Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation

Size: px
Start display at page:

Download "Motion Of An Extended Object. Physics 201, Lecture 17. Translational Motion And Rotational Motion. Motion of Rigid Object: Translation + Rotation"

Transcription

1 Physics 01, Lecture 17 Today s Topics q Rotation of Rigid Object About A Fixed Axis (Chap ) n Motion of Extend Object n Rotational Kinematics: n Angular Velocity n Angular Acceleration q Kinetic Energy of a Rotating Object q Moment of Inertia (More on Thursday) Motion Of An Extended Object q Extended Object = An object with size and shape A collection of point like objects (particles) a particle has no size/shape an extended object has mass, shape, described by m and position and size. Described by m, CM, moments of inertia (this week). q Motion of Rigid Object Rigid Object: Relative positions of all composing particles are fixed The shape of the rigid object does not change q Again and again, hope you h previewed! Ø Motion of Rigid Object = Motion of its Center of Mass + Rotation about the Center of Mass Translational Motion And Rotational Motion q Translational motion: The orientation of the object is unchanged during the motion. Motion of Rigid Object: Translation + Rotation q Rotational Motion: The object moves about an axis or center in circular fashion. = + 1

2 Review: Circular Motion q Circular motion: Angular velocity: = dθ/ Linear velocity: v = r, --- v always perpendicular to r q The acceleration has both a tangential and a centripetal components: The tangential component: a t = v/ = r/ = rα The centripetal component: a c = r = v /r Total acceleration: a = a C + a t q Rotation about a center: A group of particle together in circular motion a t v a c Rotation of Rigid Object About A Fixed Axis q Rotation about fixed axis is the simplest case of rotation Motion is described by change of quantity Angle θ v s θ = r sign convention +: counter clockwise - : clockwise (radian) à When rotating about a fixed axis, all elements on the rigid object are in circular motion with same angular speed: =dθ/ Quiz: Angular Velocity q Consider two points on a rigid object that rotates around a fixed axis as shown. Ø Which one has larger angular velocity? The Red dot, Blue dot, same. All points h the same angular velocity () Ø Which one has larger linear velocity? The Red dot, Blue dot, same. v = r Angular Velocity And Angular Acceleration q Angular Velocity () describes how fast an object rotstes, it has two components: Angular speed: and θ lim θ 0 = dθ direction of : + counter clockwise - clockwise è Angular velocity is a vector! (define direction next page) Ø All particles of the rigid object h the same angular velocity q Angular Acceleration (α): è Angular acceleration α α α and lim = d is also a vector! 0 Note: the similarity between (θ,,α) and (x, v, a)

3 Direction of Angular Velocity (Right-hand Rule) q The direction of angular velocity is define by a right-hand rule Practice: Right Hand Rule q What is the direction of angular velocity of this rotation? Quiz/Practice: Right Hand Rule Similarity Between (θ,,α) and (x,v,a) q The object rotates about the z axis as shown. Use right hand rule, what is the direction of its angular momentum? Towards left Towards right Up Down Into page Out of page α Rotation Angular Velocity: θ dθ Angular Acceleration: α d v a 1-D motion Velocity: x Acceleration v v dx a dv 3

4 Similarity Between (θ,,α) and (x,v,a): Kinematic Relationship 1-D motion Linear Velocity and Acceleration with Rotation For rigid object rotating about fixed axis The linear velocity has only tangential component, i.e. v = v t = r The linear acceleration can h both tangential and centripetal components: a t = dv/ = rd/ = rα a c = v /r = r, Rotational Kinetic Energy q General Kinetic Energy: KE i = ½ m i v i total kinetic energy: KE = Σ ½ m i v i q For an object rotating about a fixed axis: v i = r i KE = Σ ½ m i v i = ½ Σ m i (r i i ) = ½ (Σ m i r i ) i = ½ I Moment of Inertia q Moment of Inertia of an object about an axis Moment of Inertia: I m i r i another form: I r dm whole object (unit of I : kgm ) axis Rotational Kinetic Energy : KE rot = 1 I Ø I depends on rotation axis, total mass, and mass distribution. 4

5 Quick Quiz The picture below shows two different dumbbell shaped objects. Object A has two balls of mass m separated by a distance L, and object B has two balls of mass m separated by a distance L. Which of the objects has larger moment of inertia for rotations around x-axis? A. A. B. B. C. They h the same moment of inertia Case A : ml = ml Case B: m L = ml Exercise: Moment of Inertia of a Uniform Ring q Image the hoop is divided into a number of small segments, m 1 q These segments are equidistant from the axis I = m i r i = ( m i ) R = MR Or calculus form: I = r dm = R dm = MR axis Exercise: Moment of Inertia of a Uniform Disc Ø Area density: α= M/A = M/(πR ) Ø Mass element at r: dm=αda= α rdθdr (review some basic geometric calculus of you are in question) q Now Moment of inertia I = disc R π r dm = r α r dr dθ 0 0 R = πα r 3 dr = πα R4 = 1 MR 0 R axis r da Moments Of Inertial Of Various Objects I = m i r i (= r dm) 5

6 Quick Quiz Compare a thick wall and a thin wall cylinder of same mass and outer radius. Which one has moment of inertia around the axis shown? Quick Quiz Order the following objects, all having the same R and M, according their moments of inertia around there respective axis as shown. ( 1=largest) R 4 1 Thin wall cylinder Thick wall cylinder

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Physics 201, Lecture 18

Physics 201, Lecture 18 q q Physics 01, Lecture 18 Rotational Dynamics Torque Exercises and Applications Rolling Motion Today s Topics Review Angular Velocity And Angular Acceleration q Angular Velocity (ω) describes how fast

More information

Angular Motion, General Notes

Angular Motion, General Notes Angular Motion, General Notes! When a rigid object rotates about a fixed axis in a given time interval, every portion on the object rotates through the same angle in a given time interval and has the same

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

Chap10. Rotation of a Rigid Object about a Fixed Axis

Chap10. Rotation of a Rigid Object about a Fixed Axis Chap10. Rotation of a Rigid Object about a Fixed Axis Level : AP Physics Teacher : Kim 10.1 Angular Displacement, Velocity, and Acceleration - A rigid object rotating about a fixed axis through O perpendicular

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today:

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today: Physics 121. March 18, 2008. Physics 121. March 18, 2008. Course Information Topics to be discussed today: Variables used to describe rotational motion The equations of motion for rotational motion Course

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Moment of Inertia & Newton s Laws for Translation & Rotation

Moment of Inertia & Newton s Laws for Translation & Rotation Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

8 Rotational motion of solid objects

8 Rotational motion of solid objects 8 Rotational motion of solid objects Kinematics of rotations PHY166 Fall 005 In this Lecture we call solid objects such extended objects that are rigid (nondeformable) and thus retain their shape. In contrast

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Relating Translational and Rotational Variables

Relating Translational and Rotational Variables Relating Translational and Rotational Variables Rotational position and distance moved s = θ r (only radian units) Rotational and translational speed d s v = dt v = ω r = ds dt = d θ dt r Relating period

More information

Chapter 9 Rotation of Rigid Bodies

Chapter 9 Rotation of Rigid Bodies Chapter 9 Rotation of Rigid Bodies 1 Angular Velocity and Acceleration θ = s r (angular displacement) The natural units of θ is radians. Angular Velocity 1 rad = 360o 2π = 57.3o Usually we pick the z-axis

More information

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester

Physics 121, March 25, Rotational Motion and Angular Momentum. Department of Physics and Astronomy, University of Rochester Physics 121, March 25, 2008. Rotational Motion and Angular Momentum. Physics 121. March 25, 2008. Course Information Topics to be discussed today: Review of Rotational Motion Rolling Motion Angular Momentum

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

Rotational kinematics

Rotational kinematics Rotational kinematics Suppose you cut a circle out of a piece of paper and then several pieces of string which are just as long as the radius of the paper circle. If you then begin to lay these pieces

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Moment of Inertia Race

Moment of Inertia Race Review Two points, A and B, are on a disk that rotates with a uniform speed about an axis. Point A is closer to the axis than point B. Which of the following is NOT true? 1. Point B has the greater tangential

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Q9.1. A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Pearson Education, Inc.

Q9.1. A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Pearson Education, Inc. Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate? A. t = 1 s B. t = 2

More information

Angular Displacement (θ)

Angular Displacement (θ) Rotational Motion Angular Displacement, Velocity, Acceleration Rotation w/constant angular acceleration Linear vs. Angular Kinematics Rotational Energy Parallel Axis Thm. Angular Displacement (θ) Angular

More information

Two Dimensional Rotational Kinematics Challenge Problem Solutions

Two Dimensional Rotational Kinematics Challenge Problem Solutions Two Dimensional Rotational Kinematics Challenge Problem Solutions Problem 1: Moment of Inertia: Uniform Disc A thin uniform disc of mass M and radius R is mounted on an axis passing through the center

More information

Connection between angular and linear speed

Connection between angular and linear speed Connection between angular and linear speed If a point-like object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

1301W.600 Lecture 16. November 6, 2017

1301W.600 Lecture 16. November 6, 2017 1301W.600 Lecture 16 November 6, 2017 You are Cordially Invited to the Physics Open House Friday, November 17 th, 2017 4:30-8:00 PM Tate Hall, Room B20 Time to apply for a major? Consider Physics!! Program

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION

More information

Rotation of Rigid Objects

Rotation of Rigid Objects Notes 12 Rotation and Extended Objects Page 1 Rotation of Rigid Objects Real objects have "extent". The mass is spread out over discrete or continuous positions. THERE IS A DISTRIBUTION OF MASS TO "AN

More information

Physics 1A. Lecture 10B

Physics 1A. Lecture 10B Physics 1A Lecture 10B Review of Last Lecture Rotational motion is independent of translational motion A free object rotates around its center of mass Objects can rotate around different axes Natural unit

More information

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation:

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation: PHYSCS LOCUS 17 summation in mi ri becomes an integration. We imagine the body to be subdivided into infinitesimal elements, each of mass dm, as shown in figure 7.17. Let r be the distance from such an

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 10-1 Angular Position, Velocity,

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Rotation of Rigid Objects

Rotation of Rigid Objects Notes 12 Rotation and Extended Objects Page 1 Rotation of Rigid Objects Real objects have "extent". The mass is spread out over discrete or continuous positions. THERE IS A DISTRIBUTION OF MASS TO "AN

More information

Physics 111: Week 8 10 Review

Physics 111: Week 8 10 Review Physics 111: Week 8 10 Review Bin Chen NJIT Physics Department Announcements q Common Exam #3 on Nov 19 (Next Monday) from 4:15 pm to 5:45 pm in KUPF 107 q Must bring your NJIT ID q Cell phone and electronic

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Review: Angular Momentum. Physics 201, Lecture 20

Review: Angular Momentum. Physics 201, Lecture 20 q Physics 01, Lecture 0 Today s Topics More on Angular Momentum and Conservation of Angular Momentum Demos and Exercises q Elasticity (Section 1.4. ) Deformation Elastic Modulus (Young s, Shear, Bulk)

More information

Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum

Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum J Peraire 1607 Dynamics Fall 004 Version 11 Lecture D0 - D Rigid Body Dynamics: Impulse and Momentum In lecture D9, we saw the principle of impulse and momentum applied to particle motion This principle

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Advanced Higher Physics. Rotational Motion

Advanced Higher Physics. Rotational Motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational Motion Solutions AH Physics: Rotational Motion Problems Solutions Page 1 013 TUTORIAL 1.0 Equations of motion 1. (a) v = ds, ds

More information

Chapter 11 Motion in a Circle

Chapter 11 Motion in a Circle Lecture Outline Chapter 11 Motion in a Circle Slide 11-1 Chapter 11 Preview Looking Ahead: Rotational kinematics During rotational motion, all the particles in an object follow circular paths around the

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

Fundamentals Physics. Chapter 10 Rotation

Fundamentals Physics. Chapter 10 Rotation Fundamentals Physics Tenth Edition Halliday Chapter 10 Rotation 10-1 Rotational Variables (1 of 15) Learning Objectives 10.01 Identify that if all parts of a body rotate around a fixed axis locked together,

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Quick review of Ch. 6 & 7. Quiz to follow

Quick review of Ch. 6 & 7. Quiz to follow Quick review of Ch. 6 & 7 Quiz to follow Energy and energy conservation Work:W = Fscosθ Work changes kinetic energy: Kinetic Energy: KE = 1 2 mv2 W = KE f KE 0 = 1 mv 2 1 mv 2 2 f 2 0 Conservative forces

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Get Discount Coupons for your Coaching institute and FREE Study Material at   Force System Get Discount Coupons for your Coaching institute and FEE Study Material at www.pickmycoaching.com Mechanics Force System When a member of forces simultaneously acting on the body, it is known as force

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Physics 201, Lecture 23

Physics 201, Lecture 23 Physics 201, Lecture 23 Today s Topics n Universal Gravitation (Chapter 13) n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (13.4) n Gravitational Potential Energy (13.5)

More information

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Chapter 1: Rotation of Rigid Bodies Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics Translational vs Rotational / / 1/ m x v dx dt a dv dt F ma p mv KE mv Work Fd P Fv / / 1/ I

More information

Physics 1A Lecture 10B

Physics 1A Lecture 10B Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. --Davis Barton Cross Products Another way to

More information

Moments of Inertia (7 pages; 23/3/18)

Moments of Inertia (7 pages; 23/3/18) Moments of Inertia (7 pages; 3/3/8) () Suppose that an object rotates about a fixed axis AB with angular velocity θ. Considering the object to be made up of particles, suppose that particle i (with mass

More information

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height

F 12. = G m m 1 2 F 21. = G m 1m 2 = F 12. Review: Newton s Law Of Universal Gravitation. Physics 201, Lecture 23. g As Function of Height Physics 01, Lecture Today s Topics n Universal Gravitation (Chapter 1 n Review: Newton s Law of Universal Gravitation n Properties of Gravitational Field (1.4 n Gravitational Potential Energy (1.5 n Escape

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Physics 111: Mechanics Lecture 10

Physics 111: Mechanics Lecture 10 Physics 111: Mechanics Lecture 10 Bin Chen NJIT Physics Department Phys. 111 (Part I): Translational Mechanics Phys. 111 (Part II): Rotational Mechanics q q q q Motion of point bodies Translational motion.

More information

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15

(t)dt I. p i. (impulse) F ext. Δ p = p f. Review: Linear Momentum and Momentum Conservation q Linear Momentum. Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q ore on Linear omentum nd Collisions Elastic and Perfect Inelastic Collision (D) Two Dimensional Elastic Collisions Exercise: illiards oard Explosion q ulti-particle

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017

Physics of Rotation. Physics 109, Introduction To Physics Fall 2017 Physics of Rotation Physics 109, Introduction To Physics Fall 017 Outline Next two lab periods Rolling without slipping Angular Momentum Comparison with Translation New Rotational Terms Rotational and

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1 Physics 141. Lecture 18. Course Information. Topics to be discussed today: A

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics Physics 01, Lecture Today s Topics n Kinematics (Chap..1-.) n Position, Displacement (, and distance) n Time and Time Interval n Velocity (, and speed) n Acceleration *1-Dimension for today,,3-d later.

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Chapter Rotational Motion

Chapter Rotational Motion 26 Chapter Rotational Motion 1. Initial angular velocity of a circular disc of mass M is ω 1. Then two small spheres of mass m are attached gently to diametrically opposite points on the edge of the disc.

More information

Rotational Motion. PHY131H1F Summer Class 10. Moment of inertia is. Pre-class reading quiz

Rotational Motion. PHY131H1F Summer Class 10. Moment of inertia is. Pre-class reading quiz PHY131H1F Summer Class 10 Today: Rotational Motion Rotational energy Centre of Mass Moment of Inertia Oscillations; Repeating Motion Simple Harmonic Motion Connection between Oscillations and Uniform Circular

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Chapter 11 Motion in a Circle

Chapter 11 Motion in a Circle Chapter 11 Motion in a Circle Slide 11-1 Exam 2 details Scaled by +15% à average 79.9% Results on blackboard (scaled) Results on testing services (NOT scaled) Still need to check for misplaced scantrons

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Classical Mechanics Lecture 15

Classical Mechanics Lecture 15 Classical Mechanics Lecture 5 Today s Concepts: a) Parallel Axis Theorem b) Torque & Angular Acceleration Mechanics Lecture 5, Slide Unit 4 Main Points Mechanics Lecture 4, Slide Unit 4 Main Points Mechanics

More information

Chapter 8. Rotational Equilibrium and Rotational Dynamics

Chapter 8. Rotational Equilibrium and Rotational Dynamics Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment

More information

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.

Lecture 14. Rotational dynamics Torque. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Lecture 14 Rotational dynamics Torque Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. Archimedes, 87 1 BC EXAM Tuesday March 6, 018 8:15 PM 9:45 PM Today s Topics:

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information