Forces & NEWTON S LAWS HOMEWORK

Size: px
Start display at page:

Download "Forces & NEWTON S LAWS HOMEWORK"

Transcription

1 1 Forces & NEWTON S LAWS HOMEWORK BASIC CONCEPTS OF MASS VS. WEIGHT VS. VOLUME VS. DENSITY MULTIPLE CHOICE: You have one kilogram of feathers and one kilogram of lead. Which has more: 1. mass? 3. weight? a. feathers b. lead a. feathers b. lead 2. volume? 4. density? a. feathers b. lead a. feathers b. lead Pb MULTIPLE CHOICE: You have one liter of water and one liter mercury. Which has more: 5. mass? 7. weight? a. water b. mercury a. water b. mercury 6. volume? 8. density? a. water b. mercury a. water b. mercury MULTIPLE CHOICE: You have the dough for a loaf of bread and you put it in the oven where it bakes. What happens to each of the following after baking? 9. mass? 11. weight? a. bigger b. smaller a. bigger b. smaller 10. volume? 12. density? a. bigger b. smaller a. bigger b. smaller 13. If you have the mass of something (say 10 kg) and you want to find its weight, how do you do it? Show your work If you have weight of something (say 10 N) and want to find its mass, how do you do it? Show your work..

2 2 NEWTON S FIRST LAW 1. State Newton s First Law: 2. Give an example of Newton s First Law at work for an object at rest: 3. Give an example of Newton s First Law at work for an object in motion: 4. MULTIPLE CHOICE: The more mass an object has the inertia it has. a. more b. less c. inertia is independent of mass Rear deck 5. In terms of Newton s First Law, why is it dangerous to have sharp things lying in the rear deck of the car below the back window? 6. a. What causes your neck to whiplash in a car when you are hit from behind? b. How does the seat head rest help prevent whiplash? 7. An F-18 Hornet of mass 3900 kg is flying at constant velocity in the air. Its thrusters are providing 500,000 N of thrust to the plane. What s the plane s acceleration (in m/s 2 )? 8. An aircraft carrier of mass 250,000,000 kg is moving at a constant speed of 15 m/s. If its engine is providing 260,000,000 N of force to the propellers, how much is the force of water resistance (in N)?

3 9. You are an astronaut at zero gravity. Two objects in front of you look identical but one of them has more mass than the other. What simple thing could you do to find out which one has more mass?. 3 NEWTON S SECOND LAW DIRECTIONS: Draw all the real forces (as vector arrows) acting on the GREY block shown in each of the situations. The possible forces are Fg (force of gravity), Ff (the force of friction), FT (force of tension, whenever there are cables, strings, ropes involved), FN (a force between two objects that are in contact like the floor and a block on the floor), and Fp (a pushing or pulling force, like somebody pushing on a block or a car engine pushing on the tires). The number of vectors () to be drawn for each situation are in parentheses. An example is given here at right. The girl is pushing on the wagon and the boy is too but through a rope. The forces action ON THE WAGON are shown in the force diagram below the picture. F F F F F P F P F g F N F T F N F T 1. (2 vectors) A block at rest on a table 2. (3) A block being accelerated to the right. No friction is present. F g 3. (4) A block moving to the right at constant velocity. Friction is present. 4. (3) A block at rest with another block on top of it 5. (4) A block with a book leaning against it. The block is not moving. Friction is present. 6. (3) A block on an inclined plane. The block is not sliding. Friction is present. 7. (4) A block on an inclined plane being pulled up the plane. Friction is present. 8. (3) A block at the bottom of an inclined plane butted up against a wall. 9. (2) A block falling through the air at terminal velocity 10. (2) A block hanging from the ceiling by a rope. 11. (3) A block hanging from the ceiling by a rope and with a weight pulling it down. 12. (3) A block hanging from the ceiling by two ropes at angles.

4 4 OVER EASY MATH FORMULA BANK a = F or F = ma x = ±vxot ± m ½at2 a = v t = v f v i t f t i Newton s Second Law. Where a is the acceleration ((in m/s 2 ), F is the force (in N), and m is the mass (in kg) Distance travelled in a horizontal direction. Where x is the distance (in meters), v xo is initial horizontal velocity (in m/s), t is time (in sec), and a is acceleration (in m/s 2 ) Acceleration as the slope of velocity. Where a is the acceleration (in m/s 2 ), v f is the final velocity (in m/s), v i is the initial velocity (in m/s), and t is the time (in s) FNET = Fx Ff Fw = mg FW = FN and Ff = Fx Ff = FN Net force. Equals the pushing/pulling force (in N) one way minus the frictional force (in N) the other way. The force of weight. Where g is the acceleration (in m/s 2 ) due to gravity, F w is the force of weight (in N), and m is the mass (in kg) Equilibrium. The force of weight (F W) equals the normal force (F N) and the force of friction (F f) equals the pulling force (F x) in a simple equilibrium situation on a horizontal surface. F N F f F W F x Frictional Force. The Frictional force (F f) on a block on a flat surface or inclined plane is equal to the coefficient of friction () times the Normal Force (F N) F f F N Refer to the figure at right to answer the questions following. Assume gravity is 10 m/s 2. Assume the strings are massless 1. What is the block s weight (in N)? 2. If an equilibrium situation exists, how much total force (in N) must there be in the upwards direction? 4 kg 3. What is the vertical component of upwards force (in N) provided by one of the spring scales?

5 5 4. If a third spring scale is inserted, how much of the weight (in N) of the 4-kg mass does each spring scale now hold up? Gravity on the moon is 1/6 th the gravity on Planet Earth. If you weigh 200 N on the moon 5. What is your mass (in kg)? 6. how much do you weigh (in N) on Planet Earth? 7. what is your mass (in kg) on the moon? 8. what is the acceleration due to gravity (in m/s 2 ) on Planet Tupac if your weight there is 1500 N? A 5-kg block is being pulled along a horizontal surface at a constant velocity by a force of 50 N. Friction is present. Assume gravity is 9.8 m/s What is the weight (in N) of the block? 5-kg Fx = 25 N 10. What is the Normal Force (in N) on the block? 11. If the block is moving at a constant velocity, what is the acceleration (in m/s 2 ) of the 5-kg block? 12. What must be the frictional force (Ff) acting on the block (in N)? 13. What is the coefficient of friction,, between the block and the surface it rests on?

6 6 Anastacia pulls horizontally on a loaded 120-kg wagon so that its velocity goes from 0 m/s to 4 m/s in 0.5 seconds. Assume gravity is 9.8 m/s 2, friction is present, and that the coefficient of friction between the wagon wheels and the ground is = What is the acceleration (in m/s 2 ) of the wagon? 15. How far (in m) would the wagon move in 5 seconds? 16. What is the weight (in N) of the wagon? 17. What is the Normal Force (in N) on the wagon (assuming Anastacia is pulling horizontally)? 18. How much frictional force (in N) is acting on the wagon? 19. What is the net (resultant) force (in N) acting on the wagon? 20. What is the force (in N) applied by Anastacia to the wagon handle to get the net force in Probl. 19?

7 7 MEDIUM RARE MATH FORMULA BANK Pythagorean Theorem: a 2 + b 2 = c 2 S.O.H.C.A.H.T.O.A.: To find the angle : tan = opp. adj. 1 opp. = tan adj. sin = opp. adj. hyp. hyp. 1 opp. = sin hyp. cos = b = opp. 1 adj. = cos hyp. a = adj. The set up at right is a signpost holding the sign for a doctor s office. The sign post is sticking out of the wall and is supported by a cable at a diagonal. If the mass of the sign is 83 kg 1. What is the weight (in N) of the sign post? 2. What is the vertical force (in N) upwards that must be present if an equilibrium situation exists? = 40 Dr. Love Cardiologist 3. What is the tension (in N) in the cable holding the sign? T =? = What is the horizontal force (in N) pushing the signpost into the wall? Dr. Love Cardiologist = 40 FX =? Dr. Love Cardiologist

8 8 Two cables at angles hold an 80-kg mass from the ceiling as shown at right. 5. What is the weight (in N) of the hanging mass? =? T 1 = 500 N =? T 2 = 500 N m = 80 kg 6. What is the vertical force (in N) upwards that must be present if an equilibrium situation exists? FY =? =? =? T1 = 500 N T2 = 500 N 80 kg 7. How much of the vertical force (in N) upwards from Probl. 6 does each cable hold? T1 = 500 N =? FY1=? 80 kg =? T2 = 500 N FY2=? 8. What is the angle (in degrees) between the cables and the ceiling?

9 9 WELL-DONE MATH FORMULA BANK a = g sin FX = Fwsin FY = Fwcos The acceleration, a, (in m/s 2 ) of a block down an inclined plane is equal to gravity, g, (in m/s 2 ) times the sine of the angle of the inclined plane a Horizontal force. For a block on an inclined plane, the horizontal component of force (F x) making the block slide down the inclined plane equals the weight of the block (F w) times the sine of the angle of the inclined plane Vertical force. For a block on an inclined plane, the vertical component of force (F y) pushing the block into the inclined plane equals the weight of the block (F w) times the cosine of the angle of the inclined plane F x F y F w F w FNET = Fx Ff Net force. Equals the pushing/pulling force (in N) one way minus the frictional force (in N) the other way. F f On an inclined plane, FY = FN Normal Force. The Normal force (FN) in an equilibrium situation on an inclined plane equals the vertical component of the Force of Weight (FY). F N FX = Ff Friction. In a simple equilibrium situation on a flat surface or inclined plane, the horizontal component of force of the block s weight (F x) equals the force of friction (F f). F f F x F y F w F x Fw = mg The force of weight. Where g is the acceleration (in m/s 2 ) due to gravity, F w is the force of weight (in N), and m is the mass (in kg) Ff = FN Frictional Force. The Frictional force (F f) on a block on a flat surface or inclined plane is equal to the coefficient of friction () times the Normal Force (F N) F f F N

10 10 Two blocks are suspended from each other on inclined planes by A = 4.6 kg a cable over a pulley. The inclined planes have different slopes as can be seen from the figure at right. Assume that there is no friction on the slope = 22 Block B is on but there is friction on the slope Block A is on (coefficient of friction of = 0.1 between the block and the surface of the inclined plane). = 88 B = 0.8 kg 1. List what forces to the left and what forces to the right have to be balanced for an equilibrium situation to exist. HINT: there are three forces. Name them correctly. 2. Explain how equilibrium still could exist even though Block A is so much more massive than Block B. 3. What formula(s) you would use to find the force(s) pulling to the left (that you stated in Probl. 1.) 4. What formula(s) you would use to find the force(s) pulling to the right (that you stated in Probl Find whether or not the system above is actually in equilibrium, by finding the values of the force(s) pulling to the left and comparing them to the force(s) pulling to the right. Show your work for credit.

11 11 NEWTON S THIRD LAW My Third Law states that for every action, there is an equal and opposite reaction. When I shoot a rifle, the rifle recoils backwards while the bullet goes forwards. QUESTION: Why does the bullet move forward and the rifle backwards? If they are equal and opposite, don t the forces cancel each other out, then? ANSWER: A person is log rolling (see figure) in a river. 1. What is the action? 2. What is the reaction? A person is running on Planet Earth. 3. What is the action? 4. What is the reaction? 5. How come we can clearly see the effects of the action in the log rolling but no so when the person is running on Planet Earth? 6. If you put a rubber band between your thumb and forefinger and stretch, which of the two fingers pulls harder? Explain 7. A hammer strikes a nail, knocking it into a piece of wood.

12 12 a. How does the force on the hammer by the nail compare to the force on the nail by the hammer?. b. What does the force on the hammer by the nail make the hammer do?. c. What does the force on the nail by the hammer make the nail do?. 8. An action hero hits 10 people in a movie with his fist and nothing happens to him. According to Newton s Third Law, every time he hits somebody with a certain amount of force 9. A speeding truck makes impact with a bug that splatters on the windshield. Because of the sudden force on the unfortunate bug, it undergoes a sudden fatal deceleration a. Is the corresponding force that the bug exerts on the windshield greater, less than, or the same as that of the bug? greater than less than the same as b. Is the deceleration of the two objects the same? Why or why not? 10. When you jump upwards, the world really does recoil downward. Why can t you notice the motion of the earth? Explain We know that the earth pulls on the moon with a force. Does the moon also pull on the earth? If so, which pull is stronger? Explain. 12. Identify the action and reaction forces in the case of an object falling without air resistance

13 13

PHYSICS AC NEWTON S LAWS HOMEWORK Ans. Key

PHYSICS AC NEWTON S LAWS HOMEWORK Ans. Key 1 PHYSICS AC NEWTON S LAWS HOMEWORK Ans. Key BASIC CONCEPTS OF MASS VS. WEIGHT VS. VOLUME VS. DENSITY MULTIPLE CHOICE: You have one kilogram of feathers and one kilogram of lead. Which has more: 1. c.

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion 4-1 Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude of

More information

Newton's Third Law. Examples of Interaction Force Pairs

Newton's Third Law. Examples of Interaction Force Pairs Newton's Third Law A force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! Some forces result from contact interactions

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law Physics 100 Today Finish Chapter 4: Newton s Second Law Start Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

The English physicist Isaac Newton ( ) was one of the greatest physicists of all time. His conception of the universe, which he formulated at

The English physicist Isaac Newton ( ) was one of the greatest physicists of all time. His conception of the universe, which he formulated at The English physicist Isaac Newton (1642-1727) was one of the greatest physicists of all time. His conception of the universe, which he formulated at age 24, lasted for almost 300 years until the end of

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Physics Midterm Review Sheet

Physics Midterm Review Sheet Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided

More information

Unit 2: Newton s Laws Note 1 : Forces

Unit 2: Newton s Laws Note 1 : Forces Unit 2: Newton s Laws Note 1 : Forces Force: The units of force are: There are four fundamental forces that make up all of the forces in the universe: 1) 2) 3) 4) Force of Gravity Force of Gravity: The

More information

Physics 101. Today Chapter 5: Newton s Third Law

Physics 101. Today Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. Eg. I

More information

Can You Snap a Card Out From Under a Coin?

Can You Snap a Card Out From Under a Coin? Can You Snap a Card Out From Under a Coin? 1. Balance half of a 3 x 5 index card on the tip of an index finger. 2. Place a penny on the card, just above your fingertip. 3. Give the card a quick horizontal

More information

Why constant (or straight line) motion? Remember, if an object turns at a constant speed it is accelerating.

Why constant (or straight line) motion? Remember, if an object turns at a constant speed it is accelerating. Newton s 1st Law Newton s 1st Law of Motion - An object in constant motion will continue in constant motion or an object at rest will stay at rest unless acted upon by an unbalanced force. Unbalanced force

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Physics Fall Semester Set 2: Chapters 5-9

Physics Fall Semester Set 2: Chapters 5-9 Chapter 5 and 6 1) Which of the following is considered to be a scalar quantity? a. 10m/s @ 90 0 b. 2 cm south c. 32 nanometers to the left d. 5 liters 2) If an airplane flies in the same direction as

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FLEX Physical Science AP Physics C Newton's Laws --- Conceptual Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You swing a bat and hit

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Chapter 4 Physics Notes Changes in Motion Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Forces cause changes in velocity Causes a stationary

More information

P. O. D. Station 2. You already have the real time. You found that with your stop watch.

P. O. D. Station 2. You already have the real time. You found that with your stop watch. P. O. D. Station 2 In Station 2 you have to find the real time (t real ), the real acceleration (a real )and the real force (Force real ). Then you have to find the ideal force, the ideal acceleration,

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Chapter 4 Forces Newton s Laws of Motion

Chapter 4 Forces Newton s Laws of Motion Chapter 4 Forces Newton s Laws of Motion Forces Force A vector quantity that changes the velocity vector of an object. When you hit a baseball, the velocity of the ball changes. Can be a push or a pull

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

FORCES AND THE LAWS OF MOTION

FORCES AND THE LAWS OF MOTION FORCES AND THE LAWS OF MOTION FORCE A force is the cause of an acceleration, or the change in an object s velocity (speed or direction). Forces are usually thought of as a push or a pull. The SI unit of

More information

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car? Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

Four naturally occuring forces

Four naturally occuring forces Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Objectives: Students will describe inertia and how it is related to Newton s first law of motion. Students will calculate an object s acceleration, mass, or the force applied to

More information

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2.

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. Read each question carefully. 1) The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. What is the box's mass? 6 kg 15 kg 21 kg 54 kg 2) A motorcycle and a van collide

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION This lecture will help you understand: Newton s First Law of Motion Newton s Second Law of Motion Forces and Interactions Newton s Third

More information

Forces & Motion Balanced & Unbalanced Forces, Newton s First Law

Forces & Motion Balanced & Unbalanced Forces, Newton s First Law Forces & Motion 11.1 Balanced & Unbalanced Forces, Newton s First Law Forces Change Motion Force: push or pull Any time you change the motion of an object you use a force. 3 Major Types of forces: 1. Contact

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Exam 1 is Two Weeks away.here are some tips:

Exam 1 is Two Weeks away.here are some tips: Assignment 4 due Friday like almost every Friday Pre-class due 15min before class like every class Help Room: Here, 6-9pm Wed/Thurs SI: Morton 326, M&W 7:15-8:45pm Office Hours: 204 EAL, 10-11am Wed or

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 05 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The SI unit of force preferred by scientists is the: a. kilogram. b. newton.

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Physics 512. Motion Graphs Review

Physics 512. Motion Graphs Review Physics 512 Mr. Greenberg Name Test 1-2 Review Motion Graphs Review Type of Motion on a position vs. time graph on a velocity vs. time graph on an acceleration vs. time graph At Rest Moving forward at

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem!

ΣF=ma SECOND LAW. Make a freebody diagram for EVERY problem! PHYSICS HOMEWORK #31 SECOND LAW ΣF=ma NEWTON S LAWS Newton s Second Law of Motion The acceleration of an object is directly proportional to the force applied, inversely proportional to the mass of the

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls. 4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

Newton s second law of motion states:

Newton s second law of motion states: Newton s second law of motion states: The acceleration produced by a force on an object is directly proportional to the magnitude of the force, is in the same direction as the force, and is inversely proportional

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

2.1 Force. Net Force. Net Force. Net Force

2.1 Force. Net Force. Net Force. Net Force An object in mechanical equilibrium is stable, without changes in motion. Things that are in balance with one another illustrate equilibrium. Things in mechanical equilibrium are stable, without changes

More information

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

9/20/11. Physics 101 Tuesday 9/20/11 Class 8 Chapter  Weight and Normal forces Frictional Forces Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.

More information

Lecture 5. Dynamics. Forces: Newton s First and Second

Lecture 5. Dynamics. Forces: Newton s First and Second Lecture 5 Dynamics. Forces: Newton s First and Second What is a force? It s a pull or a push: F F Force is a quantitative description of the interaction between two physical bodies that causes them to

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Webreview practice test. Forces (again)

Webreview practice test. Forces (again) Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

More information

PHYS103 Sec 901 Hour Exam No. 2 Page: 1

PHYS103 Sec 901 Hour Exam No. 2 Page: 1 PHYS103 Sec 901 Hour Exam No. 2 Page: 1 PHYS103 Sec 901 Hour Exam No. 2 Page: 2 1 If you try to push your stalled car North, your stalled car exerts a force back on you pointing toward the a. North. b.

More information

PHYS103 Sec 901 Hour Exam No. 2 Page: 1

PHYS103 Sec 901 Hour Exam No. 2 Page: 1 PHYS103 Sec 901 Hour Exam No. 2 Page: 1 PHYS103 Sec 901 Hour Exam No. 2 Page: 2 1 When you step on the gas in your car, the wheels push against the ground and the ground pushes back. The force that makes

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 7 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 7 Lecture RANDALL D. KNIGHT Chapter 7 Newton s Third Law IN THIS CHAPTER, you will use Newton s third law to understand how objects

More information

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4. Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Chapter Goal: To establish a connection between force and motion. Slide 4-2 Chapter 4 Preview

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Chap. 4: Newton s Law of Motion

Chap. 4: Newton s Law of Motion Chap. 4: Newton s Law of Motion And Chap.5 Applying Newton s Laws (more examples) Force; Newton s 3 Laws; Mass and Weight Free-body Diagram (1D) Free-body Diagram (1D, 2 Bodies) Free-body Diagram (2D)

More information

Example: Adding 3 Forces

Example: Adding 3 Forces Example: Adding 3 Forces F1 = 250 N, θ1 = 127 F2 = 50 N, θ2 = 0 F3 = 120 N, θ3 = 270 Rx = F1x + F2x + F3x Ry = F1y + F2y + F3y Newton s first law is actually a special case of Newton s second law. If no

More information