describe an elastic collision. Elastic collisions Objectives Define and describe an elastic collision. Describe the possible outcomes that result from the collision of one moving ball with one stationary ball when their masses are equal

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved BACKGROUND Energy The maximum height achieved by the pendulum on the Ballistic Pendulum apparatus can be determined by using the angle it achieved. Figure S1 shows the pendulum in two different positions,

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s.

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s. Momentum Introduction As was pointed out in the previous chapter, some of the most powerful tools in physics are based on conservation principles. The idea behind a conservation principle is that there

More information

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem Today Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem System of particles Conservation of Momentum 1 Data : Fatality of a driver in head-on collision

More information

Physics 111: Mechanics Lecture 8

Physics 111: Mechanics Lecture 8 Physics 111: Mechanics Lecture 8 Bin Chen NJIT Physics Department Chapter 8 Momentum, Impulse, and Collisions q q q q q q 8.1 Momentum and Impulse 8.2 Conservation of Momentum 8.3 Momentum Conservation

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv) Impulse (J) We create an unbalancing force to overcome the inertia of the object. the integral of force over time The unbalancing force is made up of the force we need to unbalance the object and the time

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Linear Momentum Collisions and Energy Collisions in 2 Dimensions

Linear Momentum Collisions and Energy Collisions in 2 Dimensions Linear Momentum Collisions and Energy Collisions in 2 Dimensions Lana Sheridan De Anza College Mar 1, 2019 Last time collisions elastic collision example inelastic collisions Overview the ballistic pendulum

More information

Physics 1501 Lecture 17

Physics 1501 Lecture 17 Physics 50: Lecture 7 Today s Agenda Homework #6: due Friday Midterm I: Friday only Topics Chapter 9» Momentum» Introduce Collisions Physics 50: Lecture 7, Pg Newton s nd Law: Chapter 9 Linear Momentum

More information

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects Chapter 9 Linear Momentum and Collisions This chapter is about interaction between TWO objects 1 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum

More information

October 24. Linear Momentum: - It is a vector which may require breaking it into components

October 24. Linear Momentum: - It is a vector which may require breaking it into components October 24 Linear Momentum: - It is a vector which may require breaking it into components Newton s First Law: A body continues with Constant Linear Momentum unless it is acted upon by a Net External Force.

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Concepts in Physics. Friday, October 16th

Concepts in Physics. Friday, October 16th 1206 - Concepts in Physics Friday, October 16th Notes Assignment #4 due Wednesday, October 21 st in class (no later than noon) There are still assignments #1 and #2 in my office to be picked up... If you

More information

Lecture 16. Conservation of Linear Momentum

Lecture 16. Conservation of Linear Momentum Lecture 16 Chapter 11 Conservation of Linear Momentum nother conservation? I like conservations! Course website: http://faculty.uml.edu/ndriy_danylov/teaching/physicsi Department of Physics and pplied

More information

AP Physics Ch 6 Day 4

AP Physics Ch 6 Day 4 Textbook Reference: Goal/Objectives: Sections 6.3 (Collisions) - Understand how momentum and kinetic energy relate to the 3 types of collisions: elastic, inelastic, and perfectly inelastic - Use projectile

More information

Collision Theory Challenge Problems Solutions

Collision Theory Challenge Problems Solutions Collision Theory Challenge Problems Solutions Problem 1 Estimate the energy loss in a completely inelastic collision between two identical cars that collide head-on traveling at highway speeds! Solution:

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Lesson 4 Momentum and Energy

Lesson 4 Momentum and Energy Lesson 4 Momentum and Energy Introduction: Connecting Your Learning The previous lessons concentrated on the forces that cause objects to change motion. Lesson 4 will introduce momentum and energy, as

More information

Energy in Collisions Problems AP Physics C

Energy in Collisions Problems AP Physics C 1. A bullet of mass m and velocity v 0 is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity

More information

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Chap. 8: Collisions and Momentum Conservation

Chap. 8: Collisions and Momentum Conservation Chap. 8: Collisions and Momentum Conservation 1. System in Collision and Explosion C.M. 2. Analysis of Motion of System (C.M.) Kinematics and Dynamics Conservation between Before and After a) b) Energy

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force Momentum is a vector symbolized by the symbol p, and is defined as: It is a vector and has units of: (kg m/s) or (Ns) The rate of change of momentum is

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

LINEAR MOMENTUM. Contents. (A. Savas ARAPO GLU) July 16, Introduction 2. 2 Linear Momentum 2

LINEAR MOMENTUM. Contents. (A. Savas ARAPO GLU) July 16, Introduction 2. 2 Linear Momentum 2 LINEAR MOMENTUM (A. Savas ARAPO GLU) July 16, 2017 Contents 1 Introduction 2 2 Linear Momentum 2 3 Impulse & Collisions 4 3.1 Collison of Particles................................ 5 3.2 Collison Types...................................

More information

An astronaut of mass 80 kg pushes away from a space Both!p x

An astronaut of mass 80 kg pushes away from a space Both!p x Chapter 6 Momentum Collisions Definition: Momentum Important because it is CONSERVED proof: p = m v F = m v t = p t Ft = p Since F 12 =-F 21, p 1 + p 2 = 0 p i for isolated particles never changes Vector

More information

PH2213 : Examples from Chapter 9 : Linear Momentum. Key Concepts Methods in this chapter give us tools for analyzing:

PH2213 : Examples from Chapter 9 : Linear Momentum. Key Concepts Methods in this chapter give us tools for analyzing: PH2213 : Examples from Chapter 9 : Linear Momentum Key Concepts Methods in this chapter give us tools for analyzing: collisions (pool balls, car wrecks, football tackle, etc) explosions (recoil) time-varying

More information

Chapter 7 Lecture Notes

Chapter 7 Lecture Notes Chapter 7 Lecture Notes Physics 2414 - Strauss Formulas: p = mv ΣF = p/ t F t = p Σp i = Σp f x CM = (Σmx)/ Σm, y CM = (Σmy)/ Σm Main Ideas: 1. Momentum and Impulse 2. Conservation of Momentum. 3. Elastic

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY Objectives 1) To study the laws of conservation of energy, conservation of momentum, and the elements of projectile motion using the ballistic

More information

Physics 111. Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, Quiz Wednesday - Chaps. 7 & 8, plus 9.

Physics 111. Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, Quiz Wednesday - Chaps. 7 & 8, plus 9. Physics 111 Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, 2009 Quiz Wednesday - Chaps. 7 & 8, plus 9.1-2 Lecture 20 1/30 Conservation of Linear Momentum The net force

More information

6 th week Lectures Feb. 12. Feb

6 th week Lectures Feb. 12. Feb Momentum Rockets and guns 6 th week Lectures Feb. 12. Feb. 16. 2018. How do spaceships work? Collisions of objects They get impulses! Practical Propulsion 2/11/2018 Physics 214 Spring 2018 1 Announcements

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information