THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY

Size: px
Start display at page:

Download "THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY"

Transcription

1 THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY Objectives 1) To study the laws of conservation of energy, conservation of momentum, and the elements of projectile motion using the ballistic pendulum. ) To calculate the initial velocity of the Projectile Launcher using the basic principles of projectile motion. Introduction The momentum of an object is the product of the mass and the velocity. The principle of conservation of momentum may be derived from Newton's second law of motion. Simply stated this principle is, If no external forces are acting on a system containing several bodies, then the momentum of the system remains constant. This experiment will be applying this principle to a collision, using the ballistic pendulum. The ballistic pendulum consists of a gun which fires a ball into the pendulum's bob. The initial velocity of the ball is determined in terms of the masses of the ball and the bob and the height to which the bob rises after impact. The velocity also may be obtained by firing the ball horizontally and allowing it to fall freely toward the earth. Using the vertical distance of fall and the range traveled from the projectile problem the velocity is determined. In a collision between two objects the momentum before the impact is equal to the momentum after the impact. Applying this conservation law two the ballistic pendulum, the momentum of the projectile is equal to the momentum of the pendulum and the bob after impact. mv ( m M ) V (1) where m is the mass of the ball, v is the initial velocity of the ball before impact, M, is the mass of the pendulum, and V is the velocity of the pendulum and the ball immediately after impact. The type of collision between the ball and the pendulum prohibits us from using the conservation of energy before and after the collision. Despite this shortcoming, there is another area of the overall experiment that allows us to use the conservation of energy. The energy of the pendulum and ball just after impact is all kinetic energy. It is this energy that is transformed into potential energy when the pendulum and ball swing up and come to rest with its pawl engaged with a tooth on the upper rack. When this is put into an equation we obtain K. E. P. E. (a) initial final 1 ( m M) V ( m M) gh (b) Using equation (b) the velocity, V of the pendulum and ball after impact can be calculated. This velocity is then substituted into equation (1) to obtain the initial velocity of the projectile. The Ballistic Pendulum 1

2 A second method may be used to calculate the velocity, v of the projectile. This is performed by shooting the ball out horizontally from a height, s above the floor. This is illustrated in the figure below. By measuring the horizontal range of flight, x, and the vertical distance, y, fallen, the initial velocity of the projectile, v, can be found from v y x t 1 gt Procedure: Method I 1) Record the mass of the pendulum arm and the ball. You can measure the mass of the ball on the scales in the lab. The mass of the arm is provided on the board. ) Place a stainless steel ball in the spring gun and ready it for firing by using the ramrod. Ready the pendulum by removing it from the latched position and allow it to hang freely. Set the angle indicator to 0 o. If it is not at 0 o, estimate its starting angle very carefully. When the pendulum is at rest, pull the trigger, thereby firing the ball into the pendulum bob. This will cause the pendulum with the ball inside it to swing up along the rack where it will be caught at its highest point. Record the height, (h ) reached by the ball and pendulum when they come to rest in this raised position. To remove the ball from the pendulum, press the releasing trigger. 3) Repeat step ) a total of five times and record your results. 4) From the data of procedures ) and 3), compute the average value of the position of the pendulum in the raised position and record the answer. 5) With the pendulum hanging in its lowest position, measure the vertical distance of the ballistic pendulum (h 1 ) from the same point used in measuring (h ). The Ballistic Pendulum

3 Procedure: Method II 6) Set the apparatus near one edge of a table. Level the base by placing a few sheets of paper under the legs, if necessary. Clamp the base to the table. 7) Carefully, convert the ballistic pendulum into the projectile launcher. Prepare the projectile launcher by inserting the ball into the device to the same amount of compression used in Method I. 8) Shoot the ball horizontally in free flight. One observer should note carefully the position where the ball strikes the floor and another person should catch the ball before it strikes the wall or the furniture. Now, place a piece of paper on the floor where the ball will surely strike it, cover with carbon paper and fasten securely to the floor with tape. 9) Fire the ball five times. 10) Measure the horizontal distance, x, for each shot. See figure on the previous page for an illustration. Use a plumb bob to locate the point on the floor directly below the ball as it leaves the gun. 11) Measure the vertical fall of the ball, the vertical distance, y. This distance will be from the point projected on the floor to the bottom of the ball when it is in the spring gun. See the illustration for details. The Ballistic Pendulum 3

4 Calculations: Method I 1) From the data collected in procedures 1) thru 5), and recorded in the Data Table for Method 1, calculate the average angle, avg, and record your answer in Data Table for Method I. ) Calculate h using the relationship h = L(1 - cos ). h, is dependent upon the pendulum length, L, and the average angle, avg. 3) Compute the velocity of the pendulum and ball V just after the collision using equation b). Record your answer in Data Table for Method I. 4) Calculate the initial velocity of the ball, v, using equation 1) and the velocity, V, of the pendulum and ball calculated in step ) above. Record your answer in Data Table for Method I. Calculations: Method II 5) Calculate the average horizontal distance, x, for the five shots fired and measured in procedures 5) and 6). Record your answer in Data Table for Method II. 6) Using the measured vertical distance, y, and the acceleration of gravity in equation 4), calculate the time of flight for the ball. Record your answer in Data Table for Method II. 7) Calculate the initial velocity of the ball using equation 3) and the time of flight just calculated in step 6). Record your answer in Data Table for Method II. Comparing Results 8) Compare the values of the initial velocity of the ball obtained from both Method I and Method II. Express this comparison as a percent difference and record your answer in the Data Table. 4 The Ballistic Pendulum

5 Questions 1) What is the kinetic energy of the ball before impact? ) What is the kinetic energy of the pendulum and ball after impact? 3) What percent of the energy of the ball was transferred to the combination of the pendulum and ball? 4) State whether the collision in this experiment was an elastic or inelastic collision. Explain your answer. 5) If, in the free flight determination of the velocity, Method II, the floor were not level introducing an error of 1 cm in the height y, what percent difference would be introduced into the initial velocity? 6) An error in the horizontal distance, x, could also be made when the initial velocity is determined by the free flight method. Calculate the percent difference that would be introduced into the initial velocity, if a 5 cm error was made in the horizontal distance measurement, x. The Ballistic Pendulum 5

6 Names Data Table for Method I Mass of the pendulum bob Mass of the ball kg kg Angle of ballistic pendulum at highest position, : Average angle of highest position, avg Length of pendulum arm, L: Vertical distance, h, traveled by pendulum Calculated velocity of the pendulum and ball just after the collision (V) Velocity of the ball before the collision (v) /s /s Data Table for Method II Horizontal Distance, x, of the projectile m m m m m Average Horizontal Distance, x: Vertical distance of fall, y Initial velocity of the ball calculated using equation 3) and 4) /s Comparison of ball s initial velocity Difference between Method I and Method II value for velocity, v /s Percent difference of initial velocity % 6 The Ballistic Pendulum

Ballistic Pendulum and Projectile Motion

Ballistic Pendulum and Projectile Motion Ballistic Pendulum and Projectile Motion The initial velocity of a ball shot from a spring gun is determined by the equations for projectile motion and by the equations for a ballistic pendulum. Projectile

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Experimental Objectives The objective of this experiment is to study the law of conservation of momentum. We will apply the principle of conservation of linear momentum to a case

More information

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved BACKGROUND Energy The maximum height achieved by the pendulum on the Ballistic Pendulum apparatus can be determined by using the angle it achieved. Figure S1 shows the pendulum in two different positions,

More information

11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between

11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between 11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between a steel ball and a ballistic pendulum. NOTE: Before

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Physics 110 Laboratory Angle indicator Vertical upright θ R cm R b Trigger String cm Projectile Launcher Ballistic Pendulum Base m v cm after h Ramrod Steel ball before In this experiment

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade Phy11: General Physics I Lab page 1 of 5 Experiment: The Ballistic Pendulum Objectives: Apply the Law of Conservation of Momentum to an inelastic collision Apply the Law of Conservation of Mechanical Energy

More information

Ballistic Pendulum (Inelastic Collision)

Ballistic Pendulum (Inelastic Collision) Ballistic Pendulum (Inelastic Collision) Purpose To determine if momentum and/or kinetic energy is conserved during an inelastic collision. Concepts of 2-D motion will be used to determine the velocity

More information

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a 11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a steel ball and a ballistic pendulum. THEORY Reference:

More information

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision.

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision. Objectives Inelastic Collision To study the laws of conservation of linear momentum and energy in a completely inelastic collision. Introduction If no net external force acts on a system of particles,

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conservation of Momentum in Two Dimensions Consider the two-dimensional (glancing) collision shown below. Here, mass m 1 travels to the right along the x-axis with velocity v 1o and strikes mass m 2 initially

More information

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel 11 M36 M36.1 OBJECT THEORY ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel ball and a ballistic pendulum. NOTE: Before

More information

PHYSICS LAB Experiment 8 Fall 2004 BALLISTIC PENDULUM

PHYSICS LAB Experiment 8 Fall 2004 BALLISTIC PENDULUM PHYSICS 83 - LAB Experiment 8 Fall 004 BALLISTIC PENDULUM In this experiment we will study the application of the laws of conservation of momentum and energy in a ballistic pendulum apparatus. The device

More information

10. Ballistic Pendulum*

10. Ballistic Pendulum* 10. Ballistic Pendulum* Use is made of a ballistic pendulum to determine projectile velocity. Learning Objectives: 1. Explore the ideas of energy and momentum conservation, particularly the conditions

More information

Lab 10: Ballistic Pendulum

Lab 10: Ballistic Pendulum Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Lab 10: Ballistic Pendulum Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

Ballistic Pendulum. Equipment. Introduction. Setup

Ballistic Pendulum. Equipment. Introduction. Setup 35 Ballistic Pendulum 35 - Page 1 of 5 Equipment Ballistic Pendulum 1 Rotary Motion Sensor PS-2120A 2 Photogate Head ME-9498A 1 Mounting Bracket ME-6821A 1 Large Table Clamp ME-9472 1 90 cm rod ME-8738

More information

7-6 Inelastic Collisions

7-6 Inelastic Collisions 7-6 Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical

More information

Projectile Motion (Photogates)

Projectile Motion (Photogates) Projectile Motion (Photogates) Name Section Theory Projectile motion is the combination of different motions in the x and y direction. In the x direction, which is taken as parallel to the surface of the

More information

General Physics I Lab. M7 Conservation of Angular Momentum

General Physics I Lab. M7 Conservation of Angular Momentum Purpose In this experiment, you will investigate the conservation law of angular momentum in a collision between a ball falling along an inclined ramp and a ball catcher fixed on a freely rotating disk.

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Projectile Motion Laboratory 1. Objective. The objective of this laboratory is to predict the range of a projectile set in motion

More information

Projectile Motion. x = v ox t (1)

Projectile Motion. x = v ox t (1) Projectile Motion Theory Projectile motion is the combination of different motions in the x and y directions. In the x direction, which is taken as parallel to the surface of the earth, the projectile

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System)

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Name Class Date Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Momentum P24 Linear Angular.DS P28 Cons

More information

Exercise 6: The conservation of energy and momentum

Exercise 6: The conservation of energy and momentum Physics 221 Name: Exercise 6: The conservation of energy and momentum Part 1: The projectile launcher s spring constant Objective: Through the use of the principle of conservation of energy (first law

More information

Experiment 4: Projectile Motion

Experiment 4: Projectile Motion Experiment 4: Projectile Motion EQUIPMENT Figure 4.1: Ballistic Pendulum (Spring Gun) Pasco Ballistic Pendulum (Spring Gun) 2-Meter Stick Meter Stick Ruler Plumb Bob Carbon Paper Target Paper Launch Platform

More information

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum

EXPERIMENT 8 BALLISTIC PENDULUM. Figure 1 Setup to determine the initial speed of the projectile using the Blackwood Pendulum EXPERIMENT 8 BALLISTIC PENDULUM I. Introduction. The objectie of this eperiment is to determine the initial elocity of a projectile fired from a gun by two methods. In the first the projectile undergoes

More information

Conservation of Energy

Conservation of Energy rev 05/2018 Conservation of Energy Equipment Qty Item Part Number 1 Mini Launcher ME-6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME-8741 1 Small Metal Rod ME-8736 1 Support Base

More information

Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley)

Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley) PASCO scientific Physics Lab Manual: P28-1 Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley) Concept Time SW Interface Macintosh File Windows File rotational motion 45 m 500 or

More information

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion MECH-1: Projectile Motion Page 1 of 7 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion 1 Mini Launcher ME-6825 1 Time of Flight Accessory ME-6810 1 Phone Jack Extender

More information

v ox Motion in Two Dimensions (Projectile Motion)

v ox Motion in Two Dimensions (Projectile Motion) Motion in Two Dimensions (Projectile Motion) In this experiment we will study motion in two-dimensions. An object which has motion in both the X and Y direction has a two dimensional motion. We will first

More information

A ballistic pendulum

A ballistic pendulum A ballistic pendulum A ballistic pendulum is a device used to measure the speed of a bullet. A bullet of mass m is fired at a block of wood (mass M) hanging from a string. The bullet embeds itself in the

More information

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of: The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

Simple Harmonic Motion Practice Problems PSI AP Physics B

Simple Harmonic Motion Practice Problems PSI AP Physics B Simple Harmonic Motion Practice Problems PSI AP Physics B Name Multiple Choice 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located

More information

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions.

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. CONSERVATION OF MOMENTUM Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. Apparatus: Digital scale, Ramp, two steel balls, one hollow or plastic ball, C-clamp,

More information

Energy in Collisions Problems AP Physics C

Energy in Collisions Problems AP Physics C 1. A bullet of mass m and velocity v 0 is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity

More information

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75 Collisions Conservation of Momentum Elastic and inelastic collisions Serway 9.3-9.4 For practice: Chapter 9, problems 10, 11, 23, 70, 75 Momentum: p = mv Impulse (a vector) is defined as F t (for a constant

More information

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Simple Harmonic Motion Practice Problems PSI AP Physics 1 Simple Harmonic Motion Practice Problems PSI AP Physics 1 Name Multiple Choice Questions 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e). AP Physics Momentum Practice Test Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b).5e7 (c)3 (d)1.5e7 17.(a)9 (b) (c)1.5 (d)-4.75 (e).65 For multiple choice ( points) write the CAPITAL letter of

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Physics 30 Momentum and Impulse Assignment 1 version:0

Physics 30 Momentum and Impulse Assignment 1 version:0 Clearly communicate your understanding of the physics principles that you are going to solve a question and how those principles apply to the problem at hand. You may communicate this understanding through

More information

Linear Momentum and Collisions =======================================

Linear Momentum and Collisions ======================================= PHYS 1105 Last edit: May 26, 2017 SMU Physics Dept. Linear Momentum and Collisions ======================================= Goal To determine the muzzle velocity of a projectile. Equipment Ballistic pendulum,

More information

Projectile Motion. Objectives. Materials. Introduction

Projectile Motion. Objectives. Materials. Introduction Projectile Motion Objectives The objectives of this experiment are for you to: 1. Develop confidence in your ability to use the equations of motion to predict the results of an experiment. 2. Gain confidence

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4

Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 Name Date Period Objectives: Lab: Energy-Rubber Band Cannon C O N C E P T U A L P H Y S I C S : U N I T 4 1) Find the energy stored within the rubber band cannon for various displacements. 2) Find the

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy ASU University Physics Labs - Mechanics Lab 5 p. 1 Conservation of Momentum and Energy As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled? Slide 1 / 52 1 A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude? A 0 B + or - A C

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

E X P E R I M E N T 11

E X P E R I M E N T 11 E X P E R I M E N T 11 Conservation of Angular Momentum Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 11: Conservation

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Momentum and Its Relation to Force

Momentum and Its Relation to Force Linear Momentum Momentum and Its Relation to Force The linear momentum, or momentum, of an object is defined as the product of its mass and its velocity. Momentum, p, is a vector and its direction is the

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Lab 8. Ballistic Pendulum

Lab 8. Ballistic Pendulum Lab 8. Ballistic Pendulum Goals To determine launch speed of a steel ball for short, medium, and long range settings on projectile launcher apparatus using equations for projectile motion. To use concepts

More information

Physics 211: Lecture 14. Today s Agenda

Physics 211: Lecture 14. Today s Agenda Physics 211: Lecture 14 Today s Agenda Systems of Particles Center of mass Linear Momentum Example problems Momentum Conservation Inelastic collisions in one dimension Ballistic pendulum Physics 211: Lecture

More information

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14 Final Review: Chapters 1-11, 13-14 These are selected problems that you are to solve independently or in a team of 2-3 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This

More information

Ch 10 HW: Problem Spring Force

Ch 10 HW: Problem Spring Force Ch 10 HW: Problem 10.1 - Spring Force A 3.40-kg block is held against a vertical wall by a spring force in the setup shown below. The spring has a spring constant k = 725 N/m. Someone pushes on the end

More information

This homework is extra credit!

This homework is extra credit! This homework is extra credit! 1 Translate (10 pts) 1. You are told that speed is defined by the relationship s = d /t, where s represents speed, d represents distance, and t represents time. State this

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Projectiles: Target Practice Student Advanced Version

Projectiles: Target Practice Student Advanced Version Projectiles: Target Practice Student Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY

9.2 Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY 9. Work & Energy Homework - KINETIC, GRAVITATIONAL & SPRING ENERGY KINETIC ENERGY QUESTIONS 9.H Energy.doc 1. A 500 kilogram car is driving at 15 meters/second. Calculate its kinetic energy? How much does

More information

1 of 6 10/21/2009 6:33 PM

1 of 6 10/21/2009 6:33 PM 1 of 6 10/21/2009 6:33 PM Chapter 10 Homework Due: 9:00am on Thursday, October 22, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment

More information

Conservation of Mechanical Energy

Conservation of Mechanical Energy Core Skill Lab Conservation of Mechanical Energy A mass on a spring will oscillate vertically when it is lifted to the length of the relaxed spring and released. The gravitational potential energy increases

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Chapter 7 Lecture Notes

Chapter 7 Lecture Notes Chapter 7 Lecture Notes Physics 2414 - Strauss Formulas: p = mv ΣF = p/ t F t = p Σp i = Σp f x CM = (Σmx)/ Σm, y CM = (Σmy)/ Σm Main Ideas: 1. Momentum and Impulse 2. Conservation of Momentum. 3. Elastic

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)

PHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B) PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x - x 0 = v 0 t + ½ at 2 2a(x - x

More information

Momentum in 1-Dimension

Momentum in 1-Dimension Momentum in 1-Dimension Level : Physics I Date : Warm-up Questions If you were in a car that was out of control and had to choose between hitting a concrete wall or a haystack to stop, which would you

More information

Angular Momentum. Brown University Physics 0030 Physics Department Lab 4

Angular Momentum. Brown University Physics 0030 Physics Department Lab 4 Angular Momentum Introduction In this experiment, we use a specially designed air table on which we cause the collisions of a ball and a disk, and so observe the consequence of angular momentum conservation.

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

An Introduction. Work

An Introduction. Work Work and Energy An Introduction Work Work tells us how much a force or combination of forces changes the energy of a system. Work is the bridge between force (a vector) and energy (a scalar). W = F Dr

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Physics 102: Earth, Air, Fire, and Water Laboratory. Laboratory Manual. Montana State University-Billings

Physics 102: Earth, Air, Fire, and Water Laboratory. Laboratory Manual. Montana State University-Billings Physics 102: Earth, Air, Fire, and Water Laboratory Laboratory Manual Montana State University-Billings Lab # 1 Measurement Introduction: The laboratory in the physical sciences involves the measurement,

More information