(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15

Size: px
Start display at page:

Download "(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15"

Transcription

1 Physics 0, Lecture 5 Today s Topics q ore on Linear omentum nd Collisions Elastic and Perfect Inelastic Collision (D) Two Dimensional Elastic Collisions Exercise: illiards oard Explosion q ulti-particle System and Center of ass Ø Hope you ve previewed Chapter 9. Review: Linear omentum and omentum Conservation q Linear omentum p p + p + p +... mv + mv + mv +... p q Impulse-omentum theorem Δ p p f p i q omentum Conservation: p f F ext (t) I (impulse) pi, if Fext 0 j Review: Collisions q Collision: n event in which two particles come close and interact with each other by force. omentum is conserved in collision: P f P i (Per Impulse approximation) Kinetic Energy of the system may or may not be conserved: Elastic: KE f KE i Inelastic: KE f KE i Review: -Dimentional Elastic Collision f f q Take v i 0: If m <<m : v f -v i, v f v i 0 (think of a tennis ball hitting ground) If m >> m : v f v i, v f v i If m m : v f 0, v f v i (demo last Thursday) v v m m m v i + v m + m m + m i m m m v i + v m + m m + m i Two extreme cases: Elastic and Perfectly Inelastic.

2 Review: -Dimentional Perfectly Inelastic Collision q Perfectly inelastic collision: fter collision, two particles have same velocity v f. q omentum in x direction: P i P f m v i +m v i m v f +m v f à v f (m v i +m v i )/ (m +m ) q Question: Is kinetic energy the same before and after? efore: KE i ½ m v i + ½ m v i fter: KE f ½ m v f + ½ m v f à KE f -KE i - ½ m m /(m +m ) (v i -v i ) <0!!! Quizzes: What is the work done in collision? Where is the lost energy? Two-Dimensional Elastic Collision q Collision can be -D, the same approach as in D works. m v i m v f m v i Ø omentum conservation P i P f (P ix P fx, P iy P fy ) m v xi +m v xi m v xf +m v xf m v yi +m v yi m v yf +m v yf Ø Elastic KE i KE f : ½ m v i + ½ m v i ½ m v f + ½ m v f Ø Three equations and four unknowns (v fx, v fy, v fx, v fy ) requires one more assumption to get full solution. Ø The rest is algebra! m v f y x Glancing Collision Target is at rest q Elastic KE i KE f : ½ m v i ½ m v f + ½ m v f Note: v v x +v y q omentum conservation P i P f (P ix P fx, P iy P fy ) m v xi m v xf +m v xf m v yi m v yf +m v yf q Three equations and four unknowns (v fx, v fy, v fx, v fy ) gain, requires one extra given condition to get full solution. y x Exercise: illiards oard q Find the angle θ of the cue ball after collision. (ssuming elastic collision, and all masses equal) Solution: Elastic: KE i KE f à ½ mv i ½ m v f + ½ m v f omentum Conservation p i p f x: mv i mv f cosθ + mv f cos5 o à y: 0 -mv f sinθ + mv f sin5 o Solve (exercise after class): cos(θ+5 o ) 0 θ+5 o 90 o θ55 o In general: The two balls always makes 90 o after collision!

3 nother Trick for illiard oard q Show that if elastic collision, and in the limit that table mass is much larger than ball mass m, θ f θ i. Keys to Solution: >>m table does not move. ll kinetic energy carried by ball. Elastic: KE f KE i à v f v i v fx + v fy v ix + v iy Normal force no force in x direction à v fx v ix è v fy v iy i.e. v fy - v iy Trigonometry: tanθ i v ix /v iy, tanθ f v fx /v fy Explosion q Explosion: single object, often at rest, breaks into multiple moving pieces within a very short period of time efore Explosion Total momentum is conserved (Impulse approximation) p f p i (note the vector form!) Kinetic Energy is not conserved! efore: v0 KE i 0 fter: KE f ½ m v + ½ m v + ½ m v +... Σ ½ m j v j >0 v m m 4 v m m v fter v 4 à θ f θ i Quick Quiz Quick Quiz before v0 before v0 after after Which of these is a possible after state? both Which of these is a possible after state? both

4 Exercise: a Simple Explosion q Find v after the string is cut. (.00Kg, ignore all frictions) q Solution: p i 0, p f v + (.00) p i 0 v m/s q Energy consideration: before: KE i 0 after: KE f ½ (6.00) + ½ (.00) 4 J Ø Quiz: Where does this 4J come from? Ø nswer: from energy initially stored in the spring For a real bomb, the energy comes from chemical energy in TNT (fter Class) Conceptual Exercise q gun of mass gun is firing a bullet of mass bullet. How does the recoil of the gun depend on the mass of the bullet? q nswer/solution: This is not an easy quiz at all! It requires a full solution. Ø Problem setting: v Gun v ullet before all at rest: p i 0, KE i 0 after p f Gun v Gun + ullet v ullet 0 KE f ½ Gun v Gun + ½ ullet v ullet E Ø Solve: v Gun ~ (E ullet ) ½ / Gun if ullet smaller, v Gun smaller Energy from gun powder if Gun >> ullet ulti-particle System and Center of ass For a multi-particle system: m, m, m,... at r, r, r,... one can define: Ø Total mass: Σ m j m + m + m +... Ø Center of ass (C) position: m r + mr + mr +... r C Ø C Velocity and cceleration v C d r C a C d v C m v + m v + m v +... m a + m a + m a +... r m r C C r m m r Exercise: Find Center of ass q Find the C for these object system. (all masses same) mx + mx + mx m 0 + m 0 + m L L x C m + m + m m q Some examples of C m y + m y + m y m L + m 0 + m 0 L y C m + m + m m Ø Now think of C as a virtual particle, it has, r, v, a 4

5 Quick Quiz: C Location q For the base ball bat below, which point is closer to the center-of-mass a. b. c. C C Quick Quiz: Dividing at C q baseball bat of uniform density is cut at the location of its center of mass as shown below. Which piece has the smaller mass? a. The left piece b. The right piece c. oth pieces have the same mass Quick Quiz: v C and omentum q It is known that at a particular moment, the total momentum of a multi-particle system is zero. Which of the following statements is true? : The system s total kinetic energy is zero : The total external force on the system is zero C: The center of mass velocity of the system is zero D: oth and C above are correct E: None of above is correct v C d r C m v + m v + m v +... p j p Dynamics of Center of ass q Impulse-omentum Theorem: F ext d p F ext d p m dv + m dv + m dv +... d v C a C The motion of C follows Newton s nd Law if only external forces are considered! 5

6 otion of C C follows projectile trajectory! (if gravitation is the only external force) 6

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

What is momentum? Inertia in Motion.

What is momentum? Inertia in Motion. What is momentum? Inertia in Motion. p = mv From Newton s 2 nd Law: F = ma = dv d( mv) m = dt dt F = dp dt The time rate of change of the linear momentum of a particle is equal to the net force acting

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Newton: Quantity of Motion Forces applied for a period of time change an object s quantity of motion. F = ma F = m Δ v t F t = mδv = mv f mv i p mv Ft = Δp F = dp dt Conservation?

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Physics 110 Homework Solutions Week #6 - Wednesday

Physics 110 Homework Solutions Week #6 - Wednesday Physics 110 Homework Solutions Week #6 - Wednesday Friday, May3, 2013 Chapter 6 Questions - none Multiple-Choice 66 C 67 D 68 B 69 C Problems 612 It s velocity as the ball hits the ground is found from

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Conserv. of Momentum (Applications)

Conserv. of Momentum (Applications) Conserv. of Momentum (Applications) Announcements: Next midterm a week from Thursday (3/15). Chapters 6 9 will be covered LA information session at 6pm today, UMC 235. Will do some longer examples today.

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum

Think-Pair-Share. Linear Momentum (Ch 9) Linear Momentum, cont. Newton and Momentum Linear Momentum (Ch 9) The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product of the mass and velocity: p = m v

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

PHYS 1441 Section 002 Lecture #17

PHYS 1441 Section 002 Lecture #17 PHYS 1441 Section 002 Lecture #17 Monday, April 1, 2013 Linear Momentum Linear Momentum and Impulse Linear Momentum and Forces Linear Momentum Conservation Linear Momentum Conservation in a Two - body

More information

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion AP Physics Mechanics Chapter 6 Momentum and Collisions Text chapter 6 - Reading pp. 141-161 - textbook HW -- #1,3,4,6,9,15,16,20,21,23,26,27,25,34,63,70,71 1 6.1 Momentum and Impulse A. What is momentum?

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum Chapter 6 Work & Energy

More information

Chapter 9. Momentum and Collisions

Chapter 9. Momentum and Collisions Chapter 9. Momentum and Collisions Level : AP Physics Date : 9.1 Linear Momentum The linear momentum of a particle of mass m moving with a velocity v is defined as p mv [kg m/s] 9.3 Nonisolated System:

More information

Conservation of Momentum -1

Conservation of Momentum -1 Impulse, Action-Reaction and Change in Momentum: Prolem 1: A pitcher throws a 150g aseall y applying a 50N force for 0.1 second. Assuming that the ase all starts from rest, otain a. the initial velocity

More information

Lecture 17. Conservation of Linear Momentum

Lecture 17. Conservation of Linear Momentum Lecture 17 Chapter 11 Physics I Conservation of Linear Momentum Course website: http://faculty.uml.edu/ndriy_danylov/teaching/physicsi Department of Physics and pplied Physics IN THIS CHPTER, you will

More information

Collisions A + B C+D+

Collisions A + B C+D+ Collisions A + B C+D+ Conservation of Momentum Momentum in an isolated system in which a collision occurs is conserved An isolated system will not have external forces Specifically, the total momentum

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

Chapter 9 Impulse and Momentum

Chapter 9 Impulse and Momentum Chapter 9 Impulse and Momentum Chapter Goal: To understand and apply the new concepts of impulse and momentum. Slide 9-2 Chapter 9 Preview Slide 9-3 Chapter 9 Preview Slide 9-4 Chapter 9 Preview Slide

More information

Physics 1501 Lecture 17

Physics 1501 Lecture 17 Physics 50: Lecture 7 Today s Agenda Homework #6: due Friday Midterm I: Friday only Topics Chapter 9» Momentum» Introduce Collisions Physics 50: Lecture 7, Pg Newton s nd Law: Chapter 9 Linear Momentum

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Chapter 9 Linear Momentum

Chapter 9 Linear Momentum Chapter 9 Linear Momentum 7 12/7 16/7 Units of Chapter 9 Momentum, Impulse and Collisions Momentum and Impulse Define momentum Force and rate of change of momentum; resultant force as rate of change of

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

Lecture 11. Impulse/Momentum. Conservation of Momentum. Cutnell+Johnson: Impulse and Momentum

Lecture 11. Impulse/Momentum. Conservation of Momentum. Cutnell+Johnson: Impulse and Momentum Lecture 11 Impulse/Momentum Conservation of Momentum Cutnell+Johnson: 7.1-7.3 Impulse and Momentum We learned about work, which is the force times distance (times the cosine of the angle in between the

More information

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

Chap. 8: Collisions and Momentum Conservation

Chap. 8: Collisions and Momentum Conservation Chap. 8: Collisions and Momentum Conservation 1. System in Collision and Explosion C.M. 2. Analysis of Motion of System (C.M.) Kinematics and Dynamics Conservation between Before and After a) b) Energy

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

PH2213 : Examples from Chapter 9 : Linear Momentum. Key Concepts Methods in this chapter give us tools for analyzing:

PH2213 : Examples from Chapter 9 : Linear Momentum. Key Concepts Methods in this chapter give us tools for analyzing: PH2213 : Examples from Chapter 9 : Linear Momentum Key Concepts Methods in this chapter give us tools for analyzing: collisions (pool balls, car wrecks, football tackle, etc) explosions (recoil) time-varying

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Lecture 11. Linear Momentum and Impulse. Collisions.

Lecture 11. Linear Momentum and Impulse. Collisions. Lecture 11 Linear Momentum and Impulse. Collisions. Momentum and Newton s Second Law F net = m a= m Δ v Δ t = Δ (m v ) Δ t = Δ p Δ t Linear momentum p = m v Newton s second law in terms of linear momentum:

More information

Physics 201, Lecture 10

Physics 201, Lecture 10 Physics 201, Lecture 10 Today s Topics n Circular Motion and Newton s Law (Sect. 6.1,6.2) n Centripetal Force in Uniform Circular Motion n Examples n n Motion in Accelerated Frame (sec. 6.3, conceptual

More information

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo LECTURE 13- PROBLEMS Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo FARADAY LECTURES! Physics Lecture Hall Friday Dec. 7 Demos: 6pm Show: 7-8:30pm Saturday Dec. 8 Demos: 2pm Show: 3-4:30pm

More information

Physics 111. Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, Quiz Wednesday - Chaps. 7 & 8, plus 9.

Physics 111. Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, Quiz Wednesday - Chaps. 7 & 8, plus 9. Physics 111 Lecture 20 (Walker: 9.4-6) Momentum Conservation Collisions Center of Mass March 16, 2009 Quiz Wednesday - Chaps. 7 & 8, plus 9.1-2 Lecture 20 1/30 Conservation of Linear Momentum The net force

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum Slide 1 / 69 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 69 onservation of Momentum The most powerful concepts in science are called "conservation principles". Without worrying about the details of

More information

Momentum, impulse and energy

Momentum, impulse and energy Lecture 9 Momentum, impulse and energy Pre-reading: KJF 9.1 and 9.2 MOMENTUM AND IMPULSE KJF chapter 9 before after COLLISION complex interaction 3 Linear Momentum of a Body We define the momentum of an

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Slide 1 / 47. Momentum by Goodman & Zavorotniy

Slide 1 / 47. Momentum by Goodman & Zavorotniy Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy Slide 2 / 47 Conservation of Momentum s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These

More information

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation

Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation Physics 01, Lecture 17 Today s Topics q Rotation of Rigid Object About A Fixed Axis (Chap. 10.1-10.4) n Motion of Extend Object n Rotational Kinematics: n Angular Velocity n Angular Acceleration q Kinetic

More information

A ballistic pendulum

A ballistic pendulum A ballistic pendulum A ballistic pendulum is a device used to measure the speed of a bullet. A bullet of mass m is fired at a block of wood (mass M) hanging from a string. The bullet embeds itself in the

More information

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the

23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the 23. A force in the negative direction of an x-axis is applied for 27ms to a 0.40kg ball initially moving at 14m/s in the positive direction of the axis. The force varies in magnitude, and the impulse has

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum 5 1/26/16 Rotational Dynamics

More information

Announcements - 9 Oct 2014

Announcements - 9 Oct 2014 Announcements - 9 Oct 2014 1. Prayer 2. Exam 2 results a. Median Score: b. Curve: c. Exams will be returned soon, our office assistant should put them in the boxes near N357 ESC sometime today. d. I'll

More information

7-6 Inelastic Collisions

7-6 Inelastic Collisions 7-6 Inelastic Collisions With inelastic collisions, some of the initial kinetic energy is lost to thermal or potential energy. It may also be gained during explosions, as there is the addition of chemical

More information

Physics 2211 ABC Quiz #4 Solutions Spring 2017

Physics 2211 ABC Quiz #4 Solutions Spring 2017 Physics 22 ABC Quiz #4 Solutions Spring 207 I. (6 points) Corentine is driving her car of mass m around a curve when suddenly, all systems fail! The engine quits, she can t brake, she can t steer, and

More information

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum Slide 1 / 47 Momentum 2009 by Goodman & Zavorotniy onservation of Momentum Slide 2 / 47 s we pointed out with energy, the most powerful concepts in science are called "conservation principles". These principles

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A

Physics 1A Fall 2013: Quiz 4 Version A 1. Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock. Version A Physics 1A Fall 2013: Quiz 4 Version A 1 Department of Physics Physics 1A Fall Quarter 2013 Dr. Paddock Version A DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO PUT AWAY ALL BOOKS, NOTES, PHONES,

More information

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS

4Mv o. AP Physics Free Response Practice Momentum and Impulse ANSWERS AP Physics Free Response Practice Momentum and Impulse ANSWERS 1976B. a Apply momentum conservation. p before = p after mv o = (m(v o /3 + (4m(v f v f = v o / 6 b KE f KE i = ½ mv o ½ m (v o / 3 = 4/9

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

Physics 201, Review 3

Physics 201, Review 3 Physics 0, Reiew Important Notes: This reiew does not replace your own preparation efforts Exercises used in this reiew do not form a test problem pool. Please practice more with end of chapter problems.

More information

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d!

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d! Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved: 8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

More information

Physics 201, Lecture 23

Physics 201, Lecture 23 Physics 201, Lecture 23 Today s Topics n Universal Gravitation (Chapter 13) n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (13.4) n Gravitational Potential Energy (13.5)

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height Physics 01, Lecture Today s Topics n Universal Gravitation (Chapter 1 n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (1.4 n Gravitational Potential Energy (1.5 n Escape

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

Lecture 13. Collisions. and Review of material. Pre-reading: KJF 9.5. Please take an evaluation form

Lecture 13. Collisions. and Review of material. Pre-reading: KJF 9.5. Please take an evaluation form Lecture 13 Collisions and Review of material Pre-reading: KJF 9.5 Please take an evaluation form COLLISIONS KJF 9.5, 10.7 Conservation of momentum Recall from our discussion of momentum (Lecture 9), that

More information

Solutions to Homework Set #9 Phys2414 Fall 2005

Solutions to Homework Set #9 Phys2414 Fall 2005 Solution Set #9 Solutions to Homework Set #9 Phys44 Fall 005 Note: The numbers in the boxes correspond to those that are generated by WebAssign. The numbers on your individual assignment will vary. Any

More information

October 24. Linear Momentum: - It is a vector which may require breaking it into components

October 24. Linear Momentum: - It is a vector which may require breaking it into components October 24 Linear Momentum: - It is a vector which may require breaking it into components Newton s First Law: A body continues with Constant Linear Momentum unless it is acted upon by a Net External Force.

More information

Momentum Energy Angular Momentum

Momentum Energy Angular Momentum Notes 8 Impulse and Momentum Page 1 Impulse and Momentum Newton's "Laws" require us to follow the details of a situation in order to calculate properties of the system. Is there a simpler way? CONSERVATION

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES

PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES PRINCIPLE OF LINEAR IMPULSE AND MOMENTUM FOR A SYSTEM OF PARTICLES AND CONSERVATION OF LINEAR MOMENTUM FOR A SYSTEM OF PARTICLES Today s Objectives: Students will be able to: 1. Apply the principle of

More information

Physics 211: Lecture 14. Today s Agenda

Physics 211: Lecture 14. Today s Agenda Physics 211: Lecture 14 Today s Agenda Systems of Particles Center of mass Linear Momentum Example problems Momentum Conservation Inelastic collisions in one dimension Ballistic pendulum Physics 211: Lecture

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

Physics 231. Topic 6: Momentum and Collisions. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 6: Momentum and Collisions. Alex Brown October MSU Physics 231 Fall Physics 231 Topic 6: Momentum and Collisions Alex Brown October 7 2015 MSU Physics 231 Fall 2015 1 Momentum F = m a Newton s 2nd law F = m v/ t a= v/ t F = m (v final - v inital )/ t Define p = mv p: momentum

More information

PH211 Chapter 10 Solutions

PH211 Chapter 10 Solutions PH Chapter 0 Solutions 0.. Model: We will use the particle model for the bullet (B) and the running student (S). Solve: For the bullet, K B = m v = B B (0.00 kg)(500 m/s) = 50 J For the running student,

More information

Physics 111. ConcepTest. Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Center of Mass Oct. 16, r (80 kg)

Physics 111. ConcepTest. Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Center of Mass Oct. 16, r (80 kg) Physics 111 Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Oct. 16, 2009 Conservation of (System) Momentum When no external forces do work on a system consisting of objects that interact with

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Algebra Based Physics

Algebra Based Physics 1 Algebra Based Physics Momentum 2016 01 20 www.njctl.org 2 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions

More information

Chapter 9. Linear momentum and collisions. PHY 1124 Fundaments of Physics for Engineers. Michael Wong PHY1124 Winter uottawa.

Chapter 9. Linear momentum and collisions. PHY 1124 Fundaments of Physics for Engineers. Michael Wong PHY1124 Winter uottawa. Chapter 9 Linear momentum and collisions Michael Wong PHY1124 Winter 2019 PHY 1124 Fundaments of Physics for Engineers uottawa.ca https://uottawa.brightspace.com/d2l/home Goals 2 Chapter 9 Momentum and

More information

Chapter 9. Linear Momentum

Chapter 9. Linear Momentum Chapter 9 Linear Momentum Linear Momentum Conservation of Linear Momentum Kinetic Energy of a System Collisions Collisions in Center of Mass Reference Frame MFMcGraw-PHY 45 Chap09Ha-Momentum-Revised-10//01

More information

Module 17: Systems, Conservation of Momentum and Center of Mass

Module 17: Systems, Conservation of Momentum and Center of Mass Module 17: Systems, Conservation of Momentum and Center of Mass 17.1 External and Internal Forces and the Change in Momentum of a System So far we have restricted ourselves to considering how the momentum

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision. Text: Chapter 9 Unit 5: Momentum NAME: Problems (p. 229-240) #1: 18, 20, 27, 31, 37 (momentum & impulse) #2: 40, 42, 45, 46, 100 (conservation of momentum) #3: 49, 103, 123, 129 (collisions) Vocabulary:

More information

Chapter 5 Energy Pearson Education, Inc. Slide 5-1

Chapter 5 Energy Pearson Education, Inc. Slide 5-1 Chapter 5 Energy Slide 5-1 Chapter 5: Energy Concepts Slide 5-2 Section 5.1: Classification of collisions Below are the v x (t) curves for two carts colliding. Notice that the velocity differences before

More information

Chapter 9: Impulse and Momentum

Chapter 9: Impulse and Momentum Midterm: covers everything in chapters 1-8 - three problems, each worth 10 points. - first problem is actually five short-answer (1 line) questions (definitions, F = this, a = that, what is m?) - second

More information

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass LINEAR MOMENTUM Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass MOMENTUM Quantity of Motion Product of Mass and Velocity p = mv

More information

EXAM 3 SOLUTIONS. NAME: SECTION: AU Username: Read each question CAREFULLY and answer all parts. Work MUST be shown to receive credit.

EXAM 3 SOLUTIONS. NAME: SECTION: AU Username: Read each question CAREFULLY and answer all parts. Work MUST be shown to receive credit. EXAM 3 SOLUTIONS NAME: SECTION: AU Username: Print your name: Printing your name above acknowledges that you are subject to the AU Academic Honesty Policy Instructions: Read each question CAREFULLY and

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-007 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 1.0-kg block and a 2.0-kg block are pressed together on a horizontal

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy

Physics 111. Thursday, October 07, Conservation of Momentum. Kinetic Energy ics Thursday, ober 07, 2004 Ch 9: Ch 7: Momentum Conservation of Momentum Work Kinetic Energy Announcements Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Exam 2 - Practice Test

Exam 2 - Practice Test Exam 2 - Practice Test Saturday, June 11, 2016 Name: There are seven problems on this exam. You must show all your work to get full credit. Please box your final answers. Problem 1: Two balls are tossed

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information